Share |
![]() ![]() |
Please use this identifier to cite or link to this item:
https://tede.unioeste.br/handle/tede/8042
Tipo do documento: | Dissertação |
Title: | Detecção de intrusão aplicando random forests em ambiente federated learning |
Other Titles: | Intrusion detection using random forests in federated learning environment |
Autor: | Costa, Marcio Fernandes da ![]() |
Primeiro orientador: | Machado, Renato Bobsin |
Primeiro membro da banca: | Maciel, Joylan Nunes |
Segundo membro da banca: | Zalewski, Willian |
Resumo: | A crescente expansão dos dispositivos da Internet das Coisas tem transformado diversos setores, impulsionando ganhos em eficiência e automação. No entanto, essa evolução também amplia a vulnerabilidade a ataques cibernéticos, gerando riscos financeiros e danos à reputação. Diante desse cenário de crescente preocupação com a segurança, métodos eficazes de detecção de intrusões tornam-se indispensáveis. O aprendizado federado surge como uma abordagem promissora para enfrentar esse desafio, pois possibilita o treinamento de modelos globais sem comprometer a privacidade dos dados. Com base nessa perspectiva, este trabalho propõe um método de detecção de intrusão que utiliza florestas aleatórias como modelo de classificação, aplicado ao conjunto de dados IoTID20 em um ambiente federado. A escolha das florestas aleatórias justifica-se por sua robustez na classificação de padrões, tornando-as adequadas para cenários de segurança cibernética. Para otimizar o desempenho do modelo, foram realizadas etapas de pré-processamento no conjunto de dados, proporcionando maior eficiência no treinamento. Para mitigar o desbalanceamento dos dados, aplicou-se a técnica de oversampling, contribuindo para a melhoria dos resultados e, adicionalmente, a utilização de um ensemble para a seleção dos atributos permitiu a criação de vários conjuntos de dados, possibilitando a avaliação do desempenho do modelo em diferentes cenários. Os experimentos demonstraram que o modelo federado apresentou desempenho superior em relação ao modelo centralizado, mesmo na ausência da otimização de hiperparâmetros em ambos modelos. O modelo federado obteve médias de acurácia de 98,51%, F1-score de 98,60% e Recall de 98,43%, enquanto o modelo centralizado alcançou 97,49% de acurácia, 97,61% de F1-score e 96,67% de Recall, posicionando estes resultados de forma competitiva em relação a outros trabalhos na literatura que abordam a detecção de intrusão em ambientes federados. |
Abstract: | The growing expansion of Internet of Things devices has transformed several sectors, driving gains in efficiency and automation. However, this evolution also increases vulnerability to cyber attacks, generating financial risks and damage to reputation. Given this scenario of growing concern about security, effective intrusion detection methods become indispensable. Federated learning emerges as a promising approach to address this challenge, as it enables the training of global models without compromising data privacy. Based on this perspective, this work proposes an intrusion detection method that uses random forests as a classification model, applied to the IoTID20 dataset in a federated environment. The choice of random forests is justified by their robustness in pattern classification, making them suitable for cybersecurity scenarios. To optimize the model’s performance, pre-processing steps were performed on the dataset, providing greater efficiency in training. To mitigate data imbalance, the oversampling technique was applied, contributing to improved results. Additionally, the use of an ensemble for attribute selection allowed the creation of several datasets, enabling the evaluation of model performance in different scenarios. The experiments demonstrated that the federated model performed better than the centralized model, even in the absence of hyperparameter optimization in both models. The federated model achieved average accuracy of 98.51%, F1-score of 98.60%, and Recall of 98.43%, while the centralized model achieved 97.49% accuracy, 97.61% F1-score, and 96.67% Recall, positioning these results competitively in relation to other works in the literature that address intrusion detection in federated environments. |
Keywords: | Aprendizado federado Dispositivos iot Detecção de Intrusão Florestas aleatórias Federated learning IoT devices Intrusion detection Random forests |
CNPq areas: | CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
Idioma: | por |
País: | Brasil |
Publisher: | Universidade Estadual do Oeste do Paraná |
Sigla da instituição: | UNIOESTE |
Departamento: | Centro de Engenharias e Ciências Exatas |
Program: | Programa de Pós-Graduação em Engenharia Elétrica e Computação |
Campun: | Foz do Iguaçu |
Citation: | Costa, Marcio Fernandes da. Detecção de intrusão aplicando random forests em ambiente federated learning. 2025. 138 f. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2025. |
Tipo de acesso: | Acesso Aberto |
Endereço da licença: | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
URI: | https://tede.unioeste.br/handle/tede/8042 |
Issue Date: | 17-Jul-2025 |
Appears in Collections: | Mestrado em Engenharia Elétrica e Computação (FOZ) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Marcio_Fernandes_da_Costa_2025.pdf | Documento principal | 3.03 MB | Adobe PDF | View/Open Preview |
Items in TEDE are protected by copyright, with all rights reserved, unless otherwise indicated.