Share |
![]() ![]() |
Please use this identifier to cite or link to this item:
https://tede.unioeste.br/handle/tede/7232
Tipo do documento: | Dissertação |
Title: | Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful. |
Other Titles: | Study Recommendations in the AlfaCon Virtual Learning Environment: Studies with a RESTful API |
Autor: | Malacarne, Gustavo Raí ![]() |
Primeiro orientador: | Rizzi, Claudia Brandelero |
Primeiro coorientador: | Rizzi, Rogério Luis |
Primeiro membro da banca: | Scheffel, Roberto Milton |
Segundo membro da banca: | Naves, Thiago França |
Resumo: | Este trabalho apresenta o desenvolvimento e primeiros estudos com uma Interface de Programação de Aplicação (API) para o Ambiente Virtual de Aprendizagem (AVA) da empresa AlfaCon, focada na preparação de alunos para concursos públicos. A API, fundamentada na Teoria da Aprendizagem Significativa (TAS), Teoria Clássica dos Testes (TCT) e Teoria de Resposta ao Item (TRI), faz recomendações de estudos aos alunos que optam por sua utilização e se comprometem a fornecer dados pessoais complementares e gabaritos dos simulados realizados. Trata-se de parte de um esforço mais amplo da empresa para transitar do AVA tradicional atualmente utilizado, para um AVA adaptativo, que efetue recomendações de conteúdo, baseado em seus Objetos Educacionais devidamente catalogados e em suas características didáticas e operacionais. A indicação apontada por esta pesquisa para o AlfaCon para conduzir tal transição, especialmente devido à escassez de dados completos e adequados relativos aos alunos e as ações que eles e a Equipe Pedagógica (EP) realizam no AVA, é a utilização da API, por um período de tempo mínimo, para que os stakeholders detenham mais e melhores convicções a cerca das particularidades e necessidades quanto aos requisitos do AVA adaptativo pretendido. O funcionamento da API ocorre de maneira independente ao AVA atual do AlfaCon, não interferindo na dinâmica dos cursos em andamento, mas coletando dados que lhe são necessários. Durante um simulado do curso preparatório para a Polícia Rodoviária Federal (PRF), disponibilizado pelo AlfaCon no final de 2023, realizou-se um teste com a API em tempo real, com 89 alunos voluntários, viabilizando uma avaliação envolvendo métricas da TCT e conhecimentos prévios dos respondentes, conforme previsto pela TAS, para identificar áreas de conhecimento em que apresentaram maiores dificuldades e outros aspectos. A TRI contribuiu para identificar parâmetros de discriminação, dificuldade e chance de acertos ao acaso nos itens do simulado, viabilizando a criação de gráficos para aprimorar análises feitas pela EP. As avaliações realizadas com os testes relativos a esses 89 alunos apontou que a API efetivamente faz recomendações de estudos, e também fornece um relatório individual customizado, com infográficos intuitivos e métricas analíticas, facilitando maior compreensão da trajetória individual evolutiva ao longo do curso. A EP da empresa também recebe um feedback que que lhe permite identificar o avanço dos alunos no decorrer do curso, avalia a eficácia dos itens inclusos nos simulados e quantifica a aptidão de um teste em mensurar as habilidades dos respondentes. Dos alunos que avaliaram o relatório, 68,2% deram a nota máxima (5), enquanto 22,7% e 9,1% atribuíram notas 4 e 3, respectivamente. Além disso, 95,2% perceberam as recomendações como benéficas para entender e melhorar suas habilidades nas áreas indicadas, evidenciando o impacto positivo do relatório em sua autoavaliação e no planejamento de estudos |
Abstract: | This work presents the development and initial studies of an Application Programming Interface (API) for the Virtual Learning Environment (VLE) of AlfaCon, focused on preparing students for public service exams. The API, based on the Theory of Meaningful Learning (TML), Classical Test Theory (CTT), and Item Response Theory (IRT), makes study recommendations to students who opt for its use and commit to providing additional personal data and answers from simulated exams. This is part of a broader effort by the company to transition from the traditional VLE currently in use to an adaptive VLE, which makes content recommendations based on its duly cataloged Educational Objects and their didactic and operational characteristics. The indication pointed out by this research for AlfaCon to conduct such a transition, especially due to the scarcity of complete and adequate data related to students and the actions they and the Pedagogical Team (PT) perform in the VLE, is the use of the API, for a minimum period of time, so that stakeholders have more and better convictions about the specifics and needs regarding the requirements of the intended adaptive VLE. The API operates independently of AlfaCon’s current VLE, not interfering with the dynamics of ongoing courses but collecting necessary data. During a simulated exam for the Federal Highway Police (PRF) preparatory course, made available by AlfaCon at the end of 2023, a real-time test with the API was conducted with 89 volunteer students, enabling an evaluation involving CTT metrics and respondents’ prior knowledge, as predicted by TML, to identify areas of knowledge where they showed greater difficulties and other aspects. IRT contributed to identifying discrimination parameters, difficulty, and the chance of guessing correctly on the items of the simulated exam, enabling the creation of charts to enhance analyses made by the PT. The evaluations conducted with the tests related to these 89 students pointed out that the API effectively makes study recommendations and also provides a customized individual report, with intuitive infographics and analytical metrics, facilitating a better understanding of the individual evolutionary trajectory throughout the course. The company’s PT also receives feedback that identifies students’ progress during the course, assesses the effectiveness of the items included in the simulations, and quantifies a test’s aptitude in measuring respondents’ skills. Of the students who evaluated the report, 68.2% gave the highest score (5), while 22.7% and 9.1% assigned scores 4 and 3, respectively. Moreover, 95.2% perceived the recommendations as beneficial for understanding and improving their skills in the indicated areas, evidencing the positive impact of the report on their self-assessment and study planning. |
Keywords: | Sistema de Recomendação Recomendação de Estudos AfaCon API TCT TRI Recommendation System Study Recommendation AlfaCon API CTT IRT |
CNPq areas: | CIÊNCIA DA COMPUTAÇÃO |
Idioma: | por |
País: | Brasil |
Publisher: | Universidade Estadual do Oeste do Paraná |
Sigla da instituição: | UNIOESTE |
Departamento: | Centro de Ciências Exatas e Tecnológicas |
Program: | Programa de Pós-Graduação em Ciência da Computação |
Campun: | Cascavel |
Citation: | Malacarne, Gustavo Raí. Recomendação de Estudos no Ambiente Virtual de Aprendizado do AlfaCon Concursos Públicos: estudos com uma API RESTful. 2024. 200 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel. |
Tipo de acesso: | Acesso Aberto |
Endereço da licença: | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
URI: | https://tede.unioeste.br/handle/tede/7232 |
Issue Date: | 29-Feb-2024 |
Appears in Collections: | Mestrado em Ciência da Computação (CVL) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gustavo Malacarne.pdf | Arquivo completo | 13.41 MB | Adobe PDF | View/Open Preview |
Items in TEDE are protected by copyright, with all rights reserved, unless otherwise indicated.