Export iten: EndNote BibTex

Please use this identifier to cite or link to this item: http://tede.unioeste.br/handle/tede/3916
Tipo do documento: Dissertação
Title: Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná
Other Titles: Semiautomatic mapping of agricultural areas and targets permanent by profile spectrum-temporary of evi / modis in Parana
Autor: Verica, Weverton Rodrigo 
Primeiro orientador: Johann, Jerry Adriani
Primeiro membro da banca: Johann, Jerry Adriani
Segundo membro da banca: Silva Junior, Carlos Antonio da
Terceiro membro da banca: Mercante , Erivelto
Quarto membro da banca: Gurgacz, Flávio
Resumo: O conhecimento da localização e da quantidade de áreas destinadas a agricultura ou a florestas nativas ou plantadas é relevante para que os gestores públicos tomem suas decisões pautadas em dados fidedignos com a realidade. Além disto, parte das receitas de ICMS advindas do Fundo de Participação aos Municípios (FPM) depende de dados de produção agropecuária, número de propriedades rurais e fator ambiental. Diante disso, esta dissertação teve como objetivo elaborar uma metodologia objetiva e semiautomática para mapear áreas agrícolas e alvos permanente e posteriormente identificar áreas de soja, milho 1ª e 2ª safras, culturas de inverno, agricultura semi-perene, florestas e demais alvos permanentes no estado do Paraná para os anos-safra (2013/14 a 2016/17), utilizando séries temporais de índices de vegetação EVI/Modis. A metodologia proposta segue os passos do Processo de descoberta de conhecimento em base de dados – KDD, sendo que para isso foram elaboradas métricas extraídas do perfil espectro temporal de cada pixel e foi empregada a tarefa de classificação, realizada pelo algoritmo Random Forest. Para a validação dos mapeamentos utilizaram-se amostras extraídas de imagens Landsat-8, obtendo-se os índices de exatidão global maior que 84,37% e um índice kappa variando entre 0,63 e 0,98, sendo, portanto, considerados mapeamentos com boa ou excelente acurácia espacial. Os dados municipais da área de soja, milho 1ª safra, milho 2ª safra e culturas de inverno mapeada foram confrontados com as estatísticas oficiais obtendo-se coeficientes de correlação linear entre 0,61 a 0,9, indicando moderada ou forte correlação com os dados oficiais. Desse modo, a metodologia semiautomática proposta obteve êxito na realização do mapeamento, bem como a automatização do processo de elaboração das métricas, gerando, com isso um script no software R de maneira a facilitar mapeamentos futuros com baixo tempo de processamento.
Abstract: Knowledge of location and quantity of areas for agriculture or either native or planted forests is relevant for public managers to make their decisions based on reliable data. In addition, part of ICMS revenues from the Municipal Participation Fund (FPM) depends on agricultural production data, number of rural properties and the environmental factor. The objective of this research was to design an objective and semiautomatic methodology to map agricultural areas and targets permanent, and later to identify areas of soybean, corn 1st and 2nd crops, winter crops, semi-perennial agriculture, forests and other permanent targets in the state of Paraná for the harvest years (2013/14 to 2016/17), using temporal series of EVI/Modis vegetation indexes. The proposed methodology follows the steps of the Knowledge Discovery Process in Database – KDD, in which the classification task was performed by the Random Forest algorithm. For the validation of the mappings, samples extracted from Landsat-8 images were used, obtaining the global accuracy indices greater than 84.37% and a kappa index ranging from 0.63 to 0.98, hence considered mappings with good or excellent spatial accuracy. The municipal data of the area of soybean, corn 1st crop, corn 2nd crop and winter crops mapped were confronted with the official statistics obtaining coefficients of linear correlation between 0.61 to 0.9, indicating moderate or strong correlation with the data officials. In this way, the proposed semi-automatic methodology was successful in the mapping, as well as the automation of the process of elaboration of the metrics, thus generating a script in the software R in order to facilitate future mappings with low processing time.
Keywords: KDD
Random Forest
Classificação
KDD
Random forest
Classification
CNPq areas: CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Idioma: por
País: Brasil
Publisher: Universidade Estadual do Oeste do Paraná
Sigla da instituição: UNIOESTE
Departamento: Centro de Ciências Exatas e Tecnológicas
Program: Programa de Pós-Graduação em Engenharia Agrícola
Campun: Cascavel
Citation: VERICA, Weverton Rodrigo. Mapeamento semiautomático por meio de padrão espectro-temporal de áreas agrícolas e alvos permanentes com evi/modis no Paraná. 2018. 116 f. Dissertação (Mestrado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.
Tipo de acesso: Acesso Aberto
Endereço da licença: http://creativecommons.org/licenses/by-nc-nd/4.0/
URI: http://tede.unioeste.br/handle/tede/3916
Issue Date: 16-Feb-2018
Appears in Collections:Mestrado em Engenharia Agrícola (CVL)

Files in This Item:
File Description SizeFormat 
Weverton_Verica2018.pdf4.44 MBAdobe PDFView/Open Preview


This item is licensed under a Creative Commons License Creative Commons