Export iten: EndNote BibTex

Please use this identifier to cite or link to this item: https://tede.unioeste.br/handle/tede/6338
Full metadata record
DC FieldValueLanguage
dc.creatorDal' Canton, Letícia Ellen-
dc.creator.Latteshttp://lattes.cnpq.br/1085422685501012por
dc.contributor.advisor1Guedes, Luciana Pagliosa Carvalho-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3195220544719864por
dc.contributor.advisor-co1Opazo, Miguel Angel Uribe-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4179444121729414por
dc.contributor.referee1Guedes, Luciana Pagliosa Carvalho-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3195220544719864por
dc.contributor.referee2Opazo, Miguel Angel Uribe-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4179444121729414por
dc.contributor.referee3Bastiani, Fernanda De-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5519064508209103por
dc.contributor.referee4Cima, Elizabeth Giron-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6425282643235095por
dc.contributor.referee5Nava, Daniela Trentin-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/6681448607094595por
dc.date.accessioned2022-12-08T14:01:22Z-
dc.date.issued2022-08-29-
dc.identifier.citationDal' Canton, Letícia Ellen. Correlação espacial bivariada para o redimensionamento do tamanho amostral efetivo. 2022. 88 f. Tese (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.por
dc.identifier.urihttps://tede.unioeste.br/handle/tede/6338-
dc.description.resumoDeterminar a variabilidade espacial de atributos do solo e da planta é fundamental para o gerenciamento de áreas agrícolas. Essa prática exige que seja realizado um planejamento amostral apropriado que oportunize coletar o menor número possível de amostras georreferenciadas, vislumbrando manter a qualidade na amostragem e poupar recursos financeiros e operacionais. Além disso, estudos geoestatísticos sobre a distribuição espacial de processos estocásticos, em que as observa- ções são georreferenciadas, podem evidenciar estruturas espaciais não totalmente independentes entre os atributos. Nesses casos, é recomendado calcular a associação entre as variáveis por meio de uma métrica de correlação espacial bivariada, além de utilizar um modelo geoestatístico bivariado. Sendo assim, no primeiro artigo deste trabalho foi analisada a correlação espacial bivariada, considerando variáveis com diferentes estruturas de dependência espacial, para tal, foi calculado o índice de Lee bivariado. Os resultados mostraram que o raio de dependência espacial comum a ambas às variáveis foi o parâmetro que mais influenciou o valor do índice de Lee, sendo que quanto maior o valor desse parâmetro mais elevada foi a correlação espacial bivariada. No segundo artigo, com base no pressuposto da existência de correlação espacial entre pares de variáveis, o estudo teve como objetivo redimensionar o tamanho amostral, a partir do cálculo do tamanho amostral efetivo bivariado (ESSbi), utilizando o modelo espacial Gaussiano bivariado com componente de correlação parcialmente comum (BGCCM). Porquanto, a maioria das propostas na literatura para o ESSbi utiliza alternativas em suas metodologias que visam evitar o uso de estrutura de correlação espacial entre as variáveis ou consideram o modelo espacial bivariado de corregionalização (BCRM). A diferença é que na estrutura do BGCCM, além da existência de um campo aleatório Gaussiano comum compartilhado pelo par de variáveis, existe também um campo aleatório Gaussiano associado à cada variável individualmente. Enquanto no BCRM, necessariamente, a estrutura de correlação espacial individual de uma das variáveis é desconsiderada do modelo. Para verificar a viabilidade teórica da proposta do ESSbi, todas as propriedades que incidem sobre a metodologia univariada foram verificadas para a bivariada, utilizando estudos de simulação ou de forma algébrica. O ESSbi também foi aplicado a um conjunto de dados reais de matéria orgânica (MO) e soma de bases (SB), coletados em uma área agrícola com plantio de soja, no qual se constatou que 60% das observações amostrais do par MO-SB continham informações espacialmente duplicadas. Além disso, o redimensionamento amostral obtido para o conjunto de dados reais se mostrou praticável, em termos da qualidade obtida na predição espacial.por
dc.description.abstractDetermining the spatial variability of soil and plant attributes is critical for farmland management. This practice requires that an appropriate sample planning be carried out in order to collect as few georeferenced samples as possible, with a view to maintaining sampling quality and saving financial and operational resources. Furthermore, geostatistical studies involving the spatial distribution of stochastic processes, in which observations are georeferenced, may show spatial structures that are not totally independent between the attributes. In these cases, it is recommended to calculate the association between the variables by resorting to a bivariate spatial correlation metric, in addition to utilizing a bivariate geostatistical model. Therefore, in the first scientific paper of this research, the bivariate spatial correlation was analyzed considering variables with different structures of spatial dependence and, for this, the bivariate Lee index was calculated. The results showed that the radius of spatial dependence common to both variables was the parameter that most influenced the Lee index value, whereas the higher the value of this parameter, the greater the bivariate spatial correlation. Subsequently, in the second paper, based on the assumption of the existence of spatial correlation between pairs of variables, the study aimed to redimension the sample size by calculating the bivariate effective sample size (ESSbi), utilizing the bivariate Gaussian common component model (BGCCM). This is because most of the proposals in the literature for the ESSbi adopt alternatives in their methodologies that aim to avoid the usage of a spatial correlation structure between the variables or consider the bivariate coregionalization model (BCRM). The difference is that in the BGCCM structure, in addition to having a common Gaussian random field shared by the pair of variables, there is also a Gaussian random field associated with each variable individually. Whilst in BCRM, the individual spatial correlation structure of one of the variables is necessarily disregarded from the model. In order to verify the theoretical feasibility of the ESSbi proposal, all properties that affect the univariate methodology were verified for the bivariate one, performing simulation studies or algebraically. The ESSbi was also applied to a real data set of organic matter (OM) and sum of bases (SB), collected in an agricultural area with soybean plantation, in which it was found that 60% of the sample observations of the OM-SB pair contained spatially duplicated information. Moreover, the sample redimensioning obtained for the real data set proved to be feasible in terms of the quality obtained in the spatial prediction.eng
dc.description.provenanceSubmitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2022-12-08T14:01:22Z No. of bitstreams: 2 Letícia_Dal' Canton2022.pdf: 3495330 bytes, checksum: 72b51f946e0cce24b1f0cece9d1801ad (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)eng
dc.description.provenanceMade available in DSpace on 2022-12-08T14:01:22Z (GMT). No. of bitstreams: 2 Letícia_Dal' Canton2022.pdf: 3495330 bytes, checksum: 72b51f946e0cce24b1f0cece9d1801ad (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2022-08-29eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Estadual do Oeste do Paranápor
dc.publisher.departmentCentro de Ciências Exatas e Tecnológicaspor
dc.publisher.countryBrasilpor
dc.publisher.initialsUNIOESTEpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Agrícolapor
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectGeoestatísticapor
dc.subjectÍndice de Leepor
dc.subjectProcessos Gaussianospor
dc.subjectRedução amostralpor
dc.subjectSimulaçãopor
dc.subjectGeostatisticseng
dc.subjectLee indexeng
dc.subjectGaussian processeseng
dc.subjectSample reductioneng
dc.subjectSimulationeng
dc.subject.cnpqCIENCIAS AGRARIAS::ENGENHARIA AGRICOLApor
dc.titleCorrelação espacial bivariada para o redimensionamento do tamanho amostral efetivopor
dc.title.alternativeBivariate spatial correlation for effective sample size redimensioningeng
dc.typeTesepor
dc.publisher.campusCascavelpor
Appears in Collections:Doutorado em Engenharia Agrícola (CVL)

Files in This Item:
File Description SizeFormat 
Letícia_Dal' Canton2022.pdf3.41 MBAdobe PDFView/Open Preview


This item is licensed under a Creative Commons License Creative Commons