Export iten: EndNote BibTex

Please use this identifier to cite or link to this item: https://tede.unioeste.br/handle/tede/1870
Full metadata record
DC FieldValueLanguage
dc.creatorTrigueros, Daniela Estelita Goes-
dc.creator.Latteshttp://lattes.cnpq.br/5198880627063850por
dc.contributor.advisor1Módenes, Aparecido Nivaldo-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7294940837327863por
dc.contributor.advisor-co1Kroumov, Alexander Dimitrov-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9543519658891296por
dc.contributor.referee1Ravagnani, Mauro Antonio da Silva Sá-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8494271331675279por
dc.contributor.referee2Arroyo, Pedro Augusto-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9376203096430598por
dc.contributor.referee3Lucena, Sérgio Luiz de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4981818888402908por
dc.date.accessioned2017-07-10T18:08:08Z-
dc.date.available2008-07-01-
dc.date.issued2008-02-12-
dc.identifier.citationTRIGUEROS, Daniela Estelita Goes. Evaluation of biodegradation kinetics of toxics compounds: benzene, toluene, ethylbenzene, xylene (BTEX) and phenol. 2008. 179 f. Dissertação (Mestrado em Desenvolvimento de Processos) - Universidade Estadual do Oeste do Parana, Toledo, 2008.por
dc.identifier.urihttp://tede.unioeste.br:8080/tede/handle/tede/1870-
dc.description.resumoOs hidrocarbonetos aromáticos benzeno, tolueno, etilbenzeno e xilenos, coletivamente conhecidos como BTEX são compostos tóxicos presentes em derivados de petróleo, como a gasolina, e utilizados em larga escala nas indústrias químicas e petroquímicas. Estes compostos quando liberados no meio ambiente contaminam o solo e as águas subterrâneas, podendo inviabilizar a exploração de aqüíferos, que atualmente representam uma fonte alternativa de água potável. Portanto, é fundamental a pesquisa de processos de biodegradação, particularmente quando múltiplos substratos estão presentes no sistema. Neste trabalho investigou-se a cinética de biodegradação dos compostos BTEX, individualmente e em mistura. Para tanto, o desempenho de diversos modelos não-estruturados de crescimento microbiano, baseado na cinética no nível da população, foi avaliado utilizando-se dados experimentais obtidos da literatura. As equações do balanço material em operação batelada foram numericamente resolvidas (método RKF45) aplicando os modelos de Monod e Andrews à cinética de biodegradação individual dos substratos. Igualmente, as equações aplicadas à cinética de biodegradação da mistura BTEX foram resolvidas considerando os modelos de inibição competitiva, acompetitiva e não-competitiva, bem como o modelo soma cinética dos parâmetros de interação (sum kinetic interactions parameters SKIP). Para o entendimento dos mecanismos envolvidos na biodegradação de múltiplos substratos tóxicos, também foram investigadas a cinética de biodegradação dos compostos BTF (benzeno, tolueno e fenol), individualmente e em misturas binárias e ternária. Neste caso, algumas modificações nos modelos de inibição foram propostas para descrever a cinética de biodegradação das misturas benzeno-tolueno e benzeno-fenol. Os parâmetros cinéticos foram estimados por meio de um método de otimização global conhecido como Enxame de Partículas (Particle Swarm Optimization PSO), implementado no software Maple®, utilizando a função dos mínimos quadrados como critério estatístico. Os parâmetros obtidos no presente trabalho mostraram-se coerentes com valores relatados na literatura. A biodegradação individual dos substratos BTEX foi adequadamente representada pelos modelos de Andrews e Monod. O modelo SKIP proporcionou a melhor representação da cinética de biodegradação da mistura BTEX, e conseguiu mostrar a existência de interações não específicas entre os substratos BTEX. Além do ótimo ajuste do modelo SKIP, inferências sobre o comportamento dos demais modelos avaliados indicam uma mistura de inibições competitiva e não-competitiva, concordando com o fato de que, a mistura de culturas microbianas utilizada na biodegradação, pode apresentar múltiplos caminhos metabólicos para a biodegradação dos compostos BTEX. Por meio do modelo SKIP estimou-se as interações entre os substratos BTEX, onde o etilbenzeno apresentou o maior efeito de inibição sobre os demais compostos, ao passo que o xileno mostrou o menor efeito. O modelo de inibição competitiva representou adequadamente a cinética de biodegradação dos substratos BTF, em misturas binárias e ternária, concordando com o fato de que estes compostos são catabolizados pelo mesmo caminho enzimático da Pseudomonas putida F1 utilizada na biodegradação. Além disso, as modificações propostas para os modelos de inibição, representaram melhor a cinética de biodegradação das misturas benzeno-tolueno e benzeno-fenol. Os resultados alcançados neste trabalho mostram que os melhores modelos podem ser aplicados com sucesso na otimização dos processos de biodegradação de compostos tóxicos em diferentes tipos de biorreatores e condições operacionais.por
dc.description.abstractThe aromatics hydrocarbons usually known as BTEX (benzene, toluene, ethylbenzene, and xylenes isomers) are toxics compounds presented in many petroleum products, such as gasoline, and are also widely used in chemical and petrochemical industries. When these compounds are released in the environment a contamination of the soil and the groundwater took place. As a result, the use of the aquifers becomes impossible. Groundwaters nowadays represent an alternative potable water source in many countries. Therefore, it s crucially important to study the biodegradation process, in particular when multiple substrates are presented in the system. In this work, the kinetics of BTEX biodegradation was studied, individually and as in mixture. Hence, the performance of the different microbial growth unstructured models, based on the population level kinetics were investigated by using experimental data from literature. The equations of the material balances, for batch operation mode, were numerically solved (RKF45 method) applying the Monod and Andrews models to describe an individual substrates biodegradation kinetics. Similarly, the applied equations describing mixture substrates biodegradation kinetics were solved by using the competitive, noncompetitive and uncompetitive inhibitions models as well as the sum kinetic interactions parameters (SKIP) model. Moreover, in order to understand the mechanisms involved in the biodegradation process of the BTP toxics compounds (benzene, toluene, and phenol), individually and as the binary and ternary mixtures, were investigated. In this case, some inhibition models modifications were proposed in order to describe the biodegradation kinetics of the benzene-toluene and benzene-phenol mixtures. The kinetic parameters were estimated by using Particle Swarm global optimization method. The experimental data were taken from the literature and the programs were coded in Maple software. The least square method was used as a statistical criterion of the search. The evaluated kinetic parameters values obtained in the present study were found to describe very well experimental data and to be in accordance with the values reported in the literature. The simple Monod and Andrews models accurately predict the BTEX individual biodegradation kinetics. The SKIP model provided the best description of BTEX biodegradation kinetics, showing the existence of non specific interactions between the BTEX substrates. The other models behavior indicated a presence of a competitive and a noncompetitive inhibition in the mixtures, agreeing with the reality that a mixture culture used in the biodegradation can have multiples metabolic pathways to the BTEX biodegradation. By applying the SKIP model, the interactions between BTEX substrates was estimated, where the ethylbenzene expressed a higher inhibitory effect in the mixtures, whereas the xylene shown a smaller one. The competitive inhibition model adequately described the BTP binary and ternary mixtures biodegradation process, because substrates biodegradation is catabolized via the same enzymatic pathway of Pseudomonas putida F1. Moreover, the inhibition models modifications proposed described better the biodegradation kinetics of benzene-toluene and benzene-phenol mixtures. Finally, the obtained results in this work have shown that the best models can be successfully applied for optimization of toxics compounds biodegradation process by applying different bioreactors types and operational conditions.eng
dc.description.provenanceMade available in DSpace on 2017-07-10T18:08:08Z (GMT). No. of bitstreams: 1 Daniela E G Trigueros.pdf: 1658351 bytes, checksum: 7fbea29ba41e37a5bf51e05f405fc287 (MD5) Previous issue date: 2008-02-12eng
dc.description.sponsorshipUniversidade Estadual do Oeste do Paraná. Campus de Toledo-
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Estadual do Oeste do Paranapor
dc.publisher.departmentDesenvolvimento de Processospor
dc.publisher.countryBRpor
dc.publisher.initialsUNIOESTEpor
dc.publisher.programPrograma de Pós-Graduação Stricto Sensu em Engenharia Químicapor
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectBiodegradaçãopor
dc.subjectPSOpor
dc.subjectModelagempor
dc.subjectBTEXpor
dc.subjectFenolpor
dc.subjectHidrocarbonetospor
dc.subjectCinéticapor
dc.subjectPoluição de água - Prevençao e controlepor
dc.subjectCompostos tóxicos - Cinética de biodegradaçãopor
dc.subjectBiodegradationeng
dc.subjectPSOeng
dc.subjectModelingeng
dc.subjectBTEX (Benzeno, Tolueno, Etilbenzeno, Xileno)eng
dc.subjectPhenoleng
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICApor
dc.titleAvaliação da cinética de biodegradação dos compostos tóxicos: benzeno, tolueno, etilbenzeno, xileno (BTEX) e fenolpor
dc.title.alternativeEvaluation of biodegradation kinetics of toxics compounds: benzene, toluene, ethylbenzene, xylene (BTEX) and phenoleng
dc.typeDissertaçãopor
Appears in Collections:Mestrado em Engenharia Química (TOL)

Files in This Item:
File SizeFormat 
Daniela E G Trigueros.pdf1.62 MBAdobe PDFView/Open Preview


Items in TEDE are protected by copyright, with all rights reserved, unless otherwise indicated.