Export iten: EndNote BibTex

Please use this identifier to cite or link to this item: http://tede.unioeste.br/handle/tede/2998
Tipo do documento: Dissertação
Title: Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
Other Titles: Selection of attributes and automatic classification of breast lesions in ultrasound images
Autor: Albonico, Guilherme Antônio Mantovani 
Primeiro orientador: Kauati, Adriana Tokuhashi
Primeiro coorientador: Pereira, Wagner Coelho de Albuquerque
Primeiro membro da banca: Kauati, Adriana Tokuhashi
Segundo membro da banca: Pereira, Wagner Coelho de Albuquerque
Terceiro membro da banca: Battistella, Sandro
Quarto membro da banca: Campos, Marcello Luiz Rodrigues de
Resumo: O câncer de mama é uma das doenças que mais atingem as mulheres no mundo. Devido à grande quantidade de fatores associados com este tipo de doença, a detecção precoce é a melhor forma de combatê-la. A mamografia é o principal exame utilizado atualmente para a detecção, pois é capaz de identificar a presença de microcalcificações, as quais são um indicador chave da presença de câncer. Como complemento a este exame, a ultrassonografia da mama vem sendo bastante utilizada devido ao grande número de mamogramas inconclusivos e à dificuldade de diagnóstico de mulheres mais jovens. Entretanto a interpretação das imagens de ultrassom provenientes destes exames é bastante dependente da experiência do médico que realiza o diagnóstico. Para auxiliar na interpretação destes exames, surgiram os sistemas Computer-Aided Diagnosis (CAD) que buscam fornecer uma segunda opinião para os médicos especialistas. Neste trabalho, foram desenvolvidas as etapas de seleção de atributos e de classificação presentes nestes sistemas. Foram realizadas abordagem wrapper com estratégia de busca baseada em algoritmos genéticos e duas estratégias em filtro, o teste t de Welch e o algoritmo ReliefF. Para avaliar o desempenho dos subconjuntos foi elaborado um classificador do tipo Multilayer Perceptron (MLP), com algoritmo de aprendizagem backpropagation. A métrica utilizada para avaliar o desempenho de classificação de cada subconjunto de atributos foi a área sob a curva Receiver Operating Characteristic (Az). O banco de dados utilizado, consiste de 541 imagens, sendo 314 lesões benignas e 227 lesões malignas com diagnóstico comprovado por biópsia. O banco de dados contém a segmentação manual destas imagens realizada por um médico especialista e 22 atributos morfológicos previamente extraídos. Os resultados encontrados pelas técnicas em filtro mostraram que alguns atributos isoladamente são capazes de obter bons resultados na classificação, como por exemplo, a razão profundidade/largura da lesão, obtendo um valor de 0,731 para Az. Apesar disso, os melhores resultados foram encontrados através da estratégia wrapper, tendo sido obtido um valor de 0,835 para Az utilizando apenas oito dos 22 atributos, demonstrando assim a importância destas etapas neste tipo de sistema CAD, aumentando o desempenho final.
Abstract: Breast cancer is one of the diseases that hit most women in the world. Due to the large number of factors associated with this type of disease, early detection is the best way to fight it. Mammography is the main imaging exam currently used for detection, since it is able to identify the presence of microcalcifications, which are a key indicator of the presence of cancer. As a complement exam, breast ultrasonography has also been widely used because of the large number of inconclusive mammograms and the difficulty of diagnosing younger women. However, the interpretation of ultrasound images is quite dependent on the experience of the doctor in charge of the diagnosis. To aid in the interpretation of these images, Computer-Aided Diagnosis (CAD) systems have appeared, and it seeks to provide a second opinion for medical specialists. In this work, the attribute selection and classification stages presented in these systems were developed. A wrapper approach with a search strategy based in genetic algorithms, and two filter approaches, the Welch's t test and the ReliefF algorithm was developed. To evaluate the subsets performance, a Multilayer Perceptron (MLP) neural network, with backpropagation learning algorithm was developed as a classifier. The metric used to evaluate the classification performance of each subset of attributes was the area of under the Receiver Operating Characteristic curve (Az).The used database has 541 images, with 314 benign lesions and 227 malignant lesions with a biopsyproven diagnosis. In addition, the database contains the manual segmentation of these images performed by a specialist physician and 22 morphological extracted attributes. The filter techniques results showed that some attributes alone are able to obtain good classification results, such as the depth/width ratio of the lesion, reaching 0.731 for Az. Besides that, the best results were found through the wrapper strategy, in which a value of 0.835 was obtained for Az using only eight of the 22 attributes, demonstrating the importance of these steps in this type of CAD system, increasing the final performance.
Keywords: Câncer de mama
Ultrassom
CAD
Breast cancer
Ultrasound
CNPq areas: Sistemas dinâmicos e energéticos
Idioma: por
País: Brasil
Publisher: Universidade Estadual do Oeste do Paraná
Sigla da instituição: UNIOESTE
Departamento: Centro de Engenharias e Ciências Exatas
Program: Programa de Pós-Graduação em Engenharia Elétrica e Computação
Campun: Foz do Iguaçu
Citation: AlBONICO, Guilherme Antônio Mantovani. Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom. 2017. 77 p. Dissertação (Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2017.
Tipo de acesso: Acesso Aberto
Endereço da licença: http://creativecommons.org/licenses/by-nc-nd/4.0/
URI: http://tede.unioeste.br/handle/tede/2998
Issue Date: 30-Mar-2017
Appears in Collections:Mestrado em Engenharia Elétrica e Computação (FOZ)

Files in This Item:
File Description SizeFormat 
Guilherme_A_Mantovani_Albonico_2017.pdf5.52 MBAdobe PDFView/Open Preview


This item is licensed under a Creative Commons License Creative Commons