@MASTERSTHESIS{ 2022:769811946, title = {Previsão de demanda de energia elétrica em microgrid considerando níveis menos agregados por meio da aplicação de rede neural artificial GRNN combinada com o método estatístico SARIMA}, year = {2022}, url = "https://tede.unioeste.br/handle/tede/6542", abstract = "O crescimento do consumo de energia elétrica no mundo obriga que países tenham um planejamento bem estruturado em relação a previsão da demanda de energia elétrica de seus mais diversos setores. Utilizam-se diversas técnicas para previsão de cargas elétricas, como, por exemplo, os modelos de inteligência artificial, os modelos estatísticos e os modelos híbridos. Este trabalho tem por objetivo apresentar um modelo baseado na combinação entre um método estatístico, o Modelo Autorregressivo Integrado de Médias Móveis com Sazonalidade (SARIMA), e uma rede neural artificial, a Rede Neural de Regressão Generalizada (GRNN), com objetivo de melhorar a acurácia das previsões de demanda de energia elétrica. O conjunto de dados utilizados neste trabalho pertence a um grupo de edificações localizadas no Parque Tecnológico Itaipu (PTI) e foi adquirido por meio de medidores eletrônicos instalados juntos aos transformadores que atendem a cada uma destas edificações, realizando coletas de dados a cada 15 minutos. Após o tratamento e refinamento da base de dados, foram aplicadas técnicas para previsão, cada uma utilizando um horizonte de previsão de 1, 3 e 5 dias, sendo a primeira técnica a combinação entre a GRNN e o SARIMA, e, as outras técnicas utilizadas foram os próprios métodos previsores separadamente, a rede neural artificial chamada Rede Memória de curto e longo prazo (LSTM), muito utilizada para previsão de séries temporais, e uma combinação entre a LSTM e o método estatístico SARIMA permitindo a comparação de seus resultados. Os resultados obtidos com o modelo combinado proposto GRNN+SARIMA são, em geral, mais precisos quando comparados com os resultados das técnicas individualmente, pois combinam as vantagens de cada técnica e acabam suavizando as características negativas uma da outra, ocasionado assim, um equilíbrio que se reflete na previsão gerada, o que fez com que os resultados obtidos fossem assemelhantes aos resultados da LSTM em algumas simulações.", publisher = {Universidade Estadual do Oeste do Paraná}, scholl = {Programa de Pós-Graduação em Engenharia Elétrica e Computação}, note = {Centro de Engenharias e Ciências Exatas} }