@PHDTHESIS{ 2021:1652012204, title = {Aplicação computacional AGDATABOX-RS: gerenciamento de dados de sensoriamento remoto}, year = {2021}, url = "http://tede.unioeste.br/handle/tede/5718", abstract = "O sensoriamento remoto tem a capacidade de auxiliar na evolução das práticas agrícolas, fornecendo informações periódicas sobre o estado de uma cultura ao longo de uma safra, em diferentes escalas e para diferentes segmentos. Aplicações em agricultura de precisão utilizam práticas de sensoriamento remoto, como os índices de vegetação, derivados de imagens multiespectrais, para mensurar parâmetros físicos e químicos das plantas, no decorrer do seu ciclo de desenvolvimento. Os avanços tecnológicos oportunizaram o desenvolvimento de serviços inovadores para o setor agrícola, baseados na internet e hospedados em nuvem. Sendo assim, o objetivo dessa pesquisa foi desenvolver uma aplicação computacional que integre e forneça dados de sensoriamento remoto para a plataforma de agricultura de precisão AgDataBox. A aplicação desenvolvida permite o cadastro de uma nova área (talhão), buscar imagens raster de satélites orbitais, selecionar índices de vegetação, vetorizar e inserir as imagens de interesse na plataforma AgDataBox. A aplicação proposta foi testada com dados da safra de milho de 2018/201 (safra verão), em uma área de estudo no município de Céu Azul, Paraná. Foram gerados 12 vetores a partir de imagens do satélite Sentinel-2, utilizando o índice de vegetação por diferença normalizada (NDVI), índice de vegetação melhorado (EVI) e índice de vegetação melhorado 2 (EVI-2) dos dias 11/12/2018, 16/12/2018, 15/01/2019 e 25/01/2019 e inseridos na plataforma AgDataBox. Também foram inseridos vetores com variáveis de produtividade, altitude, areia, silte, argila, resistência mecânica a penetração do solo nas profundidades de 0-0,1 m, 0-0,2 m, 0,1-0,2 m e 0,2-0,3 m. Após a análise de autocorrelação entre as variáveis, tendo produtividade como variável alvo, foram selecionadas EVI2 e altitude como as variáveis que apresentaram melhor autocorrelação cruzada com a variável alvo. Foram delineadas zonas de manejo (ZMs) no módulo AgDataBox-Map, utilizando o método fuzzy c-means, para duas, três e quatro classes utilizando três conjuntos de variáveis de entrada: (i) EVI-2_NM, (ii) Altitude, e (iii) EVI 2_NM+Altitude. Após análise dos resultados, conclui-se que o melhor delineamento utilizou a variável EVI-2 no delineamento de três classes de ZMs. Todos os delineamentos para duas classes apresentaram diferença estatística entre suas classes, sendo o melhor desempenho obtido com a variável altitude. Todos os delineamentos com quatro classes foram descartados, pois não apresentaram diferença estatística significativa entre suas classes.", publisher = {Universidade Estadual do Oeste do Paraná}, scholl = {Programa de Pós-Graduação em Engenharia Agrícola}, note = {Centro de Ciências Exatas e Tecnológicas} }