@MASTERSTHESIS{ 2020:1447793268, title = {Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina}, year = {2020}, url = "http://tede.unioeste.br/handle/tede/5150", abstract = "O seguro rural é uma alternativa importante para tornar o setor agrícola financeiramente estável, mesmo com ocorrências de eventos naturais adversos. Trata-se de um contrato securitário no qual a parte contratada se obriga a indenizar a outra por um prejuízo eventual. Dessa forma, para o agricultor, é um mecanismo de transferência de uma despesa futura incerta e de valor elevado, por uma despesa antecipada de valor reduzido. Devido aos grandes valores envolvidos nessas transações, são necessários mecanismos para fiscalização da aplicação desses recursos. O sensoriamento remoto agrícola proporciona o acompanhamento amplo e sistemático das lavouras de forma contínua e com baixo custo, facilitando, assim, o processo de fiscalização e tomada de decisão sobre seguros rurais. Este trabalho se propõe a definir uma metodologia para a confirmação de sinistros agrícolas pela análise dos padrões sazonais de EVI/Landsat-8 e dados climáticos. Para isso, serão utilizadas informações de lavouras sinistradas (milho, soja e trigo) e lavouras sem a ocorrência de sinistro, com a finalidade de verificar o padrão existente entre esses parâmetros, indicando a ocorrência ou não de sinistros e qual é o tipo de sinistro incidente, comparando com os laudos de pericias reais cedidos por empresa parceira do estudo. Para as análises foram utilizados algoritmos de classificação supervisionada do Support vector machine (SVM), Random forest (RF) e Decision tree (DT). O classificador RF obteve melhor desempenho dentre os demais, pois classificou a ocorrência de sinistro com acurácias de 83, 96 e 81% para milho, soja e trigo, respectivamente. Para os tipos de sinistro nas culturas sinistradas, observou-se maiores acurácias para o SVM na cultura do milho (99%) e soja (90%). Para o trigo a maior acurácia ocorreu com o RF (86%). A metodologia apresentada se demonstrou eficaz no levantamento de informações confiáveis para a confirmação de ocorrências de sinistro no ramo de seguros rurais, sendo uma alternativa viável e de grande importância para a estabilidade das seguradoras, como auxiliar no procedimento de peritagem e fiscalização de ações relacionadas a esses segmentos agrícolas.", publisher = {Universidade Estadual do Oeste do Paraná}, scholl = {Programa de Pós-Graduação em Engenharia Agrícola}, note = {Centro de Ciências Exatas e Tecnológicas} }