@MASTERSTHESIS{ 2018:70836826, title = {Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student}, year = {2018}, url = "http://tede.unioeste.br/handle/tede/3913", abstract = "A concorrência de mercado impõe ao agronegócio brasileiro que se produza mais a custos cada vez menores. Para tal, uma das alternativas é a utilização da Agricultura de Precisão (AP), que possibilita identificar a variabilidade espacial das propriedades físico-químicas do solo, de modo a conhecer melhor a área agrícola e, consequentemente, elevar o nível de produtividade das culturas. Independente do emprego da AP, é necessário conhecer a variabilidade espacial de uma variável na área agrícola e tal demanda exige planejamento amostral adequado que viabilize coletar o mínimo possível de pontos amostrais para evitar custos demasiados e manter a qualidade na amostragem. Um dos objetivos desse trabalho é reduzir o número de pontos amostrais coletados a partir do cálculo do tamanho amostral efetivo (ESS). Foi estimado o valor do ESS univariado e multivariado para variáveis georreferenciadas com distribuição normal de probabilidade utilizando-se duas metodologias: a de Griffith e a de Vallejos e Osorio. O estudo foi realizado com dados simulados, variando os valores do efeito pepita e alcance atribuídos às variáveis, e com atributos físico-químicos do solo. Nem sempre as variáveis têm distribuição normal de probabilidade, devido principalmente à presença de pontos discrepantes. Desta forma, estimou-se o valor do tamanho amostral efetivo univariado para processos estocásticos estacionários e isotrópicos, considerando-se que a estrutura de covariância apresentava distribuição de probabilidade t-Student. Diante dos resultados multivariados provenientes de variáveis com distribuição de probabilidade normal, constatou-se uma redução no número de pontos amostrais que variou entre 48% e 93%. Tanto no caso uni quanto multivariado, o valor estimado do ESS foi menor pelo método de Griffith, indicando que essa proposta viabiliza maior redução no tamanho amostral. Os resultados univariados derivados dos atributos com distribuição t-Student mostraram redução entre 40% e 95% no número de pontos amostrais. Tal variação na redução do tamanho amostral é justificada pelos diferentes valores dos parâmetros de dependência espacial apresentados pelas variáveis. Verificou-se ainda que o raio de dependência espacial foi o parâmetro que exerceu maior influência no valor estimado do ESS uni e multivariado, sendo que quanto maior seu valor, menor o tamanho amostral efetivo e, consequentemente, maior a redução no tamanho amostral.", publisher = {Universidade Estadual do Oeste do Paraná}, scholl = {Programa de Pós-Graduação em Engenharia Agrícola}, note = {Centro de Ciências Exatas e Tecnológicas} }