@PHDTHESIS{ 2016:735416966, title = {Ferramenta computacional para apoio ao gerenciamento e à classificação de sementes de soja submetidas ao teste de tetrazólio}, year = {2016}, url = "http://tede.unioeste.br/handle/tede/3086", abstract = "A produção e a utilização de sementes de alta qualidade são fatores de importância para o cultivo da soja. Para isso, o sistema de controle de qualidade na indústria de sementes deve ser confiável, preciso e rápido. A pesquisa em tecnologia de sementes tem se esforçado em desenvolver ou aprimorar testes que possibilitem a avaliação da qualidade das sementes. O teste de tetrazólio, além de avaliar a viabilidade e o vigor de sementes, fornece informações sobre possíveis agentes causadores da redução de sua qualidade. Embora não se utilize de instrumentos e reagentes caros, o teste requer um analista de sementes bem treinado, sendo que a precisão do mesmo depende do conhecimento de todas as técnicas e procedimentos envolvidos, devendo-se considerar a subjetividade do observador. Sendo assim, o objetivo desta pesquisa foi desenvolver uma ferramenta computacional que minimizasse a subjetividade implícita na realização do teste, contribuindo para gerar maior credibilidade nas informações e garantindo precisão nos resultados. Esta ferramenta permite, a partir de imagens do teste de tetrazólio, realizar a identificação dos danos presentes nas sementes, bem como sua localização e sua extensão nos tecidos, tornando a interpretação menos subjetiva. A partir da extração de dados de características das imagens digitais do teste de tetrazólio, foram aplicados algoritmos de classificação supervisionada para realizar a segmentação destas imagens, produzindo uma imagem classificada. O sistema proposto foi testado utilizando a seleção de amostras para treino do modelo classificador e, a partir deste modelo, a classificação das imagens do teste de tetrazólio, para extração de informações sobre os danos verificados nas sementes. O sistema permitiu, além da identificação dos danos nas imagens do teste de tetrazólio de forma facilitada, a extração de informações mais seguras sobre os danos presentes e realizar o controle das amostras analisadas. O classificador realizou a atribuição das classes predeterminadas de forma eficiente para dados não presentes no conjunto de treinamento, com 96,6% de instâncias classificadas corretamente e Índice Kappa de 0,95%, tornando o sistema uma ferramenta suplementar na tomada de decisão para o teste de tetrazólio.", publisher = {Universidade Estadual do Oeste do Paraná}, scholl = {Programa de Pós-Graduação em Engenharia Agrícola}, note = {Centro de Ciências Exatas e Tecnológicas} }