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INCORPORATION OF COMPUTATIONAL MODULES AS MICROSERVICES IN THE 

AGDATABOX PLATFORM AND DEVELOPMENT OF AGDATABOX-MAP APPLICATION 

 
 
 

ABSTRACT 

 
 
 
Digital technologies can provide farmers, specialists, and researchers in the agricultural area 
the in-deep knowledge of their cropping field, in addition to effective farm management, aiming 
at increasing profitability and reducing environmental impact. Among the available 
technologies, there are others, such as precision agriculture, Big Data, Internet of Things (IoT), 
Unmanned Aerial Vehicles (UAV), robotics, and automation. Digital agriculture requires 
specific portals and platforms for its adoption. The free web platform AgDataBox (ADB) 
contributes to farmers' inclusion in the digital agriculture phase. ADB-Map web application and 
ADB microservices architecture (ADB-MSA) take part on of thematic maps creation (TMs) and 
the delineation of management zones (MZs) in a friendly and integrated way. Thus, this study 
aims to integrate the functionalities for creating TMs and MZs through microservices in ADB-
MSA and incorporating them into ADB-Map application. ADB-MSA provided eight 
microservices, six of them (statistics, spatial, interpolation, clustering, rectification, and 
lime/nutrient recommendation) execute procedures based on JavaScript, R, and Python 
programming languages, while the others are used to store data. ADB-Map was rewritten in 
JavaScript language and Angular framework, based on a software architecture that decoupled 
the front-end from the back-end and now uses the resources of ADB-MSA. In the case study, 
the procedures to create TMs and delineate MZs were carried out satisfactorily with data from 
a commercial area. Thus, the MZs were generated and evaluated to apply fertilizer according 
to phosphorus and potassium requirement. In order to improve the interpolator selection 
process, the new semivariogram model selection criteria were adopted (i) effective spatial 
dependence index (%ESDI) > 25%, (ii) first semivariance significance index (%𝛾(1)) < 50% 
and (iii) slope of the model ends index (%SMEI) > 20%, which were applied according to three 
methods: 1) only with the interpolator selection index (ISI) without application regarding the 
proposed criteria; 2) the criteria applied after the interpolator selection analysis + ISI, and 3) 
the criteria applied during the interpolator selection analysis + ISI. Thus, it was observed that, 
usually, the three methods selected different models and Method 3 was considered the best. 
 
 
 
Keywords: digital agriculture, precision agriculture, management zones. 
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INCORPORAÇÃO DE MÓDULOS COMPUTACIONAIS COMO MICROSERVICES NA 

PLATAFORMA AGDATABOX E DESENVOLVIMENTO DA APLICAÇÃO 

AGDATABOX-MAP 

 
 
 

RESUMO 

 
 
 
As tecnologias digitais podem proporcionar ao agricultor, especialistas e pesquisadores, o 
conhecimento aprofundado da área de cultivo, além de uma gestão eficaz da propriedade 
agrícola, objetivando o aumento da lucratividade e a diminuição do impacto ambiental. Dentre 
as tecnologias disponíveis, destacam-se agricultura de precisão, Big Data, Internet das coisas 
(IoT), veículos aéreos não tripulados (VANT), robótica e automação. A agricultura digital 
necessita da disponibilização de portais e plataformas específicos para sua adoção. A 
plataforma web AgDataBox (ADB) é gratuita e contribui para a inclusão dos agricultores na 
fase da agricultura digital. A aplicação ADB-Map e a arquitetura de microserviços da ADB 
(ADB-MSA) tornam amigáveis e integrados aos processos de criação de mapas temáticos 
(MTs) e de delineamento de zonas de manejo (ZMs). Assim, o objetivo deste trabalho foi 
integrar as funcionalidades para a criação de MTs e delineamento de ZMs por meio de 
microserviços web na ADB-MSA e incorporá-las na aplicação web ADB-Map. ADB-MSA 
fornece oito microsserviços, seis dos quais (estatísticas, espaciais, interpolação, 
agrupamento, retificação e recomendação de calcário/nutrientes) que executam 
procedimentos baseados nas linguagens de programação JavaScript, R e Python, enquanto 
os outros dois são usados para armazenar dados. A ADB-Map foi totalmente reescrita em 
linguagem JavaScript e framework Angular, baseada em uma arquitetura de software que 
desacoplou o front-end do back-end e agora consome os recursos da ADB-MSA. No estudo 
de caso, os procedimentos para criar MTs e delinear ZMs foram realizados satisfatoriamente 
com dados de uma área comercial. Assim, as ZMs para a aplicação do fertilizante foram 
delineadas e avaliadas de acordo com a necessidade de fósforo e potássio. Para melhorar o 
processo de seleção de interpoladores, novos critérios de seleção de modelos de 
semivariograma foram adotados: (i) índice de dependência espacial efetiva (%ESDI) > 25%, 
(ii) índice de importância da primeira semivariância (%𝛾(1)) < 50% e (iii) índice de inclinação 
das extremidades do modelo (%SMEI) > 20%, os quais foram aplicados de acordo com três 
métodos: 1) apenas com o índice de seleção de interpolador (ISI) sem aplicação dos critérios 
propostos; 2) os critérios aplicados após a análise de seleção de interpolador + ISI, e 3) os 
critérios aplicados durante a análise de seleção de interpolador + ISI. Observou-se que 
geralmente os três métodos selecionaram modelos diferentes e que o Método 3 foi 
considerado o melhor. 
 
 
 
Palavras-chave: agricultura digital, agricultura de precisão, zonas de manejo. 
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1 INTRODUCTION 

Among the factors that stimulate the development of technologies applied to 

agriculture, food production stands out. According to the United Nations (UN) projections, the 

world population will be 8.5, 9.7, and 10.9 billion people in 2030, 2050, and 2100, respectively 

(United Nations, 2019). The challenge for agriculture will be to produce more with greater 

profitability. In this context, precision agriculture (PA) and, more recently, digital agriculture 

(DA) are inserted. DA uses PA technology, smart grids and data management tools. DA aims 

at using all available information and knowledge to enable the automation of sustainable 

processes in agriculture. DA made available, cheaper and more powerful sensors, actuators 

and microprocessors, high-bandwidth cellular communication, cloud communication, and Big 

Data. As a result, the information flow is no longer coming only from the used agricultural 

resource but also from new services offered with new algorithms that transform data into 

valuable intelligence (CEMA, 2017). In this new DA paradigm, large amounts of data are made 

available, and the challenge is to add value to them with the insertion of data portals and work 

platforms. At the portals, the end-user can view their data but no longer insert them manually. 

By platforms, this user can transform data into new and more powerful information. 

The significant expansion of digital technologies in agriculture, not only for PA, led to 

the emergence of the new era in agriculture, called “agriculture 4.0”, driven by the movement 

of industry 4.0 (Zambon et al., 2019). The transition, therefore, from Agriculture 3.0 stage, 

characterized using PA, to Agriculture 4.0, which evolves from PA to DA, requires the provision 

of specific portals and platforms (CEMA, 2017). Therefore, Brazil needs to be aware of this 

technological evolution and provide free web platforms for integrating data, software, 

procedures, and methodologies for PA. The availability of the free digital platform AgDataBox 

(ADB) for the web contributes to the inclusion of Brazil in this phase of agriculture. The ADB-

Map application creates thematic maps (TMs) and delineates friendly and integrated 

management zones (MZs) (Michelon et al., 2019; Borges et al., 2020; Dall'agnol et al., 2020). 

This platform is a continuation of the software to define management zones (SDUM – Bazzi et 

al. 2019b) project, which has already been registered with the National Institute of Industrial 

Property (INPI) (registration BR 51 2014 000720 D) and made available free to be applied. 

The web microservices architecture (MSA) allows the scalability of the ADB Digital 

platform, allowing modules to be built with different software development technologies and 

later integrated. The main content of this trial is structured in papers, presented after the 

contextualization chapters (chapters 1 to 4): 

• Paper 1 (chapter 5): MSA of ADB digital platform is presented. It provides 

computational routines to create TMs and delineate MZs as web services;  

• Paper 2 (chapter 6): ADB-Map web application is presented. It makes it possible 

to create TMs and delineate MZs in a friendly way and integrated with the MSA 

of ADB digital platform; 
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• Paper 3 (chapter 7): it presents the improvements made during the interpolator 

selection process, a service of ADB platform. This service considers three new 

criteria for the semivariogram analysis: the minimum effective spatial 

dependence, the importance of the first semivariance, and the non-tendency of 

the purest nugget effect. 
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2 OBJECTIVES 

 

2.1 General objectives 

Integrate functionalities for thematic maps (TMs) creation and management zones 

(MZs) design in some microservice architecture (MSA) for the digital platform AgDataBox 

(ADB) and incorporate them in the ADB-Map web application. 

 

2.2 Specific objectives 

• To create an MSA web to integrate, incorporate and make available the 

functionalities for TMs creation and MZs delineation. 

• To develop a new ADB-Map web application to create TMs and delineate MZs 

in a friendly, automated, and integrated way with MSA functionalities. 

• To improve procedures for data interpolation and selection of the best 

interpolator. 

• To evaluate the ADB-Map from the user's perspective. 
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3 LITERATURE REVIEW 

 

3.1 Soil attributes in agriculture 

Agriculture undergoes constant transformations, seeking for efficiency in soil 

management, during the appropriate application of inputs, in mechanized operations aiming at 

increasing crop yield and investment income. The agricultural ecosystem is complex and 

requires knowledge on different factors that influence crop yield. Some of them are 

controllable, such as soil fertility, cultivars adapted to local conditions, irrigation, pest, disease 

control, among others. On the other hand, climate actions are examples of uncontrollable 

factors. 

Proper management of soil fertility depends on understanding the availability of 

nutrients in soil for plant absorption. Soil nutrients are divided into macro and micronutrients. 

Macronutrients are required in greater amounts by plants and may be of organic origin such 

as carbon (C), oxygen (O), and hydrogen (H), or of chemical origins, such as nitrogen (N), 

phosphorus (P), potassium (K), sulfur (S), calcium (Ca), and magnesium (Mg). Plants consume 

micronutrients in smaller amounts, but they also play an essential role along crop growth and 

development. They are boron (B), chlorine (Cl), copper (Cu), iron (Fe), manganese (Mn), 

molybdenum (Mo), and zinc (Zn) (Mendes, 2007). Although, macronutrients generally become 

deficient in soil before the others due to higher consumption made by plants (POTAFOS, 

1998). 

Nitrogen and potassium are more extracted by soybeans. For example, part of the first 

one is provided by the soil (25 to 35%) and part by symbiotic fixation of atmospheric N2 (65 to 

85%) (Borkert et al., 1994). Although phosphorus is the least extracted among the three 

primary macronutrients, it is usually the nutrient used in greater amount, either because of its 

low content in soil or because of its dynamics in tropical soils (fixation) (Vitti and Trevisan, 

2000). The frequent limitation of corn yield is related, in part, to the low availability of calcium 

and phosphorus in most Brazilian soils (Coutinho et al., 1991). Therefore, Liming and 

phosphate fertilization are requirements to improve both cropping development and production 

(Santos et al., 2006). 

The evaluation of soil chemical fertility is helpful to define the quantities and types of 

fertilizers, correctives, and general management that should be applied to the soil to keep or 

recover its yield (Ronquim, 2010). Fertilization begins with soil analysis, continues with the 

correction of acidity, and ends with the correct application of fertilizer (Malavolta, 1992). 

Nutrients’ uptake is done with chemical mineral fertilizers, organic matter, minerals taken from 

deposits or the air (in biological nitrogen fixation). Organic matter provides an increase in soil 

fertility, as it practically contains macro and micronutrients and provides a better structure to 

soil. Mineral fertilizers (which are different from organic matter) have nutrients in high 
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concentrations that are highly soluble and can be quickly absorbed by plants and/or leached 

more easily (Ronquim, 2010). 

Liming is the best known and most used practice for correcting arable soil acidity and 

supplying Ca and Mg nutrients (Souza and Lobato, 1986). Soil acidity is a limiting factor for 

agricultural production due to toxicity caused by Aluminum (Al), limiting plant roots' growth in 

naturally acidic soils (Coleman and Thomas, 1967). It is mainly caused by the intense 

weathering that occurs over time, a phenomenon that causes leaching and removal of basic 

cations from cation exchange capacity (CTC) of soil, mainly Ca, Mg, K, and sodium (Na), which 

give place in CTC to exchangeable aluminum and undissociated hydrogen (Van Raij, 2011). 

In acidic soils, or even those with low aluminum saturation, adequate root development does 

not occur in most cropping plants, making it difficult to absorb water and nutrients, and causing 

yield decrease (Souza and Ritchey, 1986). Toxicity caused by Al and Mn is reduced with liming 

by increasing Ca and Mg contents. In addition, liming also promotes an increase in CTC and 

N, P, S, and Mo availability (Bernardi et al., 2003).  

The physical attributes of a soil, on the other hand, are directly related to infiltration 

capacity, retention, and availability of water for crops, as well as on making easy air circulation 

and root development capacity (Beuttler et al., 2012; Carvalho et al., 2012). Furthermore, 

studies related to soil compaction, which uses its density as an indicator attribute, have pointed 

out that its increase decreases agricultural yield (Abreu, et al., 2003; Faraco et al., 2008; 

Reichert et al., 2009).  

Another essential feature of soil is its texture, which refers to the mineral particles sizes 

that compose it (Oliveira Junior et al., 2010). Soil texture is determined by percetage presence 

of sand, silt, and clay on it. Clay textured soils is characterized due to their smaller particle 

size, while sandy textured soils present larger particle size (POTAFOS, 1998). Therefore, there 

are several interrelationships among physical, chemical, and biological soil attributes (Carneiro 

et al., 2009). The practices applied to manage soil can cause changes in its physical, chemical, 

and biological attributes (Niero et al., 2010). Any change in soil management can directly 

change its structure and biological activity, consequently, its fertility, damaging its quality and 

crop yield (Carneiro et al., 2009). 

 

3.2 Precision Agriculture 

Precision agriculture (PA) is a cropping management system based on crop and soil 

characteristics' spatial and temporal variability within a field (Stafford, 2000). The International 

Society of Precision Agriculture (ISPA, 2019) defines PA as “a management strategy that 

gathers, processes and analyzes temporal, spatial and individual data and combines it with 

other information to support management decisions according to some estimated variability to 

improve resource use efficiency, productivity, quality, profitability and sustainability of 

agricultural production”. However, it is not a new concept, as farmers have realized it since the 
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early days of agriculture. The farmers divided the property into smaller areas to seek for the 

most suitable conditions for growing crops, as they knew the soil characteristics. For them, 

precision was about ensuring enough food to sustain the family (Oliver, 2010). What we know 

as current PA practices have been in use since the 1980s (Zhang et al., 2002), has attracted 

worldwide interest commercially (CAMBOURIS et al., 2014), and available since the early 

1990s (McBride and Daberkow, 2003). 

PA only gained more prominence with the spread of global positioning system 

technologies (GPS), currently called global navigation satellite systems (GNSS) (standard 

generic term for satellite navigation systems), geographic information system (GIS), remote 

sensing technologies, and different sensors to evaluate location variability and crop 

characteristics. These technologies have provided information to assist producers in a more 

accurate agricultural system management (Pathak et al., 2019). Thus, PA is an agricultural 

management system that includes information technologies and attempts to provide amounts 

and types of inputs based on actual cropping needs in small fields inside a large farm (e.g., 

variable-rate application (VRA), yield monitors, remote sensing) (Bongiovanni and Lowenberg-

Deboer, 2004). 

The PA approach can be summarized in a three-step process (Fig. 1). The first step is 

to identify the variability present in a field (Cambouris et al., 2014); spatial and temporal 

variabilities are found out in many attributes that influence cropping yield (Schepers et al., 

2004); for example, spatial variability of P and K can influence corn yield (Molin et al., 2007). 

Bottega et al. (2013) study has recorded some spatial and temporal dependence on soybean 

yield. 

 

 
Fig. 1 Approach of precision agriculture in three steps, which involves knowledge, 
understanding and control of variability. 
Source: Cambouris et al. (2014). 

 

The second step is to analyze variability within the field to make a management 

decision. In this stage, the specialist has a fundamental role, working with the farmer, who 

knows well field conditions (Cambouris et al., 2014). This decision-making involves inputs and 

how to use them at variable rates (Salehi and Rezaei-Moghaddam, 2008). The third step 

involves managing variability within the field in the most effective way to increase yield and 
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profitability while minimizing environmental risks (Cambouris et al., 2014; Mondal and Basu, 

2009). Some of the expected benefits are cost reduction, such as applying inputs where they 

are needed and improving water resources management (Mintert et al., 2016). VRA is a 

technique used to manage field variability, which requires specialized agricultural equipment, 

and another technique for managing field variability is by MZs.  

Barnes et al. (2019) observed in their research that technologies applied in PA are 

categorized as guidance, recording, and reacting (Fig. 2). Guidance technologies provide 

precise guidance and control to carry out field operations. These technologies are dependent 

on GNSS for their applicability. Driver assistance technologies aim at relieving farmers from 

the physical workload or time spent in the field as well as simplify and optimize processes (e.g., 

automatic steering systems) (Groher et al., 2020). 

Data acquisition in PA can be performed in different ways, such as sample collection 

in a georeferenced sampling grid and subsequent analyses in laboratory (Molin and Tavares, 

2019), use of field sensors according to the proximal soil sensing concept (PSS, defined by 

Viscarra Rossel et al. (2011), and remote sensing technologies that are alternatives to using 

sensors in agriculture (Groher et al., 2020). Sensors can be more cost-effective than 

conventional laboratory chemistry analyses, compact, faster, more accurate and energy-

efficient, wireless, and smarter (Viscarra Rossel et al., 2011). 
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Fig. 2 Hierarchy of Precision Agricultural technologies. 
Source: Barnes et al. (2019). 

 

3.3 Digital agriculture 

Agricultural field knowledgement is an essential factor for business success. Farmers 

who want to keep up with the competitive market and increase their profitability need suitable 

digital technological tools to provide the correct information for decision making that positively 

impacts on business. The challenge is to produce more in less space and with available use 

of natural resources. DA is also referred to as an intelligent farming and agriculture 4.0, and it 

is the fulfillment of “digital land” concept proposed in the 1990s, which is characterized as an 

advance in PA with emphasis on agricultural production procedures (Shen et al., 2010). The 

introduction of advanced biotechnologies and digital tools seeks to offer new strategies to feed 

the growing world population (Fraser and Campbell, 2019). 



28 
 

 

Based on this concept, digital technologies such as artificial intelligence, robotics, Big 

Data, and IoT (Alm et al., 2016) are adopted to manage processes within the farm. Broson 

(2018) points out that Big Data, PA, and automation are considered the primary digital artifacts 

responsible for technological changes in agriculture. The new revolution in agriculture, called 

“agriculture 5.0”, has as principle associating production with planet's health (Fraser and 

Campbell, 2019), thus, DA is an essential ally in supplying this demand. 

Data collection and use have influenced decision-making in agriculture to become 

increasingly important (Pham and Stack, 2018). Big Data concept is related to a large volume 

of collected data, usually from digital sources. At DA, large volumes of data can be generated 

from satellites and unmanned aerial vehicles equipped with multispectral cameras, IoT with 

different types of sensors, mobile device applications, software computers, among others. 

Data is stored in computer databases and subsequently analyzed by algorithms specialized in 

extracting information, and agriculture is designed to be the next big data industry. Agricultural 

machines are equipped with sensors and cameras to capture detailed data at the field level, 

such as soil moisture, plants, temperature, seeding, fertilizer and herbicide spray rate, yield, 

fuel usage, and machine performance (Pham and Stack, 2018). Despite the ability to obtain 

different types of data and large volumes, it is necessary to go through validation. Molin et al. 

(2020) point out that the challenge is establishing a consistent set of variables that guarantee 

robust and satisfactory results for all techniques. 

Digital technologies are essential for several actors in the agricultural ecosystem, such 

as scientists, to ease interaction among analysts and farmers. Farmers have the potential to 

provide large amounts of valuable data about their activities and experiences (Eitzinger et al., 

2019). Much of PA data can be acquired passively, directly from agricultural equipment 

instrumented with sensors for data collection and GNSS to identify geographic positioning. 

However, as Big Data and PA are linked to automation, machines can do the job “intelligently,” 

performing semi-autonomous and learning actions over time (Broson, 2018). Decision-making 

is based on computational algorithms that interpret large sets of agricultural data and generate 

useful information and insights for PA equipment to perform pre-programmed actions (Wolfert 

et al., 2017). 

The fast expansion of Internet-enabled devices has led to IoT occurence. IoT is among 

the top strategic technology trends for 2021, within the context of carrying out operations 

anywhere (Burke, 2020). IoT-enabled Agricultural (IoTAg) is growing quickly. IoT technology 

allows monitoring and controlling crop parameters by sensors and devices to obtain food 

quality in quantity (Uddin et al., 2017). IoTAg segment is projected to reach $4.5 billion by 

2025, according to PwC (Columbus, 2021). There are several researches developed with IoT 

application in agriculture (Akhter and Sofi (2021); Nóbrega et al., 2018; Taneja et al., 2018; 

Mohanraj et al., 2016; Ryu et al., 2015). 
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In this growing environment of devices connected to Internet and integrated with 

intelligent systems that can share, process, store, and analyze data with each other, the result 

is an extensive network of cooperation, in which a large volume of data is generated. The 

challenge for DA is to create systems for data management in the agricultural sector, which 

range from environmental, soil, plant, production, and market conditions. Data analysis 

techniques and intelligence algorithms can provide insights into business and assist farmers 

with their decision-making, whether for managing production or marketing the product. Studies 

are reporting the software development with different applicability within DA context: 

• Precision Agriculture Methodologies for Cost-Benefit Analysis (PAMCoBA; 

Medici et al., 2021) is a web tool designed to provide guidelines for farmers over 

their decisions to invest in selected precision agricultural Technologies. This 

tool explores data regarding existing PA technologies, crops, and agricultural 

operations, guiding farmers on selecting the most appropriate technologies for 

farm-specific context. 

• GeoFarmer (Eitzinger et al., 2019) is a platform for sharing experiences among 

farmers and specialists. It aims at sharing knowledge for better management of 

crops and farms. 

• CLUeFARM (Colezea et al., 2018) is a hybrid platform with local and cloud 

computing that provides resources for farmers to manage their farms, such as 

data analysis, IoT integration, and external data sources. 

• Smart platform to help farmers manage their greenhouses and interact with 

other farmers (Musat et al., 2017). The platform is based on cloud computing 

and manages data models, data analysis, and provision of services. 

• AEGIS (Shen et al., 2010) is a Canadian DA system for agricultural risk 

management, which can help assessing risks due to climate change, 

developing a revenue protection plan for producers, and generating a soil 

quality management plan. 

• Farm management information systems (FMIS; Kaloxylos et al., 2014) assist 

producers with an efficient management, enabling decision-making based on 

data collection and processing. There are similar trials in this area (Paraforos et 

al., 2017; Ampatzidis et al., 2016; Kaloxylos et al., 2014). 

 

3.4 Management zones 

Delineating management zones (MZs) in an agricultural field is one of the ways to 

practice PA. An MZ is a subregion of a field that expresses a functionally homogeneous 

combination of yield-limiting factors for which a single rate of a specific crop input is appropriate 

(Doerge, 2000; Moral et al., 2010; Moshia et al., 2014; Bobryk et al., 2016). Although MZs may 
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be used with localized application machinery, their use is more common with conventional 

machinery. After MZs are delineated, they may also be used in a smart sampling, in which the 

number of samples needed to delineate soil variability in the field may be reduced to a sample 

composed per zone. This approach (smart sampling) can reduce laboratory costs and, at the 

same time, keep reliability level (Ferguson and Hergert, 2009; Mallarino and Wittry, 2004) and 

improve nutrient use efficiency, maintaining or increasing yield and potentially reducing the 

nutrients overload on the environment (Moshia et al., 2014; Khosla et al., 2002). 

Despite the original concept that an MZ is a subregion of a field that expresses a 

functionally homogeneous combination of limiting production factors, the target agricultural 

variable may be other than yields, such as infestation by pests and diseases, water content, 

Brix value, and soil resistance to penetration (SRP). An MZ may be used for one or several 

years, usually from three to five years. This fact is significant when choosing variables. If the 

plan is to use it only once, which might be the case of a weed infestation, the farmer may use 

variables that are not constant over time (such as weed infestation) to delineate MZs. However, 

in most cases, someone may wish to use the MZs for several years and, thus, must use 

variables relatively constant over time such as soil properties (Carvalho et al., 2016), soil 

apparent electrical conductivity (Castrignanò et al., 2018; Martínez-Casasnova et al., 2018), 

farmer experience (Martínez-Casasnova, 2018; Schenatto et al., 2017a), crop yield 

(Blackmore, 2000), topographic attributes and soil electrical conductivity (Peralta et al. 2015; 

Fraisse et al., 2001), satellite images (Damian et al., 2020; Breunig et al., 2020; Zhang et al. 

2010) or a combination of multiple layers of data (Schepers et al. 2004; Betzek et al., 2018; 

Betzek et al., 2019; Gavioli et al., 2019). 

Among the approaches presented in literature to delineate MZs using yield maps, two 

stand out (Xiang et al., 2007): 1) the empirical method, which uses the frequency distribution 

of yield and specialized knowledge to divide the field usually into three or four zones 

(Blackmore, 2000; Molin, 2002); and 2) cluster analysis, such as K-means and Fuzzy C-Means 

(FCM) (Taylor et al., 2003; Taylor et al., 2007; Yan et al., 2007). Although empirical 

classification methods are simpler, cluster analysis allows a greater degree of differentiation 

among MZs. Empirical methods are used primarily when the target variable (usually yield) is 

used in MZs delineation. Molin (2002) used corn, soybean, and wheat yield to delineate MZ by 

empirical methods. When using attributes correlated to the target variable to create MZs, it is 

possible to generally use clustering methods.  

Some protocols have already been proposed (Santos and Saraiva, 2015; Cordoba et 

al., 2016; Souza et al., 2018) to delineate MZs properly. In the protocol organized by Souza et 

al. (2018), the process to delineate MZs follows these phases: (i) data processing, (ii) data 

normalization, (iii) selection of variables to delineate MZs, (iv) data interpolation, (v) application 

of methods to delineate MZs, (vi) MZs rectification and (vii) MZs evaluation (Fig. 3). 
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Fig. 3 Protocol steps for management zones Delineation. 
Source: Adapted from Souza et al. (2018). 

 

3. 4. 1 Data processing 

A GIS is a system that creates, manages, analyzes, and maps all kinds of data. A GIS 

software and a file with at least three columns are used to build 2D TMs, representing X 

(longitude) and Y (latitude) coordinates and the measured attribute value. For 3D TMs, one 

more coordinate is needed, Z (altitude). These coordinates are associated with a coordinate 

system, and the most typical coordinate systems are the geographic and universal transverse 

Mercator (UTM). After data are uploaded to GIS, it is necessary an exploratory analysis. The 

exploratory analysis employs various techniques (mainly graphical) to maximize data set 
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perception as well as to detect and remove outliers. For example, according to Córdoba et al. 

(2016), values outside the mean ± three standard deviations are identified as outliers and must 

be removed. 

Data that differ significantly from their neighborhood but are within the general variation 

range of data set are called inliers (Cordoba et al., 2016) and should be removed using, for 

example, the local Moran’s index (Ii, Anselin, 1995; Levine, 2004, Equation 1). While the global 

Moran’s index quantifies a spatial autocorrelation as a whole, local indicators of spatial 

association (LISA) measure the spatial autocorrelation degree at each specific location 

(Anselin, 1995). 

𝐼𝑖 =
𝑧𝑖 − 𝑧̅

𝜎2
∑ [𝑊𝑖𝑗(𝑧𝑗 − 𝑧̅)],

𝑛

𝑗=1,𝑗≠𝑖

 (1) 

where, 𝑧̅ is the mean value of 𝑧 with the number of samples of 𝑛; 𝑧𝑖 is the value of the variable 

at location 𝑖; 𝑧𝑗 is the value at other locations (𝑗 ≠ 𝑖); 𝜎2 is the variance of 𝑧; and 𝑊𝑖𝑗  is the 

weighted distance between 𝑧𝑖 and 𝑧𝑗, which can be defined as the inverse of the distance. 

Spatial weights must be defined to calculate Moran’s index, and spatial relationships of 

data are defined by the spatial proximity matrix (𝐖). This is an n x n-dimensional symmetric 

matrix. The connection degree among regions i and j, represented by weights 𝑤𝑖𝑗, is defined 

by some proximity criterion that indicates the influence of one region over another (Almeida, 

2012). Greater weight is attributed to geographically closer regions, and lesser weight is given 

to more distant regions. Thus, the most common criteria for assigning values to each matrix 

element are distance, contiguity, and neighborhood. 

 

3. 4. 2 Normalization methods 

The data clustering techniques using FCM algorithm are the most broadly employed 

processes to define MZs. In this process, it is necessary to choose a similarity measure, and 

the most used is the Euclidean distance. However, with this distance, the algorithm is sensitive 

to the interval of input variables, requiring their normalization, which may be done by dividing 

the value of each variable by the maximum value, mean, or sum of observations. 

Schenatto et al. (2017b) analyzed the influence of data normalization methods for 

defining MZs. The tests were conducted in three experimental fields with 9.9, 15.0, and 

19.8 ha, in Southern Brazil. The variables (attributes) used to define MZs were selected using 

Moran’s bivariate spatial autocorrelation statistic, and data were normalized using range 

(Equation 2), mean (Equation 3), and standard score (Equation 4) methods. MZs were defined 

using FCM algorithm, which generated clusters with two, three, and four classes. It was proven 

that normalization is necessary when MZs definition uses more than one variable during the 

clustering process, and similarity measure is the Euclidean distance. The range method was 

considered the best normalization method. 
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• Range (Equation 2): it is based on dataset range it is necessary to normalize. 

According to Anderberg (1973) and Milligan and Cooper (1988), it is not 

indicated when there are outliers in the data. Some changes to this method 

involve the numerator, with Milligan and Cooper (1988) presenting, on the 

numerator, only the value of datum 𝑃𝑖 or 𝑃𝑖-𝑃𝑖𝑚𝑖𝑛𝑖𝑚𝑢𝑚
, in which case, normalized 

data will be among values from zero to one. 

𝑍𝑖𝑁 =
𝑋𝑖 − 𝑀𝑒𝑑𝑖𝑎𝑛

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)
, (2) 

where, 𝑍𝑖𝑁 – normalized point 𝑖; 𝑋𝑖 – original data value 𝑖; 𝑀𝑖𝑛(𝑋) – minimum 

value of dataset; 𝑀𝑎𝑥(𝑋) – maximum value of dataset. 

• Mean (Equation 3 – Swindel, 1997): it is well known and employed, hoping that 

the means represent dataset well. However, for Anderberg (1973), mean value 

is sensitive and may be altered by adding any constant, thus, easily modifying 

the normalized data distribution. 

𝑍𝑖𝑁 =
𝑋𝑖

�̅�
, (3) 

where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; �̅� – arithmetic 

mean of all map pixels or of sample set to be normalized. 

• Standard Score or Z-Score (Equation 4 – Larscheid and Blackmore, 1996): is 

used for transforming normal variables to standard score where the transformed 

variable will have a mean of 0.0 and a variance of 1.0. 

𝑍𝑖𝑁 =
𝑋𝑖 − �̅�

𝑠
, (4) 

where 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; �̅�  – arithmetic 

mean of all map pixels or of sample set to be normalized; 𝑠 - standard deviation. 

• Min-Max (Equation 5 – Milligan and Cooper, 1988): it is a variation of the range 

method containing changes in the numerator, and they present in the 

numerator, in which case the normalization result will be among values 0 and 

1. 

𝑍𝑖𝑁 =
𝑋𝑖 − 𝑀𝑖𝑛(𝑋)

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)
, (5) 

where, 𝑍𝑖𝑁  – normalized observation 𝑖 ; 𝑋𝑖  – original data value 𝑖 ; 𝑀𝑖𝑛(𝑋)  – 

minimum value of dataset; 𝑀𝑎𝑥(𝑋) – maximum value of dataset. 

 

3. 4. 3 Variable selection 

The weighting and selection of variables are complex tasks in cluster analysis. The 

capacity of clustering software to process many variables encourages users to employ many 

variables in this process. However, we must be aware that the choice of variables and weights 



34 
 

 

attributed to them often influences clusters' determination (Gnanadesikan et al., 1995). Three 

variable selection techniques that may be applied in combination with FCM algorithm are (i) 

spatial correlation analysis (Reich, 2008; Schepers et al., 2004), (ii) principal component 

analysis (PCA) (Hotelling, 1933; Jolliffe, 2011), used by Fraisse et al. (2001), Li et al. (2007), 

Moral et al. (2010), and Cohen et al. (2013), and (iii) multivariate spatial analysis based on 

Moran’s index and PCA (MULTISPATI-PCA) (Dray et al., 2008), applied by Córdoba et al. 

(2013, 2016) and Peralta et al. (2015). 

Gavioli et al. (2016) studied the efficiency of each of these three techniques and 

proposed a new method, named MPCA-SC, based on the combined use of Moran's bivariate 

spatial autocorrelation statistic and MULTISPATI-PCA. This evaluation was carried out from 

data collected from 2010 to 2014 in three agricultural areas of Paraná state, Brazil, with corn 

and soybean, generating two, three, and four classes. The MZs delineated were different 

according to the method used, with MPCA-SC method providing the best performance. 

 

3. 4. 4 Data interpolation 

Sample data is generally interpolated in a dense and regular grid to generate TMs and 

MZs that are continuous and smooth. This task is carried out with the aid of interpolation 

methods. The interpolation methods most used in precision agriculture (PA) are Ordinary 

Kriging (OK) and inverse distance weighted (IDW), which are differentiated by how weights 

are attributed to the different samples, which may influence the estimated values (Reza et al., 

2010). 

 

3. 4. 4. 1 Geostatistical Analysis 

The semivariogram chart (Fig. 4) is determined from observed values in two stages 

(Oliver and Webster, 2015). The first stage is to calculate the empirical semivariogram, which 

summarizes spatial relations in data. Semivariances are calculated from an estimator, as the 

classic proposed by Matheron (1963). Each calculated semivariance for a particular lag (h) is 

only an estimate of a mean semivariance 𝛾(ℎ) for that lag. As such, it is subject to error.  
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Fig. 4 Semivariogram chart with the four main elements: nugget effect (C0), partial sill (C1), sill 
(C0 + C1), and the range of spatial autocorrelation (Ra). 

 

The second stage is adjusting a mathematical model that best represents the 

distribution of semivariances in each lag distance. This mathematical model should describe 

the spatial variation to estimate or predict values at unsampled places by kriging optimally. 

Therefore, the geostatistical analysis is carried out in two moments: the semivariogram 

analysis and interpolation by Kriging (Oliver and Webster, 2015). Only some mathematical 

functions are suitable for this purpose and choosing and fitting a model must be done carefully 

(Lark, 2000). Once we calculate an experimental variogram, we can fit it using several 

variogram models, such as spherical, exponential, Gaussian, and Matérn (Isaaks and 

Srivastava, 1989, Gamero et al., 2020). 

It consists of main parameters: the nugget effect (C0), the partial sill (C1), the sill (C0 + 

C1), and the range (Ra), adjusted according to the spatial data variation characteristics 

(Matheron, 1963): 

• Nugget effect (C0): is the semivariance value for zero distance (Webster, 1985) 

and represents the component of random variation, i.e., variability for scales 

smaller than the distance among sample points. According to Cressie (1993), 

C0 represents local small-scale variations, such as measurement errors. It 

corresponds to the point where the semivariogram touches the ordinate axis. 

This point reveals the semivariogram discontinuity for distances that are closer 

than the closest distance among the sampling points. 

• Partial sill (C1): represents the spatial differences among C0 values and plateau, 

an interval in which the semivariogram grows, representing spatial dependence 

(Cressie, 1993). Thus, it is also known as dispersion variance. 
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• Range (Ra): is the distance where the variogram reaches sill, and from this 

distance, samples are not correlated. Places further apart than this are spatially 

independent (Oliver and Webster, 2015). 

Semivariance tends to increase with the distance among sample locations, or lag 

distance (h) to a possible constant value (sill) at a given separation distance, called spatial 

dependence range. Samples distanced greater than the range are not spatially related 

(Webster, 1985; Cambardela et al., 1994). 

The estimator based on method-of-moments proposed by Matheron (1963) is defined 

in Equation 6 and is unbiased for actual theoretical values. It is the average of the squared 

differences among observations separated by the distance ℎ. 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2

𝑁(ℎ)

𝑖=1

, (6) 

where 𝛾(ℎ) is the value of semivariance estimate; 𝑍(𝑥𝑖) is the value of variable 𝑍 at point 𝑥𝑖; 

𝑍(𝑥𝑖 + ℎ) is the value of variable 𝑍 at point 𝑥𝑖 + ℎ; 𝑁(ℎ) is the number of pairs separated by a 

determined distance ℎ. 

Journel and Huijbregts (1978) suggest the definition of lag increment and the number 

of lags as at least 30 pairs of points, and the range Ra was limited to half of the maximum 

distance among points (cutoff = 50%). The semivariances' calculation should not exceed 

distances among points greater than half of maximum distance (Clark, 1979). Points located 

beyond cutoff are considered non-influential (Isaaks and Srivastava, 1989).  

The spatial dependence index (%SDI – Biondi et al., 1994 – Equation 7) can be used 

to evaluate SD degree of a variable using semivariograms. The adopted %SDI classification 

(Konopatzki et al., 2012) was: very low for %SDI < 20%; low for 20 ≤ %SDI < 40%; medium 

for 40 ≤ %SDI < 60%; high for 60 ≤ %SDI < 80%; and very high for %SDI > 80%. This 

classification has the advantage of having five interpretation levels instead of three proposed 

by Cambardela et al. (1994) and is proportional to the spatial variability (the highest %SDI, the 

highest SD). 

%𝑆𝐷𝐼 =
𝐶1

𝐶0 + 𝐶1
∗ 100 =

𝐶1

𝐶
∗ 100, (7) 

 

where 𝐶0 is the nugget effect, 𝐶1 is the partial sill, and C (𝐶0 + 𝐶1) is the sill.  

 

3.4.4.1.1 Semivariogram models 

Variogram modeling is a crucial stage of geostatistical analysis. Knowing 

semivariances values for any distances (vector h) is necessary for further interpolation using 

the kriging method (Borkowski and Kwiatkowska-Malina, 2017). After estimating the 

experimental semivariogram, it is required to fit a smooth curve to the experimental values to 

describe the sequence's principal features, which is made by a mathematical expression that 
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can describe variances of random processes (Oliver and Webster, 2015). Among the existing 

theoretical semivariogram models, the most used to explain most spatial phenomena are 

spherical, exponential, Gaussian, and Matérn (Gamero et al., 2020) (Fig. 5). 

 

 
Fig. 5 The most common variogram models: nugget, spherical, exponential, and Gaussian. 
Source: Stach (2007). 

 

a) Spherical model (Equation 8): This model behaves linearly at small separation 

distances near the origin, but lies flat at longer distances and sills at 𝑎 (Isaaks and 

Srivastava, 1989). 

𝛾(ℎ) = {
𝐶0 + 𝐶1 ⌈1.5

ℎ

𝑎
− 0.5 (

ℎ

𝑎
)

3

⌉ ,         𝑖𝑓 ℎ < 𝑎 

𝐶0 + 𝐶1,                           𝑖𝑓 ℎ ≥ 𝑎.

 (8) 

where 𝑎 is range; ℎ is distance; 𝐶0 is the nugget effect; and 𝐶1is the partial sill. 

b) Exponential model (Equation 9): This function approaches its sill asymptotically and 

does not have a finite interval (Oliver and Webster, 2015). For practical purposes, 

with practical range defined as that distance, sill's variogram value is 95%. The 

model is linear at very short distances near the origin. However, it rises more 

steeply and then flattens out more gradually (Isaaks and Srivastava, 1989). 

𝛾(ℎ) = {

0,                                                    𝑖𝑓 ℎ = 0 

𝐶0 + 𝐶1 ⌈1 − 𝑒𝑥𝑝 (−
ℎ

𝑎
)⌉ , 𝑖𝑓 ℎ > 0.

 (9) 

where 𝑎 is range; ℎ is distance; 𝐶0 is the nugget effect; and 𝐶1is the partial sill. 

c) Gaussian model (Equation 10): reaches its sill asymptotically, and parameter a is 

defined as the practice range or distance at which the variogram value is 95% of 

sill (Isaaks and Srivastava, 1989). The Gaussian model represents a slow increase 

of variogram values near the origin, for example, a parabolic behavior (Azevedo 
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and Soares, 2017). The range (𝑎) is the distance from where the model reaches 

95% of sill. 

𝛾(ℎ) = {

0,                                                            𝑖𝑓 ℎ = 0 

𝐶0 + 𝐶1 ⌈1 − 𝑒𝑥𝑝 (− (
ℎ

𝑎
)

2

)⌉ , 𝑖𝑓 ℎ > 0.
 (10) 

where 𝑎 is range; ℎ is distance; 𝐶0 is the nugget effect; and 𝐶1is the partial sill. 

d) Matérn model (Fig. 6, Equation 11): Matérn's family of models is a generalization of 

other theoretical models, and its fundamental characteristic is the inclusion of a 

parameter (𝜅) that determines smoothing (Minasny and McBratney, 2005). For 𝜅 = 

0.5, the Matérn model is equivalent to the exponential model and, for 𝜅 tending to 

infinity, it is equivalent to the Gaussian model (Uribe-Opazo et al., 2012). This 

model has excellent flexibility for modeling spatial covariance and can model many 

local spatial processes to balance both extremes. Thus, it can be used as a general 

model of soil variation (Minasny and McBratney, 2005).  

𝛾(ℎ) = {

0,                                                                                  𝑖𝑓 ℎ = 0 

𝐶0 + 𝐶1 ⌈1 −
2

Γ(𝜅)
(

ℎ√𝜅

𝑎
)

𝜅

𝐵𝑘 (
2ℎ√𝜅

𝑎
)⌉ , 𝑖𝑓 ℎ > 0.

 (11) 

where 𝑎 is range; ℎ is distance; 𝐶0 is the nugget effect; 𝐶1is the partial sill; 𝐵𝑘 is the 

Bessel function of order 𝜅, Γ(𝜅) is the Gamma function and 𝜅 is the smoothness 

parameter. 

 
Fig. 6 Plots of the Matérn variogram with varying smoothness parameters. 
Source: Minasny and McBratney (2005). 

 

e) Pure Nugget effect model (Equation 12): The lack of spatial continuity in data set is 

demonstrated to increase the nugget effect, making the estimation procedure as a 

simple averaging of the available data (Isaaks and Srivastava, 1989).  

𝛾(ℎ) = {
0,            𝑖𝑓 ℎ = 0 
𝐶0, 𝑖𝑓 ℎ > 0.

 (12) 
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where 𝑎 is range; ℎ is distance; and 𝐶0 is the nugget effect. 

 

3. 4. 4. 2 Ordinary Kriging 

Interpolation by OK (Cressie, 1993) is done after adjusting the semivariogram model, 

and the value to be estimated at the point of interest can be calculated by Equation 13. Kriging 

makes estimation based on a continuous model of stochastic spatial variation. Thus, it makes 

the best use of existing knowledge by considering how a property varies in space by the 

variogram model (Oliver and Webster, 2015). 

�̂�(𝑥0) = ∑ 𝜆𝑖 ∗ Z

𝑛

𝑖=1

(𝑥𝑖), (13) 

where �̂�(𝑥0) – estimated value at a given location; 𝜆𝑖 – weight attributed to the sample values; 

𝑍(𝑥𝑖)  – sampled attribute value; 𝑛  – number of neighboring locations employed for 

interpolating the point, where ∑ 𝜆𝑖 = 1𝑛
𝑖=1 . 

Interpolation by kriging has weights determined from spatial analysis, based on 

experimental semivariogram (Cressie, 1993). Weights are determined by statistical 

dependence (i.e., covariances) among sampled locations yet they respect some measurement 

uncertainty. In general, the greater the covariability, the greater the weight (Wikle et al., 2019).  

Kriging has been identified as an interpolator with better performance over other 

interpolators, as it is based on the estimator's unbiasedness and the interpolator's minimum 

variance (Diggle and Ribeiro, 2007, Vieira, 2000). However, to have the correct performance 

and proper use in creating the TM, it is necessary to meet the requirements of spatial 

dependence modeling (Oliver and Webster, 2015). The procedure performance can be 

influenced by variability and spatial structure of data, the semivariogram model, the search 

radius, and the number of the closest neighboring points used (Isaaks and Sriivastava, 1989; 

Reza et al., 2010). 

 

3. 4. 4. 3 Inverse distance weighting 

IDW interpolator (Equation 14) is a deterministic estimator that considers sample point 

weights evaluated during the interpolation process. Thus, the influence of each sampled point 

is inversely proportional to the distance raised to the power of the point to be estimated (Isaaks 

and Sriivastava, 1989). 

Ẑ𝑖 =
∑ (

1

𝑑
𝑖
𝑝∗𝑍𝑖)𝑛

𝑖=1

∑ (
1

𝑑
𝑖
𝑝)𝑛

𝑖=1

, (14) 

where Ẑ𝑖  – interpolated value; 𝑍𝑖 – sampled attribute value; 𝑑𝑖
𝑝
 – Euclidean distance between 

the ith neighborhood point and the sampled point, elevated to the power of p > 0. 
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It is a purely mathematical process in which data is weighted so that the influence 

among them decreases as distance increases. The chosen power value predetermines the 

weight factor; that is, the higher this value, the lesser the influence of the farthest points. This 

method is fast and requires little computational cost (Mazzini and Schettini, 2009). 

 

3. 4. 5 Determination of the best semivariogram model and its parameters 

Bier and Souza (2017) proposed the interpolation selection index (ISI – Equation 15) 

to automatize selecting the best interpolation method, which assumes a lower value as better 

the interpolator is. Betzek et al. (2019) developed computational routines in geoR to determine 

the best semivariogram model (and its parameters) and the best power to be used in IDW 

interpolator using ISI. In geostatistics module, six semivariogram models are tested (spherical, 

Gaussian, exponential, Matérn 1.0, Matérn 1.5, and Matérn 2.0), as well as two statistical 

methods to optimize the semivariogram adjustment, ordinary least squares (OLS) and 

weighted least squares (WLS – Cressie, 1985), thus totalize twelve different models. For each 

model, 25 different parameter sets (five initial values for the contribution parameter and five 

for range) are used, totalizing 300 different adjustments analyzed to find the best one. By 

cross-validation (Isaaks and Sriivastava, 1989), mean error (ME, Equation 16) and standard 

deviation of mean error (SDME, Equation 17) are calculated. ME and SDME values calculated 

for each parameter set are stored and used to determine ISI, thus, identifying the best 

adjustment for each model analyzed.  

𝐼𝑆𝐼 = {
𝑎𝑏𝑠(𝑀𝐸)

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝑎𝑏𝑠(𝑀𝐸)]

+
[𝑆𝐷𝑀𝐸 − 𝑚𝑖𝑛 |

𝑗
𝑖 = 1

𝑆𝐷𝑀𝐸]

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝑎𝑏𝑠(𝑆𝐷𝑀𝐸)]

}, (15) 

where 𝑀𝐸 is the mean error and 𝑆𝐷𝑀𝐸 is the standard deviation of mean error of the crossed 

validation; 𝑛 is the number of data; 𝑎𝑏𝑠 is the module value; 𝑚𝑖𝑛|𝑖=1
𝑗

 is the lowest value found 

among the compared 𝑗 models; 𝑚𝑎𝑥|𝑖=1
𝑗

 is the highest value found among the compared 𝑗 

models. 

𝑀𝐸 =
1

𝑛
∑ 𝑍(𝑠𝑖) − �̂�(𝑠(𝑖))

𝑛

𝑖=1

, (16) 

𝑆𝐷𝑀𝐸 = √
1

𝑛
∑ (𝑍(𝑠𝑖) − �̂�(𝑠(𝑖)))

2
𝑛

𝑖=1

, (17) 

where 𝑛 is the number of data; 𝑍(𝑠𝑖) is the value observed at the point 𝑠(𝑖) ; �̂�(𝑠(𝑖)) is the 

predicted value at the point 𝑠(𝑖). 

The statistic called error comparison index (ECI – Equation 18 – Souza et al., 2016) 

was used to determine the best semivariogram fit in each analyzed 𝑗 model, which assumes a 
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lower value for the model is better stochastic methods of interpolation. The best semivariogram 

of each 𝑗 model was used in ISI analysis. 

𝐸𝐶𝐼𝑖 =
|𝑅𝑀𝐸𝑖|

10−10 + 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
|𝑅𝑀𝐸|

+
|𝑆𝐷𝑅𝑀𝐸𝑖 − 1|

10−10 + 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
|𝑆𝐷𝑅𝑀𝐸 − 1|

, (18) 

where 𝐸𝐶𝐼𝑖  is the error comparison index for model 𝑖; and 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
 is the highest value 

among the compared 𝑗 semivariograms. The arbitrary constant 10-10 was included to avoid 

division by zero. 

The reduced mean error (RME – Equation 19) and standard deviation of the reduced 

mean error (SDRME – Equation 20) was determinate by ordinary kriging cross-validation. 

𝑅𝑀𝐸 =
1

𝑛
∑

𝑍(𝑠𝑖) − �̂�(𝑠𝑖)

�̂� (�̂�(𝑠𝑖))

𝑛

𝑖=1

, (19) 

𝑆𝐷𝑅𝑀𝐸 = √
1

𝑛
∑

|𝑍(𝑠𝑖) − �̂�(𝑠𝑖)|

�̂� (�̂�(𝑠𝑖))

𝑛

𝑖=1

, (20) 

where 𝑍(𝑠𝑖) − �̂�(𝑠𝑖) is the prediction error associated with estimating yield at spatial location 

𝑠𝑖; 𝑍(𝑠𝑖) is the observed value; �̂�(𝑠𝑖) is the estimated value obtained from the ordinary kriging 

cross-validation; �̂� (�̂�(𝑠𝑖)) is the estimated standard deviation associated with the estimated 

value, and 𝑛 is the sample size. 

 

3. 4. 6 Clustering Methods 

The purpose of cluster analysis methods is to divide the data points of an agricultural 

area into classes, which are also denominated clusters, employing a similarity evaluation 

function for this division. Clustering methods are considered more complex than empirical 

methods, yet they allow a more significant differentiation among classes by less subjective 

criteria. They employ several variables in the process of defining MZs. Among the several 

clustering algorithm options described in literature, two algorithms have been often applied in 

studies regarding MZs generation : K-Means (MacQueen, 1967) and FCM (Bezdek, 1981). 

Examples of software that are specific for MZ delineation using FCM are Management Zone 

Analyst (MZA, Fridgen et al., 2004), FuzME (Minasny and McBratney, 2002), Software for 

Defining Management zones (SDUM – Bazzi et al. 2019b), ZoneMAP (Zhang et al., 2010), and 

the friendly interface software proposed by Albornoz et al. (2017). 

Gavioli et al. (2019) evaluated twenty clustering algorithms using data obtained from 

2010 to 2015 at three commercial agriculture areas cropped with soybean and corn in Paraná 

state, Brazil. From the variables of elevation, clay, sand, silt, SRP, declivity, and bulk density, 

a method based on the main component analysis (PCA) was applied to generate new variables 

used as input variables for the clustering algorithms. The methods by McQuitty and Fanny 
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were considered the best ones because they produced the most significant reductions in yield 

variance (target variable) for the studied three areas. Such methods generated zones with high 

internal homogeneity and less fragmentation (appropriate for field operations). The classic 

FCM and K-Means algorithms created subareas that were significantly different in only two 

areas, for which the results obtained were similar to those ones of the algorithms by McQuitty 

and Fanny. 

 

3. 4. 7 Management zone rectification 

Data rectification allows changing the format of qualitative data layers minimally. 

Qualitative layers data are a resultfrom the grouping process or discrete TMs. Regardless of 

the method used to delimit these zones, isolated spots or pixels usually appear. The 

rectification methods of layers are based on morphological filters used in digital processing of 

image: median, opening, closure, and with the combination of opening and closure. These 

indices have already been used to reduce MZs fragmentation (Betzek et al., 2018; Albornoz 

et al., 2017; Córdoba et al., 2016; Gonzalez and Woods, 2008). 

Morphological filters act out as a non-linear mathematical function used to segment 

useful information and object description, such as shape, edges, and skeletons (Gonzalez and 

Woods, 2008). In a combined morphological function (opening and erosion), small objects are 

removed, and the subsequent dilation tries to restore the remaining objects shape (Gonzalez 

and Woods, 2008). For example, the image opening filter preserves unsegmented parts of 

objects by firstly image dilation by merging an object's neighboring pixels into the object and 

then image erosion by removing the object's boundary pixels. Instead, image closure is erosion 

followed by dilation to eliminate non-segmented parts of the background (He et al., 2016). 

In the median filter, pixel intensity values are examined in a small region of the filter 

size and the median intensity value is selected for the central pixel (He et al., 2016). Thus, the 

median acts out similarly to an open-closing. However, the open-closing has advantages over 

the median, since it requires less computation and decomposes the noise suppression task 

into two independent steps, i.e., suppressing positive spikes via the opening and negative 

spikes via the closing (Maragos, 2009). 

 

3. 4. 8 Distance measures 

Clustering techniques separate data objects into clusters that have some similarity 

relationships among data. A distance measure determines similarity among data objects. The 

similarity among objects within a cluster is the most relevant factor during the clustering 

process. A good cluster finds the maximum similarity among its members (Saxena et al., 2017).  

Distance measures are classified according to the similarity, which defines the similarity 

degree among data objects (Couso et al., 2013):  
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• Diagonal distance (Equation 21) is a distance used to standardize 

measurements at the moment when the variance equality is detected during the 

clustering process (Odeh et al., 1992).  

𝐷𝑖𝑠𝑡(𝐸𝑖 , 𝐸𝑗) = √(𝑥𝑖𝑙 − 𝑥𝑗𝑙). 𝐴𝐷 . (𝑥𝑖𝑙 − 𝑥𝑗𝑙), (21) 

where 𝐷𝑖𝑠𝑡 is the distance among the points; 𝐸 is the attribute values for each 

point; 𝐴𝐷 is the diagonal matrix. 

• Euclidean distance among points 𝑥𝑖𝑙 and 𝑥𝑗𝑙 is the length of the line segment 

connecting them (Equation 22). It is highly sensitive to noise and usually not 

applied to data with many attributes (Yahyaoui and Own, 2018). Thus, it is 

recommended to normalize data beforehand when data are not on the same 

measurement scale (Liu et al., 2014).  

𝐷𝑖𝑠𝑡(𝐸𝑖 , 𝐸𝑗) = √∑(𝑥𝑖𝑙 − 𝑥𝑗𝑙)
2

𝑀

𝑙=1

, (22) 

where 𝑥𝑖𝑙 and 𝑥𝑗𝑙 are the attribute values for each point. 

• Mahalanobis Distance (Equation 23 – Mahalanobis, 1936) is a measure that 

considers the covariance among the analyzed data. Moreover, it corrects some 

Euclidean distance restrictions since it automatically considers the scale of the 

coordinates axes and the covariance among characteristics (Liu et al., 2014). 

𝐷𝑖𝑠𝑡(𝐸𝑖 , 𝐸𝑗) = √(𝑥𝑖𝑙 − 𝑥𝑗𝑙)
𝑇

. 𝑆−1. (𝑥𝑖𝑙 − 𝑥𝑗𝑙), (23) 

where 𝐷𝑖𝑠𝑡 is the distance among the points; 𝑥𝑖𝑙 and 𝑥𝑗𝑙 are the attribute values 

for each point; S is the covariance matrix. 

 

3. 4. 9 Management zones evaluation 

After MZs delineation, it is necessary to evaluate whether it is effective. Some indices 

help in evaluation and decision-making for clustering adoption and others to compare MZs or 

TMs. 

 

i. Evaluation of the management zones quality 

a) Variance reduction (VR – Equation 24 – Xiang et al., 2007, Schenatto et al., 

2017b) is calculated for the mean yield, expecting that the sum of data variances 

for each MZ is smaller than the total variance of the field.   

𝑉𝑅 = (1 −
∑ 𝑊𝑖 ∗ 𝑉𝑀𝑍𝑖

𝑐
𝑖=1

𝑉𝑓𝑖𝑒𝑙𝑑
) ∗ 100, (24) 

where 𝑐 is the MZs number, 𝑊𝑖 is the field rate of i-th MZ to the total field, 𝑉𝑀𝑍𝑖
 is 

data variance of the i-th MZ, and 𝑉𝑓𝑖𝑒𝑙𝑑 is the field data variance. 
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b) Fuzziness performance index (FPI – Equation 25 – McBratney and Moore, 1985; 

Fridgen et al., 2004): measures the degree of separation among the fuzzy c groups 

generated from a data set. FPI varies from 0 to 1. 

𝐹𝑃𝐼 = 1 −
𝑐

(𝑐 − 1)
[1 − ∑ ∑(𝑚𝑖𝑗)2/𝑛

𝑐

𝑖=1

𝑛

𝑗=1

], (25) 

where 𝑐 is the number of groups; 𝑛 is the number of elements in the data set; and 

𝑚𝑖𝑗 is the element of fuzzy membership matrix M. 

c) Modified partition entropy (MPE – Equation 26 – McBratney and Moore, 1985; 

Fridgen et al., 2004): estimates the difficulty level of the c groups organization.     

𝑀𝑃𝐸 =
− ∑ ∑ 𝑚𝑖𝑗 𝑙𝑜𝑔( 𝑚𝑖𝑗)/𝑛𝑐

𝑖=1
𝑛
𝑗=1

𝑙𝑜𝑔 𝑐
, (26) 

where 𝑐 is the number of groups; 𝑛 is the number of elements in data set; and 𝑚𝑖𝑗 

is the element of the fuzzy membership matrix M. 

d) Improved cluster validation index (ICVI – Equation 27 – Gavioli et al., 2016): is 

a composition of FPI, MPE, and VR% indices. 

𝐼𝐶𝑉𝐼𝑖 =
1

3
∗ (

𝐹𝑃𝐼𝑖

𝑀𝑎𝑥{𝐹𝑃𝐼}
+

𝑀𝑃𝐸𝑖

𝑀𝑎𝑥{𝑀𝑃𝐸}
+ (1 −

𝑉𝑅%𝑖

𝑀𝑎𝑥{𝑉𝑅%}
)), (27) 

where 𝐹𝑃𝐼𝑖 is FPI value for i-th MZ; 𝑀𝑃𝐸𝑖 is the MPE value for i-th MZ; 𝑉𝑅%𝑖 is VR 

value for i-th MZ; and 𝑀𝑎𝑥{𝐼𝑛𝑑𝑒𝑥𝑋}  represents the maximum value of 𝐼𝑛𝑑𝑒𝑥𝑋 

among 𝑛 MZs. 

e) Analysis of variance (ANOVA): The mean values of a target variable can be 

compared among classes in an MZ delineated using Tukey’s test to identify whether 

the sub-regions presented significant differences among classes. 

f) Smoothness index (SI – Equation 28 – Gavioli et al., 2016):  The evaluation of the 

best methods to define clustering must also include the visual aspect of the 

clustering created and, therefore, it must be taken into consideration the contour 

curves smoothness since it facilitates visual interpretation and application of 

agricultural inputs in varied rates. SI calculates the frequency of class changes in 

TM in horizontal, vertical, and diagonal directions, pixel by pixel. On the hypothesis 

that the map is a single completely homogeneous area, a smoothness index of 

100% will be obtained due to the absence of class changes. Likewise, if the map 

was generated with random values, SI would value close to zero. 

𝑆𝐼 = 100 − (
∑ 𝐶𝐻𝑖

𝑘
𝑖=1

4𝑃𝐻
+

∑ 𝐶𝑉𝑗

𝑘
𝑗=1

4𝑃𝑉
+

∑ 𝐶𝐷𝑅𝑙

𝑘
𝑙=1

4𝑃𝐷𝑅
+

∑ 𝐶𝐷𝐿𝑚

𝑘
𝑚=1

4𝑃𝐷𝐿
) ∗ 100, (28) 

where 𝐶𝐻𝑖
 is the number of changes on line i (horizontal); 𝐶𝑉𝑗

is the number of 

changes in column j (vertical); 𝐶𝐷𝑅𝑙
 is the number of changes on diagonal l (diagonal 
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right – DR); 𝐶𝐷𝐿𝑚
 is the number of changes on diagonal m (diagonal left – DL); k is 

the maximum number of pixels on a line, column, or diagonal; 𝑃𝐻 is the possibility 

of a pixel change on horizontal; 𝑃𝑉 is the possibility of a pixel change on vertical; 𝑃𝐷𝑅 

is the possibility of a pixel change on DR; and 𝑃𝐷𝐿 is the possibility of a pixel change 

on the diagonal left DL. 

g) Average Silhouette Coefficient (ASC – Equation 29 – Rousseeuw, 1987) is 

obtained from the silhouette coefficient (SC), an evaluation index that measures 

satisfactory internal formation and external separation among clusters. SC value 

for point p, which is denoted by scp, is calculated using the mean of the intragroup 

distances ap and the mean of intergroup distances bp. ASC values vary from -1 to 

1: -1 indicates an incorrect clustering, whereas 1 indicates groups with the best 

intra-group formation and intergroup separation possible. Kaufman and Rousseeuw 

(1990) classify the structure of the formed groups as: very robust (0.71 < ASC ≤ 

1.00); reasonable unit (0.51 < ASC ≤ 0.70; weak (0.26 < ASC ≤ 0.50); none (ASC 

< 0.26). When the structure is weak, it is recommended to use another grouping. 

𝑠𝑐𝑝 =
𝑏𝑝 − 𝑎𝑝

𝑀𝑎𝑥(𝑎𝑝, 𝑏𝑝)
, (29) 

where 𝑎𝑝 - Mean of distances among point 𝑝 and all other points in the same group; 

𝑏𝑝  - Mean of distances among point 𝑝 and all points in the closest group that 

contains 𝑝. 

h) Fragmentation Index (FI% – Equation 30 – Souza et al., 2021): it takes into 

account how higher is the number of zones (NMZ) in comparison with the number 

of classes (NC). The higher FI%, the higher fragmentation.  

𝐹𝐼% = 100
𝑁𝑀𝑍 − 𝑁𝑐

𝑁𝑐
, (30) 

i) Global Quality Index (GQI – Equation 31 – Beneduzzi, 2020): it looks for finding 

the best number of classes during MZs delineation, taking into account the values 

of ICVI, SIr%, and FIr%. The SIr% and Fir% are SI% and FI% index values after 

MZ rectification. 

𝐺𝑄𝐼𝑖 =  
𝐼𝐶𝑉𝐼𝑖 ∗ (100 + 𝐹𝐼𝑟%𝑖)

𝑆𝐼𝑟%𝑖

, (31) 

j) Modified Global Quality Index (MGQI – Equation 32) this coefficient, proposed in 

this work, is an adaptation of GQI to include the ASC coefficient. 

𝑀𝐺𝑄𝐼 =  
𝐼𝐶𝑉𝐼 ∗ (100 + 𝐹𝐼𝑟%)

𝑆𝐼𝑟% ∗ 𝐴𝑆𝐶
, (32) 
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ii. Comparison between thematic maps and between management zones 

a) Coefficient of relative deviation (CRD – Equation 33 – Coelho et al., 2009): it 

calculates the mean difference in modulus of the interpolated values on a thematic 

map compared to a map taken as a reference. 

𝐶𝑅𝐷 = ∑ 𝐴𝐵𝑆(

𝑛

𝑖=1

 
𝑍𝑖𝐵 − 𝑍𝑖𝐴

𝑍𝑖𝐴
), (33) 

where 𝑍𝑖𝐴 is the estimated value at the location 𝑖 on the reference map, 𝑍𝑖𝐵 is the 

value at location 𝑖  on the map to be compared, and 𝑛  is the total number of 

interpolated locations on the maps.  

b) Mean absolute difference (MAD – Equation 34): it computes the mean absolute 

difference among values on both maps. 

𝑀𝐴𝐷 =
∑ 𝐴𝐵𝑆(𝑍𝑖𝐵 − 𝑍𝑖𝐴

𝑛
𝑖=1 ) 

𝑛
, (34) 

where 𝑍𝑖𝐴 is the value of location (pixel) 𝑖 on the reference map, 𝑍𝑖𝐵 is the value at 

location (pixel) 𝑖  on the map to be compared, and 𝑛  is the total number of 

observations on the maps. 

c) Kappa index (Kp – Equation 35 – Cohen, 1960): In comparing thematic maps, one 

of the ways used to determine the accuracy of a thematic classification is the 

Kappa’s index, which adopts a reference for comparison with the maps produced. 

The accuracy analysis of mappings is obtained by the confusion matrices, and, 

subsequently, Kappa’s index of agreement is calculated (Congalton, 1991). In PA, 

Kappa index has been used to compare thematic maps generated by different 

interpolators (Betzek et al., 2018; Schenatto et al., 2017b; Xiang et al., 2007). 

Kappa value ranges from 0 to 1, with values close to 0 representing no agreement 

beyond chance and 1 representing full agreement. Landis and Koch (1977) 

proposed the following classification: 0 < Kp ≤ 0.2 indicates no agreement, 0.2 < 

Kp ≤ 0.4 weak agreement, 0.4 < Kp ≤ 0.6 moderate agreement, 0.6 < Kp ≤ 0.8 

strong agreement, and 0.8 < Kp ≤ 1 very strong agreement. 

𝐾 =
𝑛 ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)

𝑟
𝑖=1

𝑛2 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)
𝑟
𝑖−1

, (35) 

where 𝑛 is the number of observations (sample points); 𝑟 is the number of classes 

in the error matrix; 𝑥𝑖𝑖 is the number of combinations of line 𝑖 and column 𝑖; 𝑥𝑖+ is 

the total number of observations of line 𝑖 ; and 𝑥+𝑖  is the total number of 

observations of column 𝑖. 

d) Global accuracy (GA – Equation 36 – Foody, 2002): like Kp, GA measures the 

degree of agreement among maps (MZs) and corresponds to the simple percent 

agreement. 

𝐺𝐴 =
∑ 𝑥𝑖𝑖

𝑐
𝑖=1

𝑛
, (36) 
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where, ∑ 𝑥𝑖𝑖
𝑐
𝑖=1  is the sum of the main diagonal of the error matrix with c classes 

and a total of N samples collected (number of points interpolated).  

 

3.5 Thematic maps 

Maps representing the ground and a topic associated with it are called TMs and aim at 

informing by graphical symbols where a specific geographical phenomenon occurs. TMs 

development is associated to data collection, analysis, interpretation, and information 

representation on a map facilitates the similarities identification and enables the spatial 

correlations visualization. However, it is first necessary to interpolate data onto a dense and 

regular grid to provide values for locations that are not sampled. This task is carried out with 

interpolation methods and geostatistical analysis, and it is the most used interpolation method.  

One specific case of TMs is contour maps built by connecting points of the same value and 

applying them to geographical phenomena that show continuity in geographic space. Another 

case is choropleth maps that use color to show specific variable's values within a defined 

geographic area. Contour and choropleth maps can be built from categorical data (elevation, 

temperature, precipitation, humidity, and atmospheric pressure) or relative data (density, 

percentages, and indices). 

Usually, soil samples are analyzed to determine the levels of nutrients on soil. 

Therefore, the sampling must be dense enough to determine nutrients variability on soil so that 

fertilizers may be used in a profitable and environmentally sustainable manner (Ferguson and 

Hergert, 2009; Franzen et al., 2002). Sampling with minimum densities from 1 sample ha-1 

(Ferguson and Hergert, 2009) to 2.5 samples ha-1 (Journel and Huijbregts, 1978; Doerge, 

2000) is suggested and must be composed of at least eight individual samples (Wollenhaupt 

et al., 1994). For building TMs, it is necessary to follow a protocol such as the one proposed 

by Souza et al. (2018), presented in Fig. 7. 
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Fig. 7 Flowchart of the typical protocol to create a thematic map. 
Source: Souza et al. (2018). 

 

After data interpolation, It must be decided the number of classes and the method used 

to divide data into intervals to build TMs with such data. The goal is to group similar 

observations and split apart substantially different observations (Indiemapper, 2016). The most 

common grouping forms are 1) Manual interval; 2) Equal interval (equal-sized classes); 3) 

Quantile (classes with the same number of elements); and 4) Standard deviation (the class 

size is a multiple of the standard deviation). The number of data classes is also an essential 

part of the contour map design. Increasing the number of data classes results in a more 

revealing map but requires more colors. Generally, it is advised not to exceed seven classes. 

After selecting the way to classify data, it is also essential to choose an effective color 

scheme for TM and, thus, define the three-color dimensions (hue, lightness, and saturation) 

for each class. There are three types of color schemes (Fig. 8): 1) Nominal/qualitative 

(unordered data such as land use): different hues with the same lightness and saturation; 2) 

Sequential (ordered data such as numerical data): single or multihued with different 

lightness/saturation; and 3) Diverging (when there is a mid-point, such as zero, or if someone 

wants to compare with an average such as profit): two different hues with different 

lightness/saturation starting from a central neutral color, usually white. 

 

 
        a) Nominal/qualitative                      b) Sequential                              c) Diverging  
Fig. 8 Three types of color schemes: nominal/qualitative (a), sequential (b), and diverging (c). 
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3.6 Software for delineation of Management Zones 

The process for delineating MZ can be made more accessible when using specialized 

software for this purpose. There are few options available to perform all phases of MZs 

delineation but use several software to accomplish the task in many cases. For example, some 

software tools are SAS (Statistical Analysis System), SPSS statistical software, Statistic 

(StatSoft Inc., currently maintained by TIBCO Software Inc), GS+, ArcGis (Environmental 

Systems Research Institute, Redlands, CA), Software R (R Core Team, 2014), FuzMe, MZA, 

Matlab and GRASS GIS (Damian et al., 2020; Méndez-Vázquez et al., 2019; Oldoni et al., 

2019; Behera et al., 2018; Peralta et al., 2015; Chang et al., 2014) 

FuzME (Minasny and McBratney, 2002) is a Fortran software capable of delineating 

MZs (Arshad et al., 2019; Behera et al., 2018) by FCM algorithm. It provides FPI and MPE 

indices, which are used to detect the class ideal number. This software is not specialized in 

performing all the tasks of a protocol for generating MZs; therefore, the pre-and post-

processing steps must be performed with other software. 

MZA (Fridgen et al., 2004) is a precursor to offer specialized tools for MZs delineation. 

Several researches involving MZs have already been carried out using MZA (Breunig et al., 

2020; Damian et al., 2020; Peralta et al., 2015). It was developed with Microsoft Visual Basic 

6.0 and operated in a Windows environment. Software calculates descriptive statistics and 

delineates MZs using FCM algorithm. The evaluative measures of the generated clusters can 

be made by FPI indices and normalized classification entropy (NCE). 

The R software has been used for the development of studies concerning MZ 

delineation. Frequent use is given by the autonomy offered to the researcher to install libraries 

(packages) or develop their functions in execution scripts. It can be used to perform the entire 

MZ delineation process (Gavioli et al., 2019, Betzek et al., 2019) or in part of the process 

(Méndez-Vázquez et al., 2019; Oldoni et al., 2019; Gili et al., 2017). In addition, some practical 

applications for MZs design have been developed using the R software as part of the execution 

processes (Dall'agnol et al., 2020; Paccioretti et al., 2020). 

ZoneMAP (Zhang et al., 2010) is an easy-to-use tool that uses FCM to delineate MZs 

with several data sources, including remote sensing images and field data collected by users. 

It can access a remote sensing database, and pre-processes data automatically, including 

format conversion and projection adjustment. The optimal number of MZ is determined based 

on the variance reduction. 

EZZone (Lowrance et al., 2016) is web software to delineate MZ with FCM algorithm, 

composed of back-end and front-end. The back-end was developed in Python programming 

language and used SciPy and NumPy scientific computing libraries. The front-end uses HTML 

and JavaScript technologies, along with OpenLayers and jQuery libraries. The tool has a 

friendly interface in which MZs are delineated by a semi-supervised process interactively with 
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the user. There is no need to create an account to use it. The software presents the optimal 

amount of MZs for the analyzed dataset. Once outlined, MZs can be rectified by the user. 

The software by Albornoz et al. (2017) was developed in C++ and used FCM to 

delineate MZs. The authors characterize it as a user-friendly software focused on end-users, 

without the need-to-know advanced GIS and statistical skills. It generates files in ESRI 

Shapefile format. In determining the optimal number of MZs, the Euclidean distance of FPI 

cluster evaluation indices, normalized classification entropy (NCE), and Xie and Beni (XB) 

were used. In addition, the software allows rectifying delineated MZs with automatic post-

processing, including the application of fashion, erosion and dilation filters, and the merging of 

smaller areas. 

GeoFis (Leroux et al., 2018) is an open-source software focused on PA, allowing 

delineating MZs. It was developed in Java and can run on Windows, Linux, or Docker container 

systems. It uses R software for executing routines. It interpolates data by IDW and kriging. 

MZs delineation is done by segmentation algorithm (Pedroso et al., 2010). 

AgDataBox (ADB; Michelon et al., 2019; Borges et al., 2020; Dall'agnol et al., 2020) is 

a digital platform that provides free computational tools for farmers, researchers, and service 

providers focused on PA by integrating data, software, procedures, and methodologies, in an 

attempt to enable the agricultural sector with free technologies.  

FastMapping (Paccioretti et al., 2020) emerged as web software that can accomplish 

several protocol steps to delineate MZs. It was developed entirely in R software language. It 

allows cleaning, normalization, interpolation, data grouping, and evaluation indices. FCM from 

MULTISPATI-PCA (KM-sPC) algorithm is used (Córdoba et al., 2013) and its purpose is to 

reinforce that the Fast-track module, more available it is in ADB-Map software. 

Other software applied in trials that design MZs are MATLAB (MathWorks Inc.) with 

fuzzy clusters (Fu et al., 2010), Statistica software with k-means algorithm (Whetton et al., 

2018), and ArcGis with a neighborhood function via point statistics tool (Spatial Analyst toolset, 

ArcGIS PRO) (Ohana-Levi et al., 2019). 

 

3.7 Web services  

Modern software tools are, in most cases, built to be accessible by a computer network, 

with a web interface, stored data in relational databases or based on NoSQL (Not Only SQL) 

philosophy and can be integrated with other software, consuming or providing data. However, 

one of the challenges for integrating distributed software components is heterogeneity of 

programming languages, communication protocols, operating systems, data communication 

means, and hardware architecture of the devices. 

Web service is a technology that allows interoperability of software on a computer 

network, in which information exchange (communication) is done over the hypertext transfer 

protocol (HTTP). Thus, an application programming interface (API) of a web service defines a 



51 
 

 

standard for representing messages exchanged, usually in JavaScript Object Notation (JSON) 

or Extensible Markup Language (XML) (Grahl et al., 2017). The main advantage of using web 

services is the possibility of creating systems using reusable and loosely coupled software 

components 

The most common classifications for web services are two and differ in how they are 

structured: tunneling style and Representational State Transfer (REST) architectural style 

(Fielding, 2000).  

Tunneling is a style based on the principle of remote procedures call (RPC) for 

exchanging messages in simple object access protocol (SOAP) patterns and uses a language 

to describe the entire functioning of the web services description language (WSDL) (Grahl et 

al., 2017). Since there are many protocols and standards, this community is also known as 

“big web services” or WS-* stack (Richardson and Ruby, 2007). 

On the other hand, the REST architectural style allows developing web services more 

simply, aiming to fully explore HTTP protocol for communication among applications without 

additional protocols. Furthermore, HTTP protocol is considered robust and sufficient to create 

web services (Fielding, 2000). Therefore, web services can be built on a lightweight 

architecture without encapsulating a protocol on HTTP protocol, as with SOAP. Fielding (2000) 

states that it is possible to integrate heterogeneous systems, to exchange messages and 

information without losing semantics of data among the parties involved, as well as guarantee 

security, integrity, and consistency in the distributed data using REST. 

The application of web services to the agricultural sector is not new. For example, 

Spilke and Zürnstein (2005) highlight the potential of web services for data transfer among 

partners in agriculture and application integration, including outsourced service. However, in 

new software solutions, it has been preferred to use REST-based services. For example, 

research involving IoT in agriculture used REST architecture, such as animal monitoring 

systems (Nóbrega et al., 2018), for monitoring and forecasting data in a rose nursery 

(Rodríguez et al., 2017), platform for integrating sensors in an educational environment 

(Gunasekera et al., 2018) and in connected farms project (Ryu et al., 2015). 

Therefore, during the decision support systems (DSS), it is also possible to find studies 

using the REST architecture, such as AgroDSS, which allows the use of data mining services 

(Rupnik et al., 2018), and e-Agriculture, which helps farmers in different stages of crop 

development (Mohanraj et al., 2016). 

 

3.8 Microservices 

Distributed computing systems have evolved by homogeneous cluster architectures in 

the 1990s, grid computing in the 2000s, cloud computing in the late 2000s, and, recently, 

ubiquitous computing and IoT (García-Valls et al., 2018). Software paradigms have also 

evolved; they have ceased to be isolated applications and have become part of collaborative 
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platforms in which different partners can exchange information. One of the challenges of 

distributed applications is scalability, related to the software's ability to grow and expand due 

to business demands (Soldani et al., 2018). New software and technical architectures are 

studied and proposed to improve this situation and one of them is microservices architecture 

(MSA). In web software architecture, two approaches have been shown to the organization of 

its components, the traditional (monolithic) and the microservices-based (Fig. 9). 

Software developed on monolithic approach is seen as a single artifact (Lewis and 

Fowler, 2014), a single web product deployed on the application server, containing the main 

logical parts, view (graphical user interface), data model (data representation and storage), 

and control functionalities. Therefore, the application can be difficult to understand and modify 

in monolithic approach, especially when it becomes large. In addition, a large codebase 

decreases the development team productivity. Some of the challenges found by the 

development team are regarding the division of activities for implementation, replacement of 

team members, difficulty in working independently, coordination of all development efforts, and 

code redistribution (Richardson, 2018). 

 

 
Fig. 9 Comparison of software architecture in traditional (monolithic), with a single artifact, and 
microservice approaches, where the application comprises several artifacts. 
Source: Lewis and Fowler (2014). 

 

On the other hand, the MSA aims to organize, logically and structurally, an application 

in small cohesive components. The application is seen as a set of small services, modular and 

loosely coupled, each one of them dedicated to a single activity (Ciavotta et al., 2017). Each 

microservice can be its database. An essential feature of microservices is to support the 

application's continuous delivery/deployment, which provides agile software provisioning 
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(García-Valls et al., 2018). Furthermore, an application can grow in different independent parts. 

As a result, the microservice approach provides scalability to applications, which is an essential 

factor in supporting several platforms and devices.  

This approach has aroused the researchers’ interest and software developers to create 

solutions in the most different industries, such as HazMate (Cherradi et al., 2017), which is 

real-time software for environmental information to assist on the logistics of transporting 

dangerous cargo in urban areas, as it provides creation of safer routes. MSA allowed the 

system to be distributed and business-oriented, as each microservice has business 

implementation. In dairy farming, a system based on “fog computing” was developed to 

analyze and monitor animal’s health and behavior (Taneja et al., 2018). However, no research 

publications were found out with reports of trials using MSA to develop software focused on 

TMs creation and MZs delineation. 

 

3.9 AgDataBox digital platform 

This digital platform ADB has several application programming interfaces (API) in MSA 

(ADB-MSA), which consists of a set of resources accessible by the hypertext transfer protocol 

(HTTP) to transfer request and response messages expressed in JSON format. ADB-MSA, 

where data and processing routines are centered, enables interoperability of several 

applications. The following applications that consume ADB-MSA resources are under the 

development phase: 1-ADB-Mobile (Schenatto et al., 2017c); 2-ADB-Map (Borges et al., 2020; 

Michelon et al., 2019); 3-ADB-Admin; 4-ADB-IoT; and 5-ADB-SR. Fig. 10 presents the 

architecture of Digital platform ADB. 

This platform originated from SDUM, developed on a desktop environment, which 

required its installation on computers with high processing capacity and memory availability 

due to the complexity of the implemented functionalities. Despite the acceptance of SDUM by 

researchers and producers, we opted for migrating to a web platform, including new modules 

and functionalities, but maintaining its gratuity. 

 



54 
 

 

 
Fig. 10 AgDataBox digital platform architecture with its ADB-Data-API, ADB-Mobile, ADB-
Admin, ADB-Map, and ADB-IoT applications. 

 

3. 9. 1 AgDataBox Map (ADB-Map) 

ADB-Map is the application that works with spatial data aiming to create TM and MZ to 

subsidize PA and DA. ADB-Map functionalities are divided into different layers, composed of 

(i) a back-end, which contains algorithms and rules of business operation, and (ii) a front-end, 

which is the interface of interaction with the user. This approach is a trend of use in modern 

software (Eitzinger et al., 2019). 

The available features in ADB-Map are: 

• Data importing/exporting; 

• Statistical analysis and data cleaning; 

• Spatial operations with grids; 

• Data normalization; 

• Data interpolation and TMs creation by different interpolators, including 

selecting the best interpolator between OK and IDW; 

• Definition and evaluation of MZs, involving variable selection methods, data 

clustering methods, rectification, and quality evaluation; 

• Fertilizers and lime recommendation. 
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ADB-Map preliminary version (Borges et al., 2020; Michelon et al., 2019) was 

implemented in a monolithic approach following the Model-View-Controller (MVC) standard, 

based on Java language with web technologies, such as VRaptor framework, and deployed 

on Apache Tomcat application server, PostgreSQL database, and many of functionalities 

implemented in PL/pgSQL procedural language. This application was restructured, thus, it 

generates a new application in new application architecture and with different technologies. 

This application is discussed as part of this work (Chapter 6 – Paper 2). 

 

3. 9. 2 AgDataBox Data API (ADB-Data-API) 

According to the scenario with several technologies that make up ADB digital platform, 

there was a need to integrate the generated data and implemented procedures among different 

software, portals, and devices that create the platform. ADB-Data-API (Bazzi et al., 2019a) 

was created to centralize and share data on Web, and is registered with the Brazilian National 

Institute of Industrial Property (INPI, BR 51 2018 000899-2). This API manages agricultural 

data (acting as a database abstraction layer), making data persistence and availability for client 

applications, and operating in data security management. The types of data currently managed 

in ADB-Data-API refer to map resources, area characteristics, climate, and agricultural area 

management (Fig. 11). 

 

 
Fig. 11 Data model managed by ADB-Data-API. 

 

ADB-Data-API is based on the REST architectural style. Communication among 

applications and ADB-Data-API is done over HTTP protocol, which is fundamental for the web 

functioning, thus, it provides greater ease for integration among applications and ADB-Data-

API. JSON is the format adopted to represent data when transferring among applications and 

ADB-Data-API. 

All data stored on ADB-Data-API is associated with its owner; however, ADB-Data-API 

allows sharing it with other registered users. Access permissions are granted by data type and 
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by access level, such as viewing, creating, editing, and deleting. Access authentication is 

handled with login and password, the phone number. The e-mail address is considered as the 

user's login. When authentication is performed, the client receives a token, a key encrypted by 

ADB-Data-API, and must be used to carry out operations on available resources. All data 

storage is done in PostgreSQL databases and managed by a web interface, which is not 

intended to the users' access, but is consumed by applications, so it is called an API. 

When communicating with ADB-Data-API, HTTP methods (get, post, put or delete), a 

uniform resource identifier (URI), and a data representation in a standardized format are used, 

in this case, JSON (Fig. 12). 

 

 
Fig. 12 Data request representation and response process in communication among a client’s 
application and API 

 

3. 9. 3 AgDataBox Mobile (ADB-Mobile) 

ADB-Mobile application (Fig. 13, Schenatto et al., 2017c) operates on the Android 

operating system. It has two main objectives: (i) to be a valuable tool for farmers to record facts 

and organize operations on their property, able to keep the record of all operations and 

occurrences of a harvest; these data are stored locally on a mobile device and a data server, 

(ii) allow the registration of the producer’s variable experience regarding the division of areas 

in MZs. ADB-Mobile allows you to perform operations in offline mode and later synchronize 

data with ADB-Data-API in online mode. 

 

3. 9. 4 AgDataBox Admin (ADB-Admin) 

ADB-Admin is a web application (Fig. 14) whose main objective is to manage the 

resources offered in API (ADB-Data-API) for storing platform data. It was developed in PHP 
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programming language. The resources administration in the software is done to make it 

possible to view, create, edit, and delete the user's data and other users who have granted 

access permission. 

 

 
(a) Home screen. 

 
(b) Boundaries demarcation's screen. 

Fig. 13 Home screen (a) and boundaries demarcation screen (b) in ADB-Mobile application. 
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Fig. 14 An example of AgDataBox-Admin screen. 

 

3. 9. 5 AgDataBox Remote Sensing (ADB-RS) 

ADB-RS (Conti, 2021) is an application that aims at acquiring and processing images 

obtained by remote sensing. Data is extracted from a multispectral image, transformed into 

information, and exported for external applications. Application is integrated with ADB-MSA 

and allows the extracted data to be used, for example, in ADB-Map MZs delineation. 
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5 PAPER 1 – INCORPORATION OF COMPUTATIONAL ROUTINES IN A MICROSERVICE 

ARCHITECTURE IN AGDATABOX PLATFORM 

 

 

ABSTRACT: Agriculture has been undergoing a digital process that aims to apply digital 
technologies to make the sector more productive, profitable, and environmentally responsible. 
This trend has been adopted since applying precision agriculture (PA) techniques and, more 
recently, with digital agriculture (DA). DA aims to use all available information and knowledge 
to enable automation of sustainable processes in agriculture, applying data analysis methods 
and techniques by specific software and platforms to collect and transform data into meaningful 
information for agriculture. Platform AgDataBox (ADB) offers a set of tools to allow agriculture 
specialists to obtain, process, and visualize data for the right decision-making. However, its 
structure needed to be readjusted in new software architecture to allow aggregation of new 
functionalities and expand ADB platform. This study aimed to develop a web microservices 
architecture (ADB-MSA) to incorporate the required functionalities to create thematic maps 
(TMs) and delineate management zones (MZs). ADB-MSA provided eight microservices, six 
of which (statistics, spatial, interpolation, clustering, rectification, and lime/nutrient 
recommendation) execute procedures based on JavaScript, R, and Python programming 
languages, while the other two are used to store data. In the case study, the procedures to 
create TMs and delineate MZs were performed with data from one commercial area. Thus, the 
services provided in the architecture meet the steps of creating TMs and delineating MZs, as 
MZs for fertilizer application were generated and evaluated according to phosphorus and 
potassium requirements. 

 

KEYWORDS: precision agriculture, digital agriculture, variable-rate application, ADB. 
 

  

5.1 Introduction 

Computational technologies and global positioning systems have been applied in food 

production for decades. Currently, agriculture is expected to undergo more fulsome 

digitalization with sensors to collect data and intelligent machines to mine them (Lajoie-

O’Malley et al., 2020). Precision technologies for agriculture have been changing modern 

agriculture, with important implications for debates on environmental sustainability (Clapp and 

Ruder, 2020). Advances in digital technologies in recent years have included remote sensing, 

sophisticated upgrades to variable-rate technologies, robotics, and automated steering 

machines, unmanned aerial vehicles, wireless communication, and data analytics (Kamilaris 

et al., 2017). Applying these resources in agriculture is based on the premise that they offer 

more precision in decision-making and practice (Clapp and Ruder, 2020). 

A digital agriculture (DA) scenario integrates multiple components, which play an 

essential role in collecting, storing, and analyzing agronomic data. Software infrastructure 

needs to be enabled to allow business demands and fulfill them as fast as possible. These 

components on DA ecosystem can be developed in different programming languages intended 
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to different operating systems and using different communication protocols, data 

communication means, and device hardware architecture. 

AgDataBox (ADB) is one of such technology that is focused on DA. This platform 

provides free computational tools for producers, researchers, and service providers, mainly 

addressing precision agriculture practices. This platform also integrates data, software, 

procedures, and methodologies to enable the development of agricultural management in 

Brazil with free technologies. 

This web platform has an API for data storage, called ADB Data API (ADB-DATA-API), 

accessible by the hypertext transfer protocol (HTTP). ADB-DATA-API allows interoperability of 

different applications in which data is centralized. Some applications under testing or 

development consume ADB-DATA-API resources: (i) AgDataBox-Mobile (Schenatto et al., 

2017b), (ii) AgDataBox-Map (Borges et al., 2020; Michelon et al., 2019), (iii) AgDataBox-

Admin, and (iv) AgDataBox-IoT. Fig. 1 shows the ADB web platform architecture.  

 

 
Fig. 1 AgDataBox web platform architecture with its AgDataBox Data API, AgDataBox Mobile, 
AgDataBox Admin, AgDataBox Map, and AgDataBox IoT applications. 

 

This platform is originated from software to delineate crop management zones (SDUM) 

(Bazzi et al., 2019b). SDUM was developed on a desktop environment, and its installation 
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requires computers with high processing capacity and memory availability due to the 

complexity of implemented functionalities. Despite SDUM acceptance by researchers and 

producers, we opted for migrating to a web platform to include new modules and functionalities 

while maintaining its free nature. 

Web services are software integration technologies that allow software interoperability 

in a computer network, in which information is exchanged (communication) over HTTP. Thus, 

this application programming interface (API) defines a standard to represent the exchanged 

messages, usually in JavaScript object notation (JSON) or extensible markup language (XML) 

(Grahl et al., 2017). The main advantage of using web services is creating real-time systems 

using reusable and loosely-coupled software components. 

One of the challenges of distributed applications is scalability, related to the software’s 

capacity for growth and expansion due to business demands (Soldani et al., 2018). New 

software and technical architectures have been studied and proposed to improve the web 

services scenario. One of them is microservices architecture (MSA). MSA advocates 

decomposing an application into a set of small services and making them communicate with 

each other by lightweight mechanisms, such as the RESTful API (Lewis and Fowler, 2014). 

The application is logically and structurally organized into small cohesive components, and it 

is seen as a set of small, modular, and loosely coupled services, each one dedicated to a 

single activity (Ciavotta et al., 2017). Each microservice can be its database and are 

independent of each other. 

Several studies have addressed the migration of applications to MSA (Balalaie et al., 

2018; Hassan and Bahsoon, 2016; Lin et al., 2016), focusing on architectural principles, 

patterns, and practices common to this approach. Migration to microservices has become very 

popular in recent years. Companies migrate for different reasons, such as improving the quality 

of software or facilitating its maintenance (Taibi et al., 2017). Software migration from a 

monolithic architecture to MSA can generate a more significant initial effort, but the complexity 

of maintaining the code is reduced, and speed is increased in the long run (Lenarduzzi et al., 

2020). 

This approach has aroused the researchers’ interest and software developers to create 

solutions in the most different fields of activity, such as HazMate (Cherradi et al., 2017), which 

is a real-time environmental information software to assist in logistics of transporting hazardous 

cargo in urban areas and the analysis of animals’ health, behavior and their monitoring (Taneja 

et al., 2018). In this sense, ADB structuring in a microservices architecture is fundamental to 

expand, as data and procedures common to its applications can be shared harmonically. 

Therefore, this study aimed to develop a microservices architecture integrated into ADB 

platform and demonstrate its main functionalities to create thematic maps (TMs) and delineate 

management zones (MZs) available as web services. 
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5.2 Material and methods 

 

5. 2. 1 Microservices architecture 

An MSA was structured to integrate functionalities to generate thematic maps and 

delineate MZs in ADB platform (Fig. 2). Thus, there is the possibility to provide services to 

different applications without the need to rewrite much code. 

 

 
Fig. 2 Representation of the concepts involving the microservices architecture of the 
AgDataBox platform, where the back-end layer contains the microservices, with routines and 
data, and the front-end are the applications that consume the microservices. 

 

There is a logical division of the parts that compose the platform. The user interacts 

with software artifacts called applications, such as ADB-Map and ADB-Mobile, in the front-end 

layer. On the other hand, other artifacts provide services for executing routines in a remote 

environment located in the back-end layer. For example, microservices were implemented on 

the platform’s back-end to perform statistical analysis of data, cleaning, and data preparation 

(ADB Statistics API), analysis and operations with spatial data (ADB Spatial API), data 

grouping, and cluster evaluation metrics (ADB Clustering API), MZ rectification (ADB 

Rectification API), fertilizer and lime recommendation (ADB Recommendation API), 

agricultural data storage (ADB Data API), and data storage for ADB-Map application (ADB-

Map API). 

An API gateway was implemented to centralize clients’ requests and dispatch them to 
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the appropriate microservices. So, NGINX server was used to allow loading balance among 

servers where services are deployed. 

The following technical aspects were considered in microservices architecture: 

• Architecture: microservices are available as web APIs in the architectural style 

of representational state transfer (REST). 

• Format for exchanging messages: JSON format represents data among clients’ 

applications and microservices. 

• Security: The execution of routines must be restricted only for users registered 

in ADB-DATA-API. Each microservice can store execution results in its 

repository and make data available to the user who generated them. 

Microservices must receive the authentication token generated by ADB-DATA-

API to authorize access. The token must be passed on the clients’ application 

at each request. 

ADB platform is deployed on a virtualized network server in a private cloud, with a Linux 

operating system with 16 processor cores and 32 GB RAM. Docker tool is used to streamline 

services that make up ADB platform and allows a fast deployment of developed software 

artifacts. Each component of this structure is deployed in a separate container. The advantage 

was to allow the operating systems independence, programming languages, and libraries 

within ADB architecture. 

Microservices general workflow is based on their interaction with a clients’ application 

to execute routines; the client makes a request and waits for a response from microservice. In 

this interaction, microservice receives customer’s data, standardizes it, executes the requested 

functionality routine, and delivers the results to the clients’ application (Fig. 3). 

 

 
Fig. 3 Unified modeling language (UML) activity diagram demonstrates the general execution 
flow in the back-end modules in ADB-API. 

 

All ADB-MSA microservices implement APIs in REST architecture. Except for ADB-

DATA-API, the other microservices were developed in JavaScript, using Node.js platform and 
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Express framework. Thus, the features offered in microservices are executed in scripts 

implemented in statistical software languages R, Python, or JavaScript. 

 

5. 2. 2 API for agricultural data management – AgDataBox Data API 

The first version of ADB-DATA-API (Bazzi et al., 2019a) was updated and made 

available as a microservice in ADB platform. The technologies for software development used 

in API construction consisted of Java programming language, version 8, with resources of Java 

Enterprise Edition (JEE) platform; Maven for project management; VRaptor framework to build 

REST resources and organize flow of requests and responses in API; and Apache Tomcat as 

the application server. In addition, data are stored in database management system (DBMS) 

PostgreSQL, with PostGIS extension, for storage of data managed by ADB-DATA-API. This 

DBMS was also used by Rupnik et al. (2019). 

Requests for data manipulation in ADB-API are made by HTTP, using a request method 

(get, post, put, or delete), a uniform resource identifier (URI), and a data representation in 

JSON standardized format. The response delivered by the server that hosts ADB-DATA-API 

is a message containing some information in its headers, such as the response status and the 

main content requested, also in JSON format. 

  

5. 2. 3 Microservice for statistical analysis 

Statistical analyses are available in ADB-Statistics-API microservice (ADB-ST-API) 

(Fig. 4). The used R statistical software libraries consisted of nortest, ade4, and spdep. 

 

 
Fig. 4 AgDataBox Statistics API microservice components and workflow. 
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The following ADB-ST-API services run in R software environment: 

• Descriptive statistics: measures of position (mean, median, mode, and 

quartiles) and dispersion (variance, standard deviation, and coefficient of 

variation – CV) stand out among the available statistics. 

• Normality tests: data normality can be tested by Kolmogorov-Smirnov, Lilliefors, 

Cramer-Von Mises, Shapiro-Wilk, Shapiro-Francia, and Anderson-Darling 

tests. 

• Data cleaning: it removes values lower than or equal to zero (useful for data 

collected by harvesters), duplicate data, outliers, and inliers. 

• Principal component analysis (PCA) (Hotelling, 1933): it selects variables to be 

used in MZ delineation (Fraisse et al., 2001; Li et al., 2007; Moral et al., 2010; 

Cohen et al., 2013). 

The following services run in JavaScript environment: 

• Data normalization: The (i) range (Equation A1), (ii) mean (Equation A2), (iii) 

standard score (Equation A3), and (iv) min-max methods (Equation A4) are 

available. 

• Agreement indices: 

o Kappa index (Equation A5) (Cohen, 1960; Congalton, 1991). 

o Global accuracy (GA) (Equation A6). 

• Quantitative agreement indices: 

o The coefficient of relative deviation (CRD) (Coelho et al., 2009) 

Equation A7) calculates the mean difference in modulus of 

interpolated values on a thematic map compared to a map taken 

as a reference. 

o The mean absolute difference (MAD) (Equation A8) computes 

the mean absolute difference among values on both maps. 

 

5. 2. 4 Microservice for analysis with spatial data 

Statistical analysis procedures and spatial data preparation were made available in 

ADB Spatial API microservice (ADB-SP-API) (Fig. 5). The used R software libraries consisted 

of sp, rgdal, spdep, ade4, and adespatial. 
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Fig. 5 AgDataBox Spatial API microservice components and workflow. 

 

The following ADB-SP-API services run in R software environment: 

• Coordinate’s converter: it converts geographic coordinates into another system. 

• Bivariate Moran’s I (Reich, 2008; Schepers et al., 2004) (Equation A18): it 

calculates autocorrelation and bivariate correlation between two variables. 

• Multivariate spatial analysis based on Moran’s index and PCA (MULTISPATI-

PCA; MPCA) (Dray et al., 2008): it calculates the spatial principal components 

(SPCs) of all stable variables. 

• Smoothness index (SI%) (Equation A14) (Gavioli et al., 2016): it determines 

TMs smoothness. An SI closer to 100% indicates higher homogeneity of 

classes, and an SI closer to 0% indicates a higher presence of random values. 

• Variance reduction (VR%) (Equation A9) (Xiang et al., 2007; Schenatto et al., 

2017a): It is calculated for a variable, with the expectation that sum of data 

variances for each MZ is smaller than the total variance of the field. 

• Cluster statistics: It calculates descriptive statistical measures of a variable of 

interest within each MZ class. The number of observations, mean, median, 

mode, minimum and maximum values, quartiles, standard deviation, variance, 

CV, skewness, and kurtosis are determined. The analysis of variance (ANOVA) 

by the Tukey test is used to identify whether sub-regions of design in MZs 

present significant differences in the mean value of variable of interest. 

• Downgrade service: It reduces dataset density using only JavaScript 

environment. 
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5. 2. 5 Microservice for data interpolation 

ADB Interpolation API (ADB-INT-API) microservice interpolates data by inverse 

distance weighting (IDW) (Equation A22), ordinary kriging (OK) (Equation A23 – Cressie, 

1993), moving average (MA) (Equation A24), and nearest neighbor (NN).  

Furthermore, it is possible to perform geostatistical analysis, select the best 

interpolation method between OK and IDW and determine its interpolation parameters (Fig. 

6). 

 

 
Fig. 6 AgDataBox Interpolation API microservice components and workflow. 

 

Microservice aggregated scripts studied and implemented by Betzek et al. (2019) and 

improved by us and adding the newly implemented features. Algorithms that make 

interpolations were developed in R software, using the packages geoR (Ribeiro and Diggle, 

2018) for OK, and as functions implemented directly in the PostgreSQL database by the 

procedural language PL/pgSQL for IDW. The algorithm to perform IDW interpolation based on 

PL/pgSQL was replaced by an R software script, using gstat package. 

The interpolator selection is performed from the interpolator selection index (ISI) (Bier 

and Souza, 2017) (Equation A19), which allows determining the best semivariogram model 

and its parameters, as well as the best exponent and number of neighbors to be used in the 

IDW interpolator. The mean error (ME) (Equation A20) and the standard deviation of the mean 

error (SDME) (Equation A21) are calculated by cross-validation (Isaaks and Srivastava, 1989). 

In geostatistical analysis, computational routine tests fourteen different models (i) seven 

different semivariogram models (spherical, gaussian, exponential, Matérn 0.5, Matérn 1.0, 

Matérn 1.5, and Matérn 2.0), and (ii) two statistical methods to optimize semivariogram fit 
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(ordinary least squares (OLS) and weighted least squares (WLS – Cressie, 1985)). In IDW 

analysis, the routine analyzes, by default, 88 analyses (i) twelve different values for the 

exponent (0.5, 1.0, 1.5, …, and 6.0), and (ii) the number of neighbors from 4 to 12. In 

geostatistics, the lag size is defined from the calculated amount of lags, relationship between 

cutoff, and the shortest distance among pairs of points. A significant limitation to address in 

this ADB-INT-API version is that anisotropy's eventual presence is not considered. 

Computational routines to calculate ISI were improved from Betzek et al. (2019) study. 

 

5. 2. 6 Microservice for data clustering 

The seventeen data clustering methods (Table 1) evaluated by Gavioli et al. (2019) 

were made available in ADB Clustering API (ADB-CLU-API) (Fig. 7). These methods showed 

the best results in the carried out research. Data clustering algorithms use R software libraries 

cclust, cluster, e1071, fastcluster, fclust, hybridHclust, optpart, and skmeans. 

 

Table 1 Clustering methods available in the AgDataBox Clustering API  

Methods References 

average linkagea Jain and Dubes (1988) 
centroid linkagea Jain and Dubes (1988) 
complete linkagea Jain and Dubes (1988) 

divisive analysis (diana)a Kaufman and Rousseeuw (1990) 
hybrid hierarchical clusteringa Chipman and Tibshirani (2006) 

median linkagea Jain and Dubes (1988) 
McQuitty’s method (mcquitty)a McQuitty (1966) 

Ward’s method (ward)a Ward (1963) 
single linkagea Jain and Dubes (1988) 

bagged clusteringb Leisch (1999) 
clustering large applications (clara)b Kaufman and Rousseeuw (1990) 

fuzzy analysis clustering (fanny)b Kaufman and Rousseeuw (1990) 
fuzzy c-meansb Bezdek (1981) 
fuzzy c-shellsb Dave (1992) 

hard competitive learningb Xu and Wunsch (2009) 
k-meansb MacQueen (1967) 

neural gasb Martinetz et al. (1993) 
partitioning around medoidsb Kaufman and Rousseeuw (1990) 

spherical k-meansb Dhillon and Modha (2001) 
unsupervised fuzzy competitive learningb Pal et al. (1996) 

a: hierarchical method; b: partitioning method. 
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Fig. 7 AgDataBox Clustering API microservice components and workflow. 

 

The indices for MZ quality evaluation obtained in this microservice are: 

• Fuzziness performance index (FPI) (Equation A10) (McBratney and Moore, 

1985; Fridgen et al., 2004): It measures the degree of separation among the 

fuzzy c groups generated from a data set. FPI varies from 0 to 1. 

• Modified partition entropy (MPE) (Equation A11) (McBratney and Moore, 1985; 

Fridgen et al., 2004): It estimates the level of difficulty of c groups organization. 

• Average silhouette coefficient (ASC) (Equation A12) (Rousseeuw, 1987): It 

measures the level of satisfactory internal formation and external separation 

among clusters. 

• Improved cluster validation index (ICVI) (Equation A13) (Gavioli et al., 2016): It 

is a composition of FPI, MPE, and VR% indices. 

 

5. 2. 7 Microservice for rectification of management zones 

ADB Rectification API (ADB-RCT-API) microservice allows MZs rectification. The 

implemented rectification methods are based on median, erosion, and dilation morphological 

filters. Rectification algorithms were implemented in Python, using the OpenCV digital image 

processing library (Fig. 8).  
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Fig. 8 AgDataBox Rectification API microservice components and workflow. 

 

5. 2. 8 Microservice for calculation of nutrient and lime requirement  

ADB Recommendation API (ADB-REC-API, Fig. 9) microservice calculates nutrient (N, 

P, and K) and lime requirements. 

 

 
Fig. 9 AgDataBox Recommendation API microservice components and workflow. 

 

The nutrient recommendation is based on Beneduzzi (2020) study, in which N 

recommendation is performed by yield expectation model for corn cropping, considering soil 

organic matter content (OM%). Two methods were implemented for P and K: soil nutrient 

availability and yield expectation, with the recommendation calculation for soybean and corn 

(Table 2). The recommendation for each nutrient is based on available fertilizers. 
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Table 2 Fertilizers used in the recommendation of nutrients, crops, and recommendation 
methods available in AgDataBox Recommendation API 

Nutrient Culture Method Fertilizer 

N Corn YEOM 

Urea (UR) 
Ammonium sulfate (AM) 
Ammonium nitrate (AN) 

Ammonium chloride (AC) 

P 
Corn and 
Soybean 

A and YE 

Simple Superphosphate (SS) 
Triple superphosphate (ST) 

Monoammonium phosphate (MAP) 
Daimonic phosphate (DAP) 
Araxa phosphate (ARAD) 

K 
Corn and 
Soybean 

A and YE 

Potassium chloride (KCL) 
Potassium sulfate (PS) 

Potassium and magnesium sulfate (PMS) 
Potassium double saltpeter (PDS) 

N: nitrogen; P: phosphorus; K: potassium; YEOM: yield expectation considering the content of 
organic matter of the soil; A: availability; YE: yield expectation. 

 

Lime recommendation is performed based on Moreira (2019) and uses the following 

methods: (i) exchangeable aluminum neutralization, (ii) exchangeable Al3+ neutralization, and 

increase in base cations (Ca2+ and Mg2+), and (iii) base saturation. 

 

5. 2. 9 Case study 

Data from a 20-ha commercial agricultural field located in the municipality of 

Serranópolis do Iguaçu, Paraná state, Southern Brazil, with central coordinates 

−54.01232307º (longitude) and −25.39526307º (latitude) in Datum WGS 1984, were used to 

demonstrate some of MSA functionalities of ADB platform (Fig. 10). The sampling points with 

irregular distances were located along an imaginary line among the level curves following the 

terrain topography. The sample density of 2.6 ha-1 attends the suggestion of a minimum density 

from 1 sample ha-1 (Ferguson and Hergert, 2009) to 2.5 sample ha-1 (Journel and Huijbregts, 

1978; Doerge, 2000). 
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Fig. 10 Location of experiment and 52 sampling points in an experimental field in the 
municipality of Serranópolis do Iguaçu, Paraná state, Southern Brazil. Black contour delineates 
the 20 ha area used. Coordinates are in degrees (WGS 1984). The minimum and maximum 
distances among the sampling points are 45 and 706 m. 

 

The case study demonstrates the steps for delineating temporary MZs for fertilizer 

application (Fig. 11). 
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Fig. 11 Workflow for demonstrating activities involved in delineating management zones for 
nutrient application. 

 

The used data consisted of P (mg dm−3) and K (cmolc dm−3) contents collected in 2019 

in a 52-point sampling grid collected before soybean sowing during 2019/2020 growing 

season. The descriptive statistics of data were calculated using ADB-ST-API. CV was 

classified as proposed by Pimentel-Gomes (2009): low, when CV ≤ 10%; medium, when 10% 

< CV ≤ 20%; high, when 20% < CV ≤ 30%; and very high, when CV > 30%. Data normality 

was verified by Kolmogorov-Smirnov test. Data were normally distributed if at least one of the 

tests presented normality with 5% significance. Outliers were removed by the data cleaning 

procedure. Values outside the mean ± three standard deviations were identified as outliers and 

removed (Córdoba et al., 2016). 

The sample data of P and K were interpolated by OK (if spatially dependent) or by IDW 

(if not), with interpolation parameters selected by ISI. In geostatistics, the Matheron (1963) 

classic estimator was used to calculate semivariances with at least 30 pairs of points (Journel 

and Huijbregts, 1978), and range (Ra) was limited to half of the maximum distance (MD) 
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among points (cutoff = 0.5*MD). The lag size h was defined as the 44 meters, calculated from 

the number of lags (relation between cutoff and the shortest distance among pairs of points). 

The minimum and maximum amounts of 53 and 180 pairs were obtained with this lag distance 

to calculate semivariances. The maps with interpolated data were generated in ADB-Map 

application. Fertilizer recommendation was carried out for P and K by ADB-REC-API 

microservice. 

Fertilizer recommendation MZs, called application zones (AZs), were delineated by 

fuzzy c-means method for data clustering and divided into 2, 3, and 4 classes. MZs were 

rectified until small spots were eliminated, by median, open, and close methods, applied until 

five times, as necessary. 

The following procedures were used to evaluate MZs: 

1. Statistical analysis by MZ class, including Tukey’s mean difference test. 

2. The following MZ quality indices were calculated for each: (i) FPI; (ii) MPE; (iii) ASC; 

(iv) SI; and (v) fragmentation index (FI) (Souza et al., 2021) (Equation A15). The 

VR (%) was calculated for each MZ, considering the variable of interest (P 

recommendation or K recommendation). 

3. The following overall quality indices were calculated: (i) ICVI; and (ii) modified global 

quality index (MGQI) (Equation A17). 

4. Agreement between original and Kappa rectified MZs was verified. 

The following procedure was used to define the ideal number of classes: (1) 

comparison of means by the Tukey’s test, as it is only interesting to divide the total area into 

classes that have a statistically distinct target variable (P or K recommendation) (Souza et al., 

2018); and (2) choice of the number of classes that have the lowest MGQI, as it corresponds 

to a composition of VR%, FPI, MPE, SIr%, FIr%, and ASC indices. 

 

5.3 Results and discussion 

 

5. 3. 1 AgDataBox platform in a microservice architecture 

Restructuring ADB platform in an MSA allows reusing procedures implemented in a 

PostgreSQL procedural database or directly in the preliminary version of ADB-Map application 

(Borges et al., 2020; Michelon et al., 2019). The preliminary ADB-Map version evolved from 

SDUM, which had most functionality implemented in PL/pgSQL procedural language. It was 

implemented in a monolithic approach following the model-view-controller (MVC) pattern, 

based on Java language with web technologies, such as VRaptor framework, and deployed in 

an Apache Tomcat application server. This application structuring approach added new 

features and reused them by other applications such as ADB-Mobile and ADB-IoT. This 
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difficulty occurs because all functionalities in a monolithic architecture are encapsulated in a 

single application, not allowing its modules to run independently (Ponce et al., 2019). 

ADB started to have a distributed network environment with the MSA creation and 

availability of web APIs, offering independence from application, programming language, 

operating system, and hardware on client-side. Therefore, time and effort are saved in 

developing clients’ applications, as these features do not need to be re-implemented. 

Furthermore, ADB platform microservices can be replicated among several servers, 

providing execution scaling according to the demand. Each component of the platform, 

microservices, and applications are created as containers of Docker tool, allowing the quick 

provisioning of services on server with Docker installed. As identified in their research, Li et al. 

(2020) pointed out that containerization is an emerging tactic for MSA, which allows for better 

performance than virtual machines. 

Before MSA, efforts were concentrated on extracting functionalities aggregated in 

PostgreSQL database, creating a portfolio of scripts implemented in R statistical software 

language. Routines for data interpolation (Betzek et al., 2019), selection of best parameters 

for ordinary kriging (OK) (Betzek et al., 2019), data clustering (Gavioli et al., 2019), and 

selection of variables for MZ delineation (Gavioli et al., 2016) stand out. Furthermore, R 

statistical software has been used as an engine for executing specialized functionalities not 

only in ADB (Paccioretti et al., 2020; Leroux et al., 2018; Rupnik et al., 2019). 

This study showed that the functionalities implemented in R statistical software scripts 

could be incorporated into microservices architecture and made available to any application 

that needs to consume them. Moreover, there was a need to refactorize other features that 

were in PL/pgSQL procedural language, such as selection of the best parameters for IDW 

interpolator (Betzek et al., 2019), bivariate Moran’s I correlation, data normalization methods 

(Schenatto et al., 2017a), and smoothness index, which were reimplemented in R software, 

leading to a performance gain when executing the functionalities. 

The structuring of microservices was performed from the functional decomposition, 

using Model-Driven approach. Ponce et al. (2019) found out most MSA migration studies 

following this approach. Scripts in R needed to be consumed from JavaScript language used 

in microservices development in Node.JS platform. For this purpose, the processes execution 

of the operating system, which executes “Rscript” utility of R, is used. Similarly, Dall’agnol et 

al. (2020) developed a web application in Java language with VRaptor framework in MVC 

standard, which executes scripts by the invocation of R statistical software. 

 

5. 3. 2 Statistical analysis and data preparation 

Statistical analysis and data preparation can be performed by ADB-ST-API 

microservice. Resources were made available following the same pattern as ADB 
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microservices platform, based on REST architecture and data represented in JSON format. 

Features consisted of descriptive statistical analysis, data normality tests, PCA, PCA charting, 

Kappa and GA agreement statistics, data normalization, and data cleaning (Appendix B, Table 

9). Outliers and null and duplicate data are removed in data cleaning. Data cleaning is the only 

resource that needs to receive geographic coordinates and dataset to carry out duplicate data 

removal procedure. 

Resources for PCA are made available in this microservice, being useful for selecting 

variables for delineating MZs. This analysis has been used in several studies involving MZ 

delineation (Betzek et al., 2019; Gavioli et al., 2019; Gavioli et al., 2016). PCA request and 

response example is shown in Fig. 12. 

 

{ 
  "datasetType": "multi", 
  "neighborLowerDistance": 0, 
  "neighborUpperDistance": 240, 
  "layers": [ 
    { 
      "name": "Soybean", 
      "dataset": [5.061] 
    }, 
    { 
      "name": "P", 
      "dataset": [17.4, ...] 
    }, 
    { 
      "name": "K", 
      "dataset": [0.28, ...] 
    } 
  ] 
} 

[ 
  { 
    "component": 1, 
    "eigenvalue": 1.20827139669403, 
    "eigenvector": [ 
      { 
        "name": "Soybean", 
        "value": 0.214773828467946 
      }, 
      ... 
    ], 
    "observations": [ 
      { 
        "order": 1, 
        "value": -0.396482307458985 
      }, 
      ... 
    ], 
    "proportion": 40.2757132231342 
  }, 
  ... 
] 

a) Request b) Response 
Fig. 12 Example of JSON objects of request (a) and response (b) of the principal component 
analysis. 

 

JSON objects of request for resources of descriptive statistical analysis and data 

normality test are exemplified in Fig. 13. 
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{ 
  "count": 51, 
  "average": 0.356, 
  "mode": 0.28, 
  "standardDeviation": 0.169, 
  "sampleStandardDeviation": 0.171, 
  "variance": 0.028, 
  "sampleVariance": 0.029, 
  "medianAbsoluteDeviation": 0.090, 
  "interquartileRange": 0.19, 
  "quantile0": 0.09, 
  "quantile25": 0.25, 
  "quantile50": 0.33, 
  "quantile75": 0.44, 
  "quantile100": 0.8 
} 

[ 
  { 
    "test": "ad", 
    "description": "Anderson-Darling", 
    "statistic": 0.732, 
    "pValue": 0.052 
  }, 
  ... 
] 
 

a) Descriptive statistics response sample b) Normality test response sample 
Fig. 13 Example of JSON objects resulting from the descriptive statistics analysis (a) and data 
normality test (b) in AgDataBox Statistics API. 

 

P and K data did not show normality by Kolmogorov-Smirnov test at 5% significance. 

However, variables presented normality after data cleaning procedure was performed. Only 

one observation was removed, as an outlier, for each variable (Table 3). 

 

Table 3 Descriptive statistics of data 
 N Minimum 1Q Mean Median 3Q Maximum S CV% 

P* 52 4.4 10.1 19.3 16.3 24.8 80.7 13.7 71 (VH) 
P (cleaned) 51 4.4 10.1 18.1 15.8 24.1 53.0 10.7 59 (VH) 
K* 52 0.09 0.25 0.37 0.34 0.45 0.94 0.19 51 (VH) 
K (cleaned) 51 0.09 0.25 0.36 0.33 0.44 0.80 0.17 48 (VH) 

CV: coefficient of variation: low (L) when CV ≤ 10%, medium (M) when 10% < CV ≤ 20%, high 
(H) when 20% < CV ≤ 30%, and very high (VH) when CV > 30%; P: phosphorus; K: potassium; 
N: number of observations; S: standard deviation; 1Q: 1st quartile; 3Q: 3st quartile.  
* No normality at 5% significance level. 

 

Phosphorus (P) presented a mean of 19.3 mg dm−3 with the original sampling and 

18.1 mg dm−3 after data cleaning, which is considered very high (Pauletti and Motta, 2019) for 

annual crops productions in Paraná state, considering a clay content in the experimental area 

above 400 g kg−1. Potassium (K) had a mean of 0.37 cmolc dm−3 with the original sampling 

data and 0.36 cmolc dm−3 after data cleaning, which are considered high values (Pauletti and 

Motta, 2019). The coefficient of variation (CV) for the variables was considered very high 

(higher than 30%) (Pimentel-Gomes, 2009). 

Datasets need to be normalized to delineate MZs (Schenatto et al., 2017a). Thus, ADB-

ST-API offers the possibility to normalize data using range, average, z-score, and min-max 

methods. The request for ADB-ST-API is carried out by sending a dataset without geographic 

coordinates, and, as a response, there is the normalized dataset. For example, variables P 

and K were normalized by range, average, z-score, and min-max methods (Table 4), 

demonstrating these features using ADB-ST-API. 
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Table 4 Descriptive statistics of variables P and K after normalization by range, average, z-
score, and min-max methods 

Nutrients Method Minimum Mean Median Maximum S CV% 

Phosphorus 

Range -0.23 0.05 0.00 0.77 0.22 454 (VL) 
Average 0.25 1.00 0.87 2.92 0.59 59 (VL) 
Z-score -1.29 0.00 -0.22 3.29 1.01 * 
Min-Max 0.00 0.28 0.23 1.00 0.22 78 (VL) 

Potassium 

Range -0.34 0.04 0.00 0.66 0.24 651 (VL) 
Average 0.25 1.00 0.93 2.25 0.48 48 (VL) 
Z-score -1.57 0.00 -0.16 2.62 1.01 * 
Min-Max 0.00 0.38 0.34 1.00 0.24 64 (VL) 

CV%: coefficient of variation: low (L) when CV ≤ 10%, medium (M) when 10% < CV ≤ 20%, 
high (H) when 20% < CV ≤ 30%, and very high (VH) when CV > 30%; * The CV% could not 
be calculated. S: standard deviation. 

 

5. 3. 3 Spatial operations 

ADB-SP-API microservice provides spatial data preparation and analysis procedures 

(Appendix B, Table 10). In addition, it features grid preparation functionalities, such as the 

conversion of geographic coordinates and grid degradation (down grid). The conversion of 

geographic coordinates is necessary for ADB, as resources are implemented in different 

microservices that work with Lat/Long coordinate system and others with Universal Transverse 

Mercator (UTM). 

Grid degradation allows adjusting grids with different amounts of data and geographic 

positions (Fig. 14). ADB has procedures that show the same number of observations per grid 

and geographic coordinates correspondence in both grids, such as data clustering and variable 

selection procedures (PCA, MULTISPATI-PCA, and spatial correlation matrix). The common 

cases for grid degradation are datasets originating from harvesters instrumented with a harvest 

monitor and images from multispectral cameras, which need to be adjusted to be used to select 

variables for MZ delineation. 

 

  

 
 

Degradation 

 
Fig. 14 Example of grid degradation procedure where the dense grid (interpolated grid, 
harvester yield map, digital imaging, and others) is reduced to a 52-point grid. 

 

The spatial correlation matrix, used to select variables for MZ delineation (Bazzi et al., 
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2013), is constructed based on Moran’s bivariate spatial autocorrelation statistic (Reich, 2008; 

Schepers et al., 2004). Statistic that determines the correlation degree between two variables 

and the test significance is calculated by ADB-SP-API. 

Smoothness indices, variance reduction, and cluster statistics are used to evaluate 

MZs. 

 

5. 3. 4 Data interpolation 

Data interpolation resources implemented in ADB-INT-API microservice allow selecting 

the best parameters for IDW and OK interpolators and identifying which method is the best for 

a given dataset from ISI. Interpolation was also available from IDW, OK, MA, and NN methods 

(Appendix B, Table 11). 

The resources ISI for IDW and ISI for geostatistics execute independent scripts to 

calculate ISI by identifying the best fit for IDW or OK interpolator, with results merged to 

determine the best interpolator among them. Lists of objects that contain ISI value are 

generated for each chosen combination, that is, the exponent range and range of neighbors 

to be tested in ISI for IDW resource, as well as the combinations of semivariogram models, 

fitting methods, partial sill intervals, and range intervals in ISI resource for Geostatistics. The 

best settings for IDW and OK interpolators are chosen from the lowest ISI value. The request 

and response JSON objects are exemplified in Fig. 15. 

 

{ 
  "models": ["exp","gaus","sph","matern"], 
  "methods": ["ols","wls"], 
  "kappas": ["0.5","1","1.5","2"], 
  "lambda": 1, 
  "autoLags": true, 
  "amountLags": 10, 
  "estimator": "classical", 
  "cutoff": 50, 
  "pairs": 30, 
  "amountRangeIntervals": 5, 
  "amountPartialSillIntervals": 5, 
  "dataset": [{  
      "coordinates": [196955, 7187436], 
      "data": 3.1 
    }, ... 
  ] 
} 

[ 
  { 
    "model": "matern", 
    "method": "ols", 
    "kappa": 2, 
    "nuggetEffect": 0.0228, 
    "partialSill": 0.07, 
    "range": 352.8649, 
    "averageError": -0.0011, 
    "stdDevAverageError": 0.1634, 
    "ice": 0.8286, 
    "isi": 0.7782, 
    "sdi": 0.7545, 
  }, 
  ... 
] 

a) ISI request JSON b) ISI response JSON 
Fig. 15 Example of (a) request and (b) service invocation response of JSON objects for 
selecting the interpolator. 

 

Resources for data interpolation (IDW, OK, MA, and NN) receive a sample dataset and 

return an interpolated dataset, considering the informed parameterization. The semivariogram 

graph can be generated in the ADB-INT-API, and the request JSON object is represented in 

Fig. 16. 
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{ 
  "variogram": { 
    "estimator": "classical", 
    "model": "matern", 
    "method": "ols", 
    "partialSill": 0.07, 
    "range": 352.8649, 
    "nuggetEffect": 0.0228, 
    "kappa": "2", 
    "lambda": 1, 
    "autoLags": "true", 
    "amountLags": false, 
    "cutoff": 50, 
    "cutoffInMeter": false, 
    "pairs": 30 
  }, 
  "width": 500, 
  "height": 400, 
  "lineColor": "#001188", 
  "labelMain": "Semivariogram", 
  "labelX": "Distance", 
  "labelY": "Semivariance", 
  "dataset": [ 
    { 
      "coordinates": [ 
        196955.676165181, 
        7187436.24639107 
      ], 
      "data": 0.28 
    }, 
    ... 
  ] 
} 

Fig. 16 Example of a JSON object required to generate the semivariogram graph in ADB 
Interpolation API, where semivariogram parameters, styles, and dataset are passed. 

 

The scripts that determine ISI values for IDW and geostatistics were optimized for faster 

execution. The main change was in the adoption of parallel processing execution. As a result, 

all these analyses were executed sequentially in a single thread, both in R and in PostgreSQL 

database. The parallelism allows allocating several threads to be executed concurrently, 

managed by the “parallel” library from R. The number of threads is automatically determined 

based on the number of cores provided by the server in which microservice is hosted. 

The best-fit analysis algorithm for IDW was initially implemented directly in the 

PostgreSQL database by PL/pgSQL procedural language, which analyzes twelve different 

values for exponent (0.5, 1.0, …, and 6.0), considering a fixed number of eight neighboring 

points and using ISI (Equation A19) to identify the best value for the exponent, as during the 

best semivariogram model selection (Betzek et al., 2019). However, this algorithm was 

rewritten in R language and had its logic modified to analyze a larger range of exponents and 

consider a range of neighbors in the analysis. 

The algorithm ISI for geostatistics tests seven different semivariogram models 

(spherical, Gaussian, exponential, Matérn 0.5, Matérn 1.0, Matérn 1.5, and Matérn 2.0) and 
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two statistical methods of semivariogram fit optimization (OLS and WLS), totaling fourteen 

different models (Betzek et al., 2019). ISI selects the best model. 

Microservice resources allowed the construction of thematic maps of P and K contents 

of the experimental area (Fig. 17). Maps were generated by IDW and OK interpolators, 

considering the original variables, with no evidence of data normality, and the cleaned data, 

with removed outliers. 

 

 OK (original) 
OK 

(cleaned) 
IDW 

(original) 
IDW 

(cleaned) 

Phosphorus 
 

7.1 19.4 31.7 44.0 56.3 68.7 
     

     
 

    

Phosphorus* 
 

0 3 7 9 12 > 
     

VL L M H VH 
 

    

Potassium 
 

0.11 0.24 0.36 0.49 0.62 0.75 
     

     
 

    

Potassium* 
 

0 0.06 0.12 0.21 0.45 > 
     

VL L M H VH 
 

    
VL: Very low, L: Low; M: Medium; H: High; VH: Very high. 

* Classified according to Pauletti and Motta (2019). 

Fig. 17 Phosphorus and potassium availability maps interpolated by ordinary kriging (OK) and 
inverse distance weighting (IDW), using original and cleaned sample grids. 
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The maps are classified according to the interpretation of P (mg dm−3) and K 

(cmolc dm−3) available on soil (Pauletti and Motta, 2019). Clay content in the experimental area 

higher than 400 g kg−1 is considered for P. The best exponent determined by ISI for 

interpolation by IDW was 1. The number of neighbors varied according to the datasets, 

reaching 9 (original data) and 6 (cleaned data) for P and 12 (original data) and 11 (cleaned 

data) for K. The initial parameters of the interpolator selection analysis were set with the 

exponent range from 1 to 6, considering a variation of 0.5 (1, 1.5, 2, 2.5, …, 6) and the number 

of neighbors from 4 to 12, totaling 88 analyses for IDW. 

ISI for geostatistics analysis showed that the parameters selected for dataset were 

those presented in the semivariograms (Table 5). The analysis parameters considered 

exponential, spherical, Gaussian, and Matérn models, the OLS and WLS fitting methods, 

kappa values for Matérn 0.5, 1.0, 1.5, and 2.0 models, and ten sill intervals and range, totaling 

1400 geostatistical analyses. The semivariogram model of variable K changed between the 

original and cleaned dataset and from Gaussian to Matérn, but it remained spherical for the 

variable K.  

 

Table 5 Semivariograms of the variables P and K with original and cleaned datasets 

 Original Cleaned 

P 

 
Model: Gaussian, Method: WLS, 
NE: 87.85, PS: 277.18, R: 353 

 
Model: Matérn, Model: OLS, Kappa: 2, 

NE: 79.57, PS: 352.86, R: 348 

K 

 
Model: Spherical, Model: OLS, 
NE=0.0161, PS: 0.0157, R: 287 

 
Model: Spherical, Model: OLS,  
NE: 0.0147, PS: 0.0126, R: 352 

P: phosphorus; K: potassium; NE: nugget effect; PS: partial sill; R: range (m); OLS: ordinary 
least squares; WLS: weighted least squares. 
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5. 3. 5 Nutrient recommendation 

ADB-REC-API microservice calculates P, K, nitrogen (N), and lime recommendations 

using the parameters passed to API (Appendix B, Table 12). The fertilizer recommendation 

considers the parameters differentiation according to the desired nutrient (P, K, or N) and the 

calculation method (availability of nutrients in the soil or expected crop yield). The request and 

response JSON objects are exemplified in Fig. 18. 

 

{ 
  "culture": "soy", 
  "soil": "clay", 
  "source": [ 
    "ss", "st", "map", "dap", "arad" 
  ], 
  "dataset": [17.4, ...] 
} 
 

{ 
  "source": [ 
    {"name": "ss", "dataset": [275, ...]}, 
    {"name": "st", "dataset": [122.10, ...]}, 
    {"name": "map", "dataset": [114.4, ...]}, 
    {"name": "dap", "dataset": [140.8, ...]}, 
    {"name": "arad", "dataset": [916.85, ...]} 
  ] 
} 

a) Recommendation request JSON b) Recommendation response JSON 
Fig. 18 Example of JSON objects for the request (a) and response received (b) from the 
microservice AgDataBox Recommendation API. 

 

Each recommendation method must send a dataset of available nutrient content on soil 

(P, K, or organic matter). Soybean and corn are considered in the P and K recommendation 

and corn in the N recommendation. Fertilizer recommendation is based on the product to be 

applied. For example, P recommendation is calculated based on single superphosphate (SS), 

triple superphosphate (TS), monoammonium phosphate (MAP), diammonium phosphate 

(DAP), and Araxá phosphate (ARAD). The products available to calculate K recommendation 

are potassium oxide, potassium sulfate, potassium and magnesium sulfate, and potassium 

double saltpeter. N recommendation can be made from urea, ammonium sulfate, ammonium 

nitrate, and ammonium chloride. As a response, ADB-REC-API returns a dataset containing 

the amount of fertilizer to be applied in each observation of the nutrient availability dataset, 

according to the geographic position. 

The fertilizer application recommendations were generated with the study area's P and 

K experimental data (Fig. 19). The P (Fig. 19a) and K (Fig. 19b) recommendation maps for 

soybean were interpolated by IDW with exponent 1.5 and 4.5, respectively, 9 and 11 

neighbors, divided into four classes by equal distance classification. The P recommendations 

were calculated from the soil nutrient availability for SS, TS, MAP, DAP, and ADAD and K for 

KCL, SP, SPD, and SPM. The recommendation for most of the area is the minimum rate 

because P contents are very high (Table 4) (Pauletti and Motta, 2019). There is a 

recommendation to apply higher K rates at the top of the map. 
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IDW_E1.5_N9 IDW_E4.5_N11 
a) P recommendation by monoammonium 

phosphate (MAP) fertilizer (t ha-1) 
b) K recommendation by potassium chloride 

(KCL) fertilizer (t ha-1) 
Fig. 19 Fertilizer recommendation maps (t ha-1) to supply the nutrient requirements (a) 
phosphorus (P) and (b) potassium (K) for soybean crop in the experimental field. 

 

The recommendations variability for each product was considered low (CV < 10%) for 

P and high (20% < CV ≤ 30%) for K (Table 6). 

 

Table 6 Descriptive statistics for P and K recommendations 

Nutrient Product Min. Mean Median Max. S CV (%) 

P 

SS 275.00 281.57 275.00 398.59 24.52 9 (l) 
ST 122.10 125.02 122.10 176.97 10.88 9 (l) 

MAP 114.40 117.13 114.40 165.81 10.20 9 (l) 
DAP 140.80 144.17 140.80 204.08 12.55 9 (l) 

ARAD 916.85 938.77 916.85 1328.89 81.73 9 (l) 

K 

KCL 66.80 66.80 81.70 147.57 24.76 30 (h) 
PS 80.00 80.00 97.85 176.73 29.65 30 (h) 

PMS 154.00 154.00 188.36 340.21 57.08 30 (h) 
PDS 285.60 285.60 349.32 630.94 105.85 30 (h) 

P: phosphorus; K: potassium; Min.: minimum; Max.: maximum; S: standard deviation; CV: 
coefficient of variation – low (l), high (h); SS: simple superphosphate; TS: triple 
superphosphate; MAP: monoammonium phosphate; DAP: diamonic phosphate; ARAD: araxa 
phosphate; KCL: potassium chloride; PS: potassium sulphate; PMS: potassium and 
magnesium sulfate; PDS: potassium double saltpeter. 

 

5. 3. 6 Data clustering 

MZ delineation is performed by data clustering algorithms available in the ADB-CLU-

API microservice (Appendix B, Table 13). Each clustering method can be executed 

independently, requiring different parameters in the request. The request parameters common 

to all methods consist of datasets and class numbers to perform clustering. Only one request 
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to the microservice allows obtaining several clustered datasets, such as in 2, 3, and 4 classes. 

ADB-CLU-API microservice request object is exemplified in Fig. 20a. Distance metrics were 

provided in each method according to the availability of libraries made available for data 

clustering in R statistical software. 

 

{ 
  "datasetType": "condensed", 
  "datasetResponseFormat": "condensed", 
  "classes": [ 2, 3, 4], 
  "normalize": "amplitude", 
  "metric": "euclidean", 
  "weightingExponent": 1.3, 
  "iterations": 500, 
  "coordinates": [ 
    [196946.6854, 7187348.9489], 
    ... 
  ], 
  "layers": [ 
    { 
      "name": "K-2019", 
      "dataset": [ 
        0.5018, ... 
      ]  
    }, 
    ... 
  ] 
} 

[ 
  { 
    "classes": 2, 
    "dataset": [ ... ], 
    "asc": 0.588845195058417, 
    "pc": 0.972124804306403, 
    "fpi": 0.0557503913871948, 
    "pe": 0.0504424525942423, 
    "mpe": 0.07277307620799, 
    "xb": 5.42925584588642e-05 
  }, 
  ... 
] 
 

a) Request b) Response 
Fig. 20 Example of JSON object to perform the request (a) and the received response (b) in 
the AgDataBox Clustering API microservice. 

 

As a result, microservice returns a JSON object (Fig. 20b) containing the clustered 

datasets and evaluation indices. ASC is calculated in all methods. FCM and UFCL return PC, 

FPI, PE, MPE, and XB. The k-means method returns the sum of squares (SS) and within-

clusters sum of squares (WCSS) values.  

P and K recommendation maps were clustered by the FCM method, divided into 2, 3, 

and 4 classes (Table 7), named AZ_P and AZ_K. 
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Table 7 Application zones for phosphorus and potassium before and after map rectification. 

 Phosphorus (AZ_P) Potassium (AZ_K) 
 2 classes 3 classes 4 classes 2 classes 3 classes 4 classes 

o
ri
g
in

a
l 

      

re
c
ti
fi
e
d
 

  
    

Kp 0.77(S) 0.84 (VS) 0.90 (VS) 0.99 (VS) 0.75(S) 0.90 (VS) 

GA 0.98 0.94 0.95 1.00 0.86 0.94 

Met Open 
Median and 

Close 
Median and 

Close 
Median and 

Close 
Median and 

Close 
Median 

AZ_P: Application zones for phosphorus fertilizer; AZ_K: Application zones for potassium 
fertilizer; Met: Rectification method; GA: Global Accuracy. Kp: Kappa; Kappa agreement: N = 
no agreement (Kp ≤ 0.2); W = weak (0.2 < Kp ≤ 0.4); M = moderate (0.4 < Kp ≤ 0.6); S = strong 
(0.6 < Kp ≤ 0.8); VS = very strong (0.8 < Kp ≤ 1); Met: Method of rectification. The darker the 
classes are painted, the highest are the effectively recommended amount. 

 

5. 3. 7 Data rectification 

Isolated spots or pixels usually appear regardless of the method used to delimit these 

zones. Therefore, differentiated applications of nutrients in these spots may be operationally 

infeasible. In this sense, the rectification methods allow adjusting MZs/AZs and thematic maps 

to smooth edges and eliminate small spots. Gonzalez and Woods (2008), Córdoba et al. 

(2016), Albornoz et al. (2017), and Betzek et al. (2018) used median, dilation, and erosion 

filters to reduce MZ fragmentation. 

The resources implemented in ADB-REC-API microservice are divided according to 

the implemented rectification method: median, erosion, dilation, and the combination of erosion 

and dilation (Appendix B, Table 14). The median filter modifies the central pixel of a small 

region, called filter size, by the median value calculated by the intensity of pixels in this region. 

The image opening effect reserves the unsegmented parts of objects using the first image 

dilation by merging the neighboring pixels of an object into the object and then image erosion 
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by removing the boundary pixels from the object. On the contrary, image closure is erosion 

followed by dilation to eliminate non-segmented parts of the background (He et al., 2016). 

Visual observations show that small spots were removed after applying median digital 

image processing filters and opening and closing effect to rectify AZs AZ_P and AZ_K (Table 

7). The comparison among rectified AZs and original AZs by Kappa index shows a strong 

agreement in AZ_P in 2 classes and AP_K in 3 classes. The agreement was very strong in the 

others. Kappa index ranged from 0.77 to 0.99 among the compared AZs. GA ranged from 0.86 

to 1.00, indicating that, even after rectification, AZs did not lose the visual essence compared 

to the original AZs. 

 

5. 3. 8 Evaluation of management zones 

The ideal number of classes is defined by considering (1) means from Tukey test since 

the total area should only be divided into classes that have a target variable (P or K 

recommended) statistically different (Souza et al., 2018), and (2) the number of classes with 

the lowest MGQI, as it corresponds to a composition of indices such as VR, FPI, MPE, ASC, 

SIr, and FIr.  

The resources to evaluate MZs from ADB-MSA showed that the mean amount of 

fertilizers recommended for P and K correction is different in all classes of AZ_P and AZ_K 

(Table 8). The quantities required are based on MAP and KCL formulations to correct P and K 

application, respectively. The best grouping for both cases (P and K) used two classes, 

showing the lowest MGQI. The darker the classes are painted, the higher are the effectively 

recommended amount. Therefore, the highest percentage of an area requires a smaller 

amount of P and K fertilizers. On the other hand, AZ_P divided into two classes shows that the 

area is almost homogeneous because only 4% of it needs a larger amount of fertilizer. 
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Table 8 Quality indices of management zones for fertilizer application 

MZ Cl. A% Mean CV% VR% FIr% SIr% ASC FPI MPE ICVI MGQI 

AZ_P 
2 classes 

1 96 114.7 a 1 
80 50 99 0.83 0.019 0.023 0.30 0.56 

2 4 157.0 b 6 

AZ_P 
3 classes 

1 78 115.3 a 1 

75 67 96 0.71 0.047 0.047 0.66 1.62 2 19 121.9 b 4 

3 2 140.7 c 5 

AZ_P 
4 classes 

1 68 115.0 a 1 

88 100 94 0.68 0.054 0.048 0.67 2.11 
2 26 119.1 b 2 

3 5 130.2 c 3 

4 1 145.1 d 5 

AZ_K 
2 classes 

1 78 70.0 a 9 
85 50 98 0.77 0.028 0.035 0.50 1.00 

2 22 125.6 b 13 

AZ_K 
3 classes 

1 60 67.2 a 2 

89 100 94 0.71 0.045 0.046 0.69 2.15 2 20 84.2 b 19 

3 20 125.7 c 14 

AZ_K 
4 classes 

1 59 66.8 a 1 

96 150 90 0.72 0.044 0.038 0.60 2.30 
2 20 79.6 b 8 

3 11 112.4 c 6 

4 10 141.4 d 4 

Cl.: class; A%: percentage of class in the area; CV%: coefficient of variation: low (L) when CV 
≤ 10%, medium (M) when 10% < CV ≤ 20%; SIr%: smoothness index of the rectified 
management zone; ASC: average silhouette coefficient; FPI: fuzziness performance index; 
MPE: modified partition entropy; VR%: variance reduction; ICVI: improved cluster validation 
index; FIr%: fragmentation index of the rectified management zone; MGQI: modified global 
quality index; a, b, c, d (Mean): difference of means by the Tukey’s test. Best grouping 
highlighted in blue. 

 

CV% was considered low in 15 of 18 classes and medium in three of them. As it was 

expected, reduction in variance (VR%) and fragmentation of zones (FR%) increased with the 

number of classes, while smoothness index (SIr%) decreased. The highest values of ASC and 

the lowest values of FPI, MPE, and ICVI were obtained in the divisions into two classes. 

 

5.4 Conclusions 

ADB-MSA enabled to provide the features to create TMs and delineate MZs in 

microservices accessible via web APIs. Thus, ADB-MSA became (i) a flexible platform to 

absorb new business demands, (ii) an integrative and reusable platform by different 

applications, and (iii) a scalable platform, with the ability to allocate services in different 

operating environments. 

The case study demonstrated the possibility of generating TMs and delineating MZs 

consuming ADB-MSA resources.  The ideal number of MZs classes for P (AZ_P) and K (AZ_K) 

applications were considered two, using MGQI index. 
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Appendix A 

 

Normalization methods: 

• Range (Equation A1): it is based on the dataset range that is wanted to be normalized. 

According to Anderberg (1973) and Milligan and Cooper (1988), it is not indicated when 

there are outliers in the data. 

𝑍𝑖𝑁 =
𝑋𝑖 − 𝑀𝑒𝑑𝑖𝑎𝑛

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)
, (A1) 

where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; 𝑀𝑖𝑛(𝑋) – minimum 

value of dataset; 𝑀𝑎𝑥(𝑋) – maximum value of the dataset. 

• Mean (Swindel, 1997 – Equation A2): it is well known and employed, hoping that the 

means represent dataset well. However, for Anderberg (1973), the mean value is 

sensitive and may be changed by adding any constant, thus, easily modifying the 

normalized data distribution. 

𝑍𝑖𝑁 =
𝑋𝑖

�̅�
, (A2) 

where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; �̅� – sample mean of 

dataset. 

• Standard score or Z-score (Larscheid and Blackmore, 1996 – Equation A3): is used 

to transform normal variables to standard score where the transformed variable will 

have a mean of 0.0 and a variance of 1.0. 

𝑍𝑖𝑁 =
𝑋𝑖 − �̅�

𝑠
, (A3) 

where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; �̅� – sample mean of 

dataset; 𝑠 – standard deviation of dataset. 

• Min-Max method (Milligan and Cooper, 1988 – Equation A4): it is a variation of the 

range method containing changes in the numerator, and they present in the numerator, 

in which case the normalized data will vary from 0 to 1. 

𝑍𝑖𝑁 =
𝑋𝑖 − 𝑀𝑖𝑛(𝑋)

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)
, (A4) 

where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; 𝑀𝑖𝑛(𝑋) – minimum 

value of dataset; 𝑀𝑎𝑥(𝑋) – maximum value of dataset. 

 

Comparison among thematic maps and among management zones 

• Kappa coefficient (Kp – Equation A5 – Cohen, 1960; Congalton, 1991): measures the 

degree of agreement among MZ maps generated by clustering algorithms. Landis and 

Koch (1977) proposed the following classification: 0 < Kp ≤ 0.2 indicates no agreement, 



110 
 
 

 

0.2 < Kp ≤ 0.4 weak agreement, 0.4 < Kp ≤ 0.6 moderate agreement, 0.6 < Kp ≤ 0.8 

strong agreement, and 0.8 < Kp ≤ 1 very strong agreement. 

𝐾𝑝 =  
{𝑛 ∑ 𝑥𝑖𝑖 −  ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)𝑟

𝑖=1
𝑟
𝑖=1 }

{𝑛2 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)𝑟
𝑖=1 }

, (A5) 

where 𝑋𝑖𝑖 is the value in row i and column i, 𝑋𝑖+is the sum of line i, and 𝑋+𝑖 is the sum 

of column i of the error matrix, N is the total number of points interpolated and sorted 

by the matrix, and c is the number of classes of the error matrix. 

• Global accuracy (GA – Equation A6 – Foody, 2002): like Kp, GA measures the degree 

of agreement among maps (MZs) and corresponds to the simple percent agreement. 

𝐺𝐴 =
∑ 𝑥𝑖𝑖

𝑐
𝑖=1

𝑛
, (A6) 

where, ∑ 𝑥𝑖𝑖
𝑐
𝑖=1  is the sum of the main diagonal of the error matrix with c classes and a 

total of N collected samples (number of interpolated points).  

• Coefficient of relative deviation (CRD – Equation A7 – Coelho et al., 2009): it 

calculates the mean difference in modulus of the interpolated values on a thematic map 

compared to a map taken as reference. 

𝐶𝑅𝐷 = ∑ 𝐴𝐵𝑆(

𝑛

𝑖=1

 
𝑍𝑖𝐵 − 𝑍𝑖𝐴

𝑍𝑖𝐴
), (A7) 

where 𝑍𝑖𝐴 is the estimated value at location 𝑖 on the reference map, 𝑍𝑖𝐵 is the value at 

location 𝑖  on the map to be compared, and 𝑛  is the total number of interpolated 

locations on the maps.  

• Mean absolute difference (MAD – Equation A8): it computes the mean absolute 

difference among values on both maps. 

𝑀𝐴𝐷 =
∑ 𝐴𝐵𝑆(𝑍𝑖𝐵 − 𝑍𝑖𝐴

𝑛
𝑖=1 ) 

𝑛
, (A8) 

where 𝑍𝑖𝐴 is the value of the location (pixel) 𝑖 on the reference map, 𝑍𝑖𝐵 is the value at 

location (pixel) 𝑖 on the map to be compared, and 𝑛 is the total number of observations 

on the maps. 

 

Indices of MZs quality: 

• Variance reduction (VR% – Equation A9 – Xiang et al., 2007; Schenatto et al., 2017): 

is calculated for a variable, with the expectation that the sum of data variances for each 

MZ is smaller than the total variance of the field.  

𝑉𝑅% = (1 −
∑ 𝑊𝑖 ∗ 𝑉𝑀𝑍𝑖

𝑐
𝑖=1

𝑉𝑓𝑖𝑒𝑙𝑑
) ∗ 100, (A9) 

where c is the number of MZs;  is the ratio of i-th MZ to the entire field; Vmzi is the 

data variance of i-th MZ; Vfield is the field data variance. 

iW
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• Fuzziness performance index (FPI – Equation A10 – McBratney and Moore, 1985; 

Fridgen et al., 2004): measures the degree of separation among fuzzy c groups 

generated from a data set. FPI varies from 0 to 1.  

𝐹𝑃𝐼 = 1 −
𝑐

(𝑐 − 1)
[1 − ∑ ∑(𝑚𝑖𝑗)2/𝑛

𝑐

𝑖=1

𝑛

𝑗=1

], (A10) 

where c is the number of groups; n is the number of elements in the data set; mij is the 

element of fuzzy membership matrix M. 

• Modified partition entropy (MPE – Equation A11 – McBratney and Moore, 1985; 

Fridgen et al., 2004): estimates the difficulty level to organize c groups.   

𝑀𝑃𝐸 =
− ∑ ∑ 𝑚𝑖𝑗 𝑙𝑜𝑔( 𝑚𝑖𝑗)/𝑛𝑐

𝑖=1
𝑛
𝑗=1

𝑙𝑜𝑔 𝑐
, (A11) 

where c is the number of groups; n is the number of elements in the data set; mij is the 

element of the fuzzy membership matrix M. 

• Average silhouette coefficient (ASC – Equation A12 – Rousseeuw, 1987): the ASC 

coefficient is obtained from the silhouette coefficient (SC), an evaluation index that 

measures both levels of satisfactory internal formation and external separation of 

groups. SC value for point p, denoted by scp, is calculated using the mean of the intra-

group distances ap and the mean of inter-group distances bp. Kaufman and Rousseeuw 

(1990) proposed the following classification: 0.71 < ASC ≤ 1.00, a strong structure has 

been obtained; 0.51 < ASC ≤ 0.70, a reasonable structure has been obtained; 0.26 < 

ASC ≤ 0.50 the structure is weak and could be artificial (try additional methods); ASC 

≤ 0.26 no substantial structure has been obtained. 

𝑠𝑐𝑝 =
𝑏𝑝 − 𝑎𝑝

𝑀𝑎𝑥(𝑎𝑝, 𝑏𝑝)
, (A12) 

where ap is the mean of distances from point p to all other points in the same group; bp 

is the mean of distances from point p to all points in the closest group containing p. 

• Improved cluster validation index (ICVI – Equation A13 – Gavioli et al., 2016):  is a 

composition of FPI, MPE, and VR% indices. 

𝐼𝐶𝑉𝐼𝑖 =
1

3
∗ (

𝐹𝑃𝐼𝑖

𝑀𝑎𝑥{𝐹𝑃𝐼}
+

𝑀𝑃𝐸𝑖

𝑀𝑎𝑥{𝑀𝑃𝐸}
+ (1 −

𝑉𝑅%𝑖

𝑀𝑎𝑥{𝑉𝑅%}
)), (A13) 

where FPIi  is FPI value of i-th variable selection method; MPEi  is MPE value of i-th 

variable selection method; VR%i  is VR% value of i-th variable selection method; 

Max{Index_X} represents the maximum value of Index_X among the n variable 

selection methods. 

• Smoothness index (SI – Gavioli et al., 2016 – Equation A14): it gives pixel-by-pixel 

frequency of change of classes in a thematic map in horizontal and vertical directions 

and along the diagonal. It also characterizes smoothness of MZs boundary curves. If a 
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map has an entirely homogeneous area, SI is equal to 100% due to the lack of class 

changes. On the other hand, if the map is entirely generated with random values, SI% 

would have a value close to 0. 

𝑆𝐼 = 100 − (
∑ 𝑁𝑀𝐻𝑖

𝑘
𝑖=1

4𝑃𝐻
+

∑ 𝑁𝑀𝑉𝑗

𝑘
𝑗=1

4𝑃𝑉
+

∑ 𝑁𝑀𝐷𝐷𝑙

𝑘
𝑙=1

4𝑃𝐷𝐷
+

∑ 𝑁𝑀𝐷𝐸𝑚

𝑘
𝑚=1

4𝑃𝐷𝐸
) ∗ 100, (A14) 

where 𝑁𝑀𝐻𝑖
 is the number of changes in row i (horizontal); 𝑁𝑀𝑉𝑗

 is the number of 

changes in column j (vertical); 𝑁𝑀𝐷𝐷𝑙
 is the number of changes in diagonal l (right 

diagonal 𝐷𝐷); 𝑁𝑀𝐷𝐸𝑚
 is the number of changes in diagonal m (left diagonal 𝐷𝐸); k is 

the maximum number of pixels in a row, column, or diagonal; 𝑃𝐻 is the possibility of 

changes in horizontal pixels; 𝑃𝑉 is the possibility of changes in vertical pixels; 𝑃𝐷𝐷 is the 

possibility of changes in the right diagonal 𝐷𝐷; 𝑃𝐷𝐸 is the possibility of changes in the 

left diagonal 𝐷𝐸. 

• Fragmentation index (FI% – Equation A15): it considers how higher is the number of 

zones (NMZ) in comparison with the number of classes (NC). The higher FI%, the 

higher fragmentation.  

𝐹𝐼% = 100
𝑀𝑍 − 𝑐

𝑐
, (A15) 

where 𝑀𝑍 is the number of zones; 𝑐 is the number of established classes. 

• Global quality index (GQI – Equation A16 – Beneduzzi, 2020): it looks for finding the 

best number of classes during ZMs delineation, considering the values of ICVI, SIr, and 

FIr: 

𝐺𝑄𝐼𝑖 =  
𝐼𝐶𝑉𝐼𝑖 ∗ (100 + 𝐹𝐼𝑟𝑖)

𝑆𝐼𝑟𝑖

, (A16) 

• Modified global quality index (MGQI – Equation A17): this coefficient is an adaptation 

of GQI to include ASC coefficient. MGQI will be better (close to zero) the higher ASC 

and smoothness of the rectified map (measured by SIr), the smaller is fragmentation 

of rectified map (measured by FIr) the smaller ICVI will be, and it will correspond to the 

best amount of classes for an MZ design. 

𝑀𝐺𝑄𝐼𝑖 =  
𝐼𝐶𝑉𝐼𝑖 ∗ (100 + 𝐹𝐼𝑟𝑖)

𝑆𝐼𝑟𝑖 ∗ 𝐴𝑆𝐶
 (A17) 

 

 

Variables’ selection to delineate management zones 

• Spatial correlation matrix: variable selection by SCM uses Bivariate Moran’s I (Reich, 

2008; Schepers et al., 2004 - Equation A18), and applied in three steps, as described 

by Bazzi et al. (2013) and Schenatto et al. (2016): (i) variables without spatial 

dependence are eliminated, (ii) variables without correlation with the target variable are 

eliminated, and (iii) redundant variables are eliminated. 
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𝐼𝑌𝑍 =
∑ ∑ 𝑤𝑖𝑗𝑦𝑖𝑧𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑊√𝑚𝑌
2𝑚𝑍

2
 (A18) 

where 𝐼𝑌𝑍 is the degree of spatial association between 𝑌 and 𝑍 variables, ranging from 

-1 to 1, as it is followed: positive correlation 𝐼𝑌𝑍 > 0 and negative correlation 𝐼𝑌𝑍 < 0; 𝑤𝑖𝑗 

is the 𝑖𝑗 element of spatial association matrix, calculated by  𝑤𝑖𝑗 = (1/(1 + 𝐷𝑖𝑗)), so 

that 𝐷𝑖𝑗  is the distance among 𝑖 and 𝑗 points; 𝑦𝑖  and 𝑧𝑖 : transformed 𝑦 and 𝑧 values, 

respectively, at point 𝑖 (𝑖 =  1, 2, … , 𝑛), to get a zero average by the formulas 𝑦𝑖 = (𝑦𝑖 −

�̅�) and 𝑧𝑗 = (𝑧𝑗 − �̅�), where �̅� and �̅� are the sample means of 𝑌 and 𝑍 variables; 𝑊 is  

the sum of spatial association degrees obtained by 𝑤𝑖𝑗 matrix, for 𝑖 ≠ 𝑗; 𝑚𝑌
2 and 𝑚𝑍

2: 

sample variance of 𝑌 and 𝑍 variables, respectively. 

• PCA: PCs calculation from all stable variables, such that the number of PCs selected 

is based on the criterion of representation of at least 80% of the total variability of data 

associated with the original variables (Johnson and Wichern, 2007); 

• MULTISPATI-PCA: calculation of spatial principal components (SPCs) from all stable 

variables that were significantly correlated with the target variable, such that the 

amount of SPCs selected was also based on the criterion of representation of at least 

80% of the total variability of the original data (Córdoba et al., 2016; Peralta et al., 2015; 

Gavioli et al., 2016). 

 

Selection of interpolators 

The selection of interpolators determined the best model among the ordinary kriging 

and inverse distance weighting by the interpolator selection index (ISI - Bier and Souza, 2017 

- Equation A19). ISI is determined from cross-validation (Isaaks and Srivastava, 1989), which 

calculates the mean error (ME - Equation A20) and the standard deviation of the mean error 

(SDME, Equation A21). ME and SDME values calculated for each parameter set are stored 

and used to determine ISI, which compares deterministic and stochastic interpolation methods, 

thus, identifying the best adjustment for each model analyzed. The best interpolator registered 

the lowest ISI value. 

𝐼𝑆𝐼 = {
𝑎𝑏𝑠(𝑀𝐸)

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝑎𝑏𝑠(𝑀𝐸)]

+
[𝑆𝐷𝑀𝐸 − 𝑚𝑖𝑛 |

𝑗
𝑖 = 1

𝑆𝐷𝑀𝐸]

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝑎𝑏𝑠(𝑆𝐷𝑀𝐸)]

}, (A19) 

where 𝑀𝐸 is the mean error; 𝑆𝐷𝑀𝐸 is the standard deviation of mean error of the crossed 

validation; 𝑛 is the number of data; 𝑎𝑏𝑠 is the module value; 𝑚𝑖𝑛|𝑖=1
𝑗

 is the lowest value among 

the compared 𝑗 models; 𝑚𝑎𝑥|𝑖=1
𝑗

 is the highest value among the compared 𝑗 models. 

𝑀𝐸 =
1

𝑛
∑ 𝑍(𝑠𝑖) − �̂�(𝑠𝑖)

𝑛

𝑖=1

, (A20) 
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𝑆𝐷𝑀𝐸 = √
1

𝑛
∑ (𝑍(𝑠𝑖) − �̂�(𝑠𝑖))

2
𝑛

𝑖=1

, (A21) 

where 𝑛 is the number of data; 𝑍(𝑠𝑖) is the value observed at the point 𝑠𝑖; �̂�(𝑠𝑖) is the predicted 

value at the point 𝑠𝑖. 

The statistic called error comparison index (ECI – Souza et al., 2016 – Equation A22) 

was used to determine the best semivariogram fit in each 𝑗 model analyzed, which assumes 

that the lowest value for the model is the best stochastic methods of interpolation. The best 

semivariogram of each 𝑗 model was used in ISI analysis. 

𝐸𝐶𝐼𝑖 =
|𝑅𝑀𝐸𝑖|

10−10 + 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
|𝑅𝑀𝐸|

+
|𝑆𝐷𝑅𝑀𝐸𝑖 − 1|

10−10 + 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
|𝑆𝐷𝑅𝑀𝐸 − 1|

, 
(A22) 

where 𝐸𝐶𝐼𝑖  is the error comparison index for model 𝑖; and 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
 is the highest value 

among the compared 𝑗 semivariograms. The arbitrary constant 10-10 was included to avoid 

division by zero. 

The reduced mean error (RME – Equation A23) and the standard deviation of the 

reduced mean error (SDRME – Equation A24) were determined by ordinary kriging cross-

validation. 

𝑅𝑀𝐸 =
1

𝑛
∑

𝑍(𝑠𝑖) − �̂�(𝑠𝑖)

�̂�(�̂�(𝑠𝑖))

𝑛

𝑖=1

, (A23) 

𝑆𝐷𝑅𝑀𝐸 = √
1

𝑛
∑

|𝑍(𝑠𝑖) − �̂�(𝑠𝑖)|

�̂�(�̂�(𝑠𝑖))

𝑛

𝑖=1

, (A24) 

where 𝑍(𝑠𝑖) − �̂�(𝑠𝑖) is the prediction error associated by estimating yield at spatial location 𝑠𝑖; 

𝑍(𝑠𝑖) is the observed value; �̂�(𝑠𝑖) is the estimated value obtained from the ordinary kriging 

cross-validation; �̂�(�̂�(𝑠𝑖)) is the estimated standard deviation associated with the estimated 

value, and 𝑛 is the sample size. 

 

Methods of interpolation 

• Inverse distance weighting (IDW – Equation A25): the interpolation considers a 

weight for the observed samples. Weights for the points are considered by the inverse 

of distance increased to power so that the greater the power, the lesser the influence 

of the most distant points. 

Ẑ𝑖 =

∑ (
1

𝑑𝑖
𝑝 ∗ 𝑍𝑖)𝑛

𝑖=1

∑ (
1

𝑑𝑖
𝑝)𝑛

𝑖=1

, (A25) 
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where, Ẑ𝑖  – interpolated value; 𝑍𝑖 – sampled attribute value; 𝑑𝑖
𝑝
 – Euclidean distance 

among the ith neighborhood point and the sampled point, elevated to the power of p > 0. 

• Ordinary Kriging (OK – Equation A26 – Cressie, 1993): is made after adjusting the 

semivariogram model, and the value to be estimated at the point of interest. 

�̂�(𝑥0) = ∑ 𝜆𝑖 ∗ Z

𝑛

𝑖=1

(𝑥𝑖), (A26) 

where �̂�(𝑥0) – estimated value at a given location; 𝜆𝑖 – weight attributed to the sample 

values; 𝑍(𝑥𝑖) – sampled attribute value; 𝑛 – number of neighboring locations employed 

for interpolating the point, where summation of 𝜆𝑖 weights must be equal to one. 

• Moving average (MA – Equation A27): estimates non-sampled point values based on 

the mean of sampled points within a predefined radial distance as given i. The points 

within predefined radial distance are equally weighted (i.e, weight is 1/n) and the 

resulting value is the arithmetic average of the identified neighboring data. All points 

within the predefined radial distance are equally weighted (i.e, weight is 1/n) (Bazzi et 

al., 2015). 

Ẑ𝑖 =
∑ 𝑍𝑖

𝑛
𝑖=1

n
, (A27) 

where: Ẑ𝑖 is the interpolated value of the non-sampled point; 𝑍𝑖  is the value of the 

neighboring sample point; n  is the number of neighboring sample points used to 

interpolate the non-sampled point. 

• Nearest neighbor (NN): assigns the value of the nearest point to each. 
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Appendix B 

 

Table 9 Resources available in the AgDataBox Statistics API 

Resources Method 
Request 

Parameters 
Responses 

Descriptive POST • Dataset 

• Count, mean, mode, median, standard 
deviation, variance, median absolute 
deviation, interquartile range, minimum, 
maximum, and quartiles. 

Normality POST • Dataset 

• One-sample Kolmogorov-Smirnov test. 

• Lilliefors (Kolmogorov-Smirnov) 
normality test. 

• Cramer-von Mises normality test. 

• Shapiro-Wilk normality test. 

• Shapiro-Francia normality test. 

• Anderson-Darling normality test. 

PCA POST • Multiple datasets 
• Eigenvalue, eigenvector, and 

observation scores. 

PCA graphs POST 
• Multiple datasets 

• Graph type: 
Scree-plot, Biplot 

• Graph. 

Kappa POST • Two datasets • Kappa statistics. 

Global 
Accuracy 

POST • Two datasets • Global Accuracy statistics. 

Normalization POST • Dataset • Dataset normalized. 

Data 
cleaning 

POST • Dataset 
• Dataset cleaned (outlier, null, and 

duplicated values). 
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Table 10 Resources available in AgDataBox Spatial API (ADB-SP-API) 

Resources 
Script 

languages 
Coordinate 

systems 
Request 

parameters 
Responses 

Coordinate’s 
converter 

R 
UTM and 
Lat/Long 

• Coordinate set 

• Input datum 

• Output datum 

• Coordinate set in the 
output datum 

Moran’s i R UTM • Dataset 
• Moran’s I statistic 

• p-value 

Bivariate 
Moran’s i 

R UTM • Two datasets 

• Bivariate Moran’s I 
statistic 

• p-value 

Multispati 
PCA 

R UTM • Multiple datasets 

• Eigenvalue 

• Eigenvector 

• Observation scores 

Downgrid 
Javascript 
(Turf.js) 

Lat/Long 

• Dataset 

• Destination grid 

• Method: Moving 
average or 
Nearest Neighbors 

• The dataset in the 
destination grid 

Smoothness 
Index 

R UTM • Dataset • Smoothness index 

Variance 
reduction 

R UTM 
• Clustering dataset 

• Dataset of the 
target variable 

• Percentage of 
variance reduction 

Descriptive 
statistics by 

cluster 
R UTM 

• Clustering dataset 

• Dataset of the 
target variable 

• Descriptive 
statistical measures 
by cluster 

• Tukey’s test 

UTM: universal transverse Mercator; Lat: latitude; Long: longitude. 
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Table 11 Resources of the AgDataBox Interpolation API 

Resources Method Request parameters Responses 

Ordinary Kriging POST 

• Semivariogram parameters 
(Model, nugget effect, 
partial sill, range, cutoff) 

• Sampling dataset 

• Area boundaries 

• Interpolated dataset 

IDW POST 

• Exponent 

• Neighbors 

• Sampling dataset 

• Area boundaries 

• Interpolated dataset 

Moving Average POST 

• Neighbors 

• Sampling dataset 

• Area boundaries 

• Interpolated dataset 

Nearest 
neighbors 

POST 
• Sampling dataset 

• Area boundaries 
• Interpolated dataset 

ISI for IDW POST 

• Minimum exponent 

• Maximum exponent 

• Step for exponent 

• Minimum neighbors 

• Maximum neighbors 

• Sampling dataset 

• Result list of the IDW 
analyses. 

ISI for 
Geostatistics 

POST 

• Models 

• Methods 

• Kappas 

• Lambda 

• Lags 

• Estimator 

• Maximum distance 

• Pairs 

• Amount of range intervals 

• Amount of partial sill 
intervals 

• Sampling dataset 

• Result list of the 
Geostatistical analyses. 

Semivariogram POST 

• Model 

• Kappa 

• Nugget effect 

• Partial Sill 

• Range 

• Maximum distance 

• Pairs 

• Lags 

• Lambda 

• Sampling dataset 

• Semivariogram image 

IDW: inverse distance weighting; ISI: interpolator selection index. 
 

  



119 
 
 

 

 

Table 12 Resources available according to the nutrient recommendation microservice 
(AgDataBox Recommendation API) 
Resource Methods Request parameters Responses  

P 

Nutrient 
available 

• Culture: soybean or corn. 

• Soil texture: clay or sand. 

• Source: SS, TS, MAP, DAP, and 
ARAD. 

• Dataset (P available) with geographic 
coordinates. 

Recommendation 
dataset per 

pixel/observation 

Yield 
expectation 

• Culture: soybean or corn. 

• Clay content (g kg-1). 

• Yield expectation (t ha-1). 

• Source: SS, TS, MAP, DAP, and 
ARAD. 

• Dataset (P available) with geographic 
coordinates. 

Recommendation 
dataset per 

pixel/observation 

K 

Nutrient 
available 

• Culture: soybean or corn. 

• Soil texture: clay or sand. 

• Source: KCL, PS, PMS, and PDS. 

• Dataset (K available) with geographic 
coordinates. 

Recommendation 
dataset per 

pixel/observation 

Yield 
expectation 

• Culture: soybean or corn. 

• Yield expectation (t ha-1). 

• Source: KCL, PS, PMS, and PDS. 

• Dataset (K available) with geographic 
coordinates. 

Recommendation 
dataset per 

pixel/observation 

N 
Yield 

expectation 

• Culture: only corn. 

• Previous culture: grass or legume. 

• Yield expectation (t ha-1). 

• Efficiency coefficient. 

• Source: UR, AM, AN, and AC. 

• Dataset (OM available) with geographic 
coordinates. 

Recommendation 
dataset per 

pixel/observation 

P: phosphorus; K: potassium; N: nitrogen; OM: organic matter; SS: simple superphosphate; 
TS: triple superphosphate; MAP: monoammonium phosphate; DAP: diamonic phosphate; 
ARAD: Araxa phosphate; KCL: potassium chloride; PS: potassium sulphate; PMS: potassium 
and magnesium sulfate; PDS: potassium double saltpeter; UR: urea; AM: ammonium sulfate; 
AN: ammonium nitrate; AC: ammonium chloride. 
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Table 13 Resources available in AgDataBox Clustering API 

Resources Request parameters Metric Responses 

average 
linkage 

• Multiple datasets with GC. 

• The number of classes. 
- 

• Clustering dataset. 

• Index: ASC. 

centroid 
linkage 

• Multiple datasets with GC. 

• The number of classes. 
- 

• Clustering dataset. 

• Index: ASC. 

complete 
linkage 

• Multiple datasets with GC. 

• The number of classes. 
- 

• Clustering dataset. 

• Index: ASC. 

hybrid 
hierarchical 
clustering 

• Multiple datasets with GC. 

• The number of classes. 
- 

• Clustering dataset. 

• Index: ASC. 

median linkage 
• Multiple datasets with GC. 

• The number of classes. 
- 

• Clustering dataset. 

• Index: ASC. 

McQuitty’s 
method 

• Multiple datasets with GC. 

• The number of classes. 
- 

• Clustering dataset. 

• Index: ASC. 

Ward’s method 
• Multiple datasets with GC. 

• The number of classes. 
- 

• Clustering dataset. 

• Index: ASC. 

bagged 
clustering 

• Multiple datasets with GC. 

• The number of classes. 

• Centers. 

• Hierarchical method. 

• Iterations. 

B, C, E, 
MN, MX, MI 

• Clustering dataset. 

• Index: ASC. 

clustering 
large 

applications 

• Multiple datasets with GC. 

• The number of classes. 
B, E, MN 

• Clustering dataset. 

• Index: ASC. 

fuzzy analysis 
clustering 

• Multiple datasets with GC. 

• The number of classes. 

• Iterations. 

• Weighting exponent. 

E, MN 
• Clustering dataset. 

• Index: ASC. 

fuzzy c-means 

• Multiple datasets with GC. 

• The number of classes. 

• Iterations. 

• Weighting exponent. 

E, MN 
• Clustering dataset. 

• Indices: ASC, PC, 
FPI, PE, MPE, XB 

hard 
competitive 

learning 

• Multiple datasets with GC. 

• The number of classes. 

• Iterations. 

E, MN 
• Clustering dataset. 

• Index: ASC. 

k-means 

• Multiple datasets with GC. 

• The number of classes. 

• Iterations. 

E, MN 
• Clustering dataset. 

• Indices: ASC, SS, 
WCSS. 

neural gas 

• Multiple datasets with GC. 

• The number of classes. 

• Iterations. 

E, MN 
• Clustering dataset. 

• Index: ASC. 

partitioning 
around 

medoids 

• Multiple datasets with GC. 

• The number of classes. 
E, MN 

• Clustering dataset. 

• Index: ASC. 

spherical k-
means 

• Multiple datasets with GC. 

• The number of classes. 

• Internal method. 

• Weighting exponent. 

- 
• Clustering dataset. 

• Index: ASC. 

unsupervised 
fuzzy 

• Multiple datasets with GC. 

• The number of classes. 
E, MN • Clustering dataset. 
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competitive 
learning 

• Iterations. 

• Weighting exponent. 

• Indices: ASC, PC, 
FPI, PE, MPE, XB. 

GC: geographic coordinates; B: binary. E: Euclidean; MN: Manhattan; MX: maximum; MI: 
Minkowski; ASC: average silhouette coefficient; PC: partition coefficient; FPI: fuzziness 
performance index; PE: partition entropy; MPE: modified partition entropy; XB: Xie and Beni 
index; SS: sum of squares; WCSS: within-clusters sum of squares. 

 

 

 

Table 14 Resources available in AgDataBox Rectification API 

Resources HTTP Method Request parameters Response 

Median POST 

• Dataset with GC. 

• Size of Kernel. 

• Kernel format. 

• Iterations. 

• Rectified dataset 

Close POST 

• Dataset with GC. 

• Size of Kernel. 

• Kernel format. 

• Iterations. 

• Rectified dataset 

Open POST 

• Dataset with GC. 

• Size of Kernel. 

• Kernel format. 

• Iterations. 

• Rectified dataset 

Open and 
Close 

POST 

• Dataset with GC. 

• Size of Kernel. 

• Kernel format. 

• Iterations. 

• Rectified dataset 

GC: Geographic coordinates. 
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6 PAPER 2 – AGDATABOX-MAP: A WEB APPLICATION FOR CREATING THEMATIC 

MAPS AND MANAGEMENT ZONES IN PRECISION AGRICULTURE AND DIGITAL 

AGRICULTURE 

 

ABSTRACT: Agriculture has been challenged to produce more, with greater profitability and 
less environmental impact. Therefore, digital technologies have become valuable tools for data 
collection, information analysis, and decision-making. Thus, this work aimed to develop the 
AgDataBox-Map (ADB-Map) application, whose purpose is to generate thematic maps (TMs) 
and delineate management zones (MZs) in an easy, friendly, and efficient way. The application 
was developed for the web, consuming resources from ADB microservices architecture (ADB-
MSA), and provides graphical interfaces to prepare data, perform statistical analysis, select 
variables, interpolate data, delineate MZs, and calculate lime and fertilizer recommendations. 
In the case study, it was possible to select the best MZ design (elevation variable selected by 
the spatial correlation matrix, divided into two classes by the Fuzzy C-Means method) using 
the Modified Global Quality Index (MGQI), defined and applied in this work, which is composed 
of other indices available in ADB-Map. The application was considered acceptable by the 
community with a quality evaluation made by the users. 

 

KEYWORDS: data interpolation, variable-rate application, site-specific management. 
 

 

6.1 Introduction 

The new era of agricultural production has converged towards the massive use of digital 

technologies to improve the production process. The continuous need for food production has 

stimulated the development of technologies applied to agriculture. The challenge for 

agriculture is to produce more, with greater profitability and less environmental impact. In this 

context, precision agriculture (PA) and digital agriculture (DA) are included. PA is not a recent 

practice, as studied since the 1980s (Zhang et al., 2002). However, this technology only gained 

greater prominence with the diffusion of Global Position System (GPS) technologies, currently 

called Global Navigation Satellite System (GNSS), Geographic Information System (GIS), and 

remote sensing technologies. 

Fertilizer distribution varies according to soil conditions in an agricultural field was one 

of the first practices in PA. Its evolution allowed adopting practices such as automatic guidance 

of agricultural vehicles and implements, autonomous machinery and processes, product 

traceability, on-farm research, and software for the overall management of agricultural 

production systems (Gebbers and Adamchuk, 2010). 

Industry 4.0, or "Fourth Industrial Revolution," has rapidly transformed several sectors 

from "disruptive" digital technologies such as Blockchain, Internet of Things, Artificial 

Intelligence, and Immersed Reality (Trendov et al., 2019). In DA, available information and 

knowledge are used to enable automation of sustainable processes in agriculture. Large 
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amounts of data are generated, and the challenge is to add value to them with the insertion of 

data portals and work platforms. In portals, the user can view their data without having to enter 

them manually. By platforms, this user can transform data into new and more robust 

information. 

More than 570 million small farms worldwide (Lowder et al., 2016), and agriculture and 

food production account for 28% of the entire global workforce (Ilostat, 2019 

as cited in Trendov et al., 2019). From the evolution of wireless communications means, IoT 

hardware supply, and cost reduction, it is expected that DA collaborates to democratize the 

digital technologies application in agriculture, not only for large rural producers but also to 

reach the small ones. Furthermore, Digital technologies are creating opportunities to integrate 

smallholders into a digital agri-food system (Gray et al., 2018). 

The digitization of agricultural sector depends on some primary conditions that, 

according to Trendov et al. (2019), include infrastructure availability and connectivity (mobile 

subscriptions, network coverage, Internet access, and electricity supply), accessibility, 

educational achievement (literacy, education in information and communication technologies 

(ICT) and institutional support. Most of these factors depend on government intervention. 

However, non-governmental initiatives can contribute to agriculture's digitization. Furthermore, 

it is essential to make specific portals and platforms available to keep up with the growing 

demand for agricultural data processing. Therefore, Brazil needs to be aware of this 

technological evolution and make available free web platforms to integrate data, software, 

procedures, and methodologies for PA. 

The web platform AgDataBox (ADB) has collaborated with this phase of agriculture, 

enabling PA methodologies. Digital platforms can be seen as "software and web applications 

that act as mediators among service providers and service recipients" (Hanafizadeh et al., 

2020). In this sense, the ADB is a platform that provides free computational tools for farmers, 

researchers, and service providers, focused on PA by the integration of data, software, 

procedures, and methodologies to contribute to agriculture development in the country using 

free technologies. This web platform has a microservices architecture (MSA), called ADB-

MSA, which consists of a set of resources accessible remotely, through the hypertext transfer 

protocol (HTTP), to process and store data from agricultural environment. ADB-MSA allows 

interoperability of several applications in which data and processing routines are centralized. 

The following applications, underdevelopment, consume ADB-MSA resources: 1) ADB-Mobile; 

2) ADB-Map; 3) ADB-Admin; 4) ADB-IoT; 5) ADB-Remote Sensing. 

Applications software are essential resources for PA development. Cisternas et al. 

(2020) identified in literature that the most cited terms in PA publications are GIS, multispectral 

images, soil mapping, variable rate applications (VRA), variable rate fertilization (VRF), 
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variable rate irrigation (VRI), yield maps and yield monitors, and GIS is the most researched 

one of them. Furthermore, GIS is often combined with yield maps and other technologies. 

Some protocols have already been proposed (Santos and Saraiva, 2015; Cordoba et 

al., 2016; Souza et al., 2018) to delineate MZs properly. For example, in the protocol by Souza 

et al. (2018), the process to delineate MZs follows phases of (i) data processing, (ii) data 

normalization, (iii) selection of variables to design MZs, (iv) data interpolation, (v) application 

of methods to design MZs, (vi) MZs rectification and (vii) MZs evaluation (Fig. 1). 

 

 
Fig. 1 Protocol steps for the design of management zones. 
Source: Adapted from Souza et al. (2018). 
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In literature, it is not easy to find an application that offers all the necessary features to 

create TMs and delineate MZs. Examples of software that are specific for MZ delineation are 

Management Zone Analyst (MZA, Fridgen et al., 2004), FuzME (Minasny and McBratney, 

2002), Software for Defining Management Zones (SDUM; Bazzi et al., 2013; Bazzi et al., 

2019), ZoneMAP (Zhang et al., 2010), a friendly interface software proposed by Albornoz et 

al. (2017), and FastMapping (Paccioretti et al., 2020). MZA is a precursor and very popular 

software in MZ development (Breunig et al., 2020; Damian et al., 2020; Peralta et al., 2015). 

However, in many cases, a software combination is made to complete the steps involved in 

MZs delineation. Among them, there are: Statistical Analysis System (SAS), SPSS statistical 

software, Statistic (StatSoft Inc., currently maintained by TIBCO Software Inc), GS+, ArcGis 

(Environmental Systems Research Institute, Redlands, CA), Software R (R Core Team, 2014), 

FuzMe, MZA, Matlab and GRASS GIS (Damian et al., 2020; Méndez-Vázquez et al., 2019; 

Oldoni et al., 2019; Behera et al., 2018; Peralta et al., 2015; Chang et al., 2014). 

In this sense, ADB-Map application aims at mitigating the problem of using different 

software to create TMs and delineate MZs and provide user-friendly interfaces and 

procedures. This proposal converges to digitize agriculture. ADB-Map application continues 

SDUM, registered with the National Institute of Industrial Property (INPI, abbreviation in 

Portuguese) (registry BR 51 2014 000720 D), and freely available for use. SDUM was 

developed in a desktop environment, requiring installation on computers, and, despite SDUM 

acceptance by researchers and producers, it migrated to a web platform with the inclusion of 

new modules and features but remaining its gratuity. Among the limiting factors for the adoption 

of PA management by farmers, such as the high investment cost, small operational field, lack 

of technical training, compatibility problems between hardware and software, there are the 

complexity to use some computational tools and time needed to learn how to use them (Nicol 

and Nicol, 2021; Rotz et al., 2019; Bambini et al., 2013; Reichart and Jürgens, 2009). 

Therefore, ADB-Map also aims to reduce complexity for PA user learning and usage. 

Some studies have resulted in a preliminary version of this web application (Borges et 

al., 2020; Michelon et al., 2019). On the other hand, with the fast software development 

technologies transformation, which involves standards, languages, and methodologies, it was 

necessary to modify the entire application structure so that it could be prepared to receive new 

features and be able to respond quickly to the implementation demands. 

As a GIS, ADB-Map works with spatial data and offers the necessary tools to create 

TMs and delineate MZs, which are subsidies for PA techniques. ADB-Map's functionalities are 

divided into conceptual modules (Fig. 2), composed of the back-end, which contains algorithms 

and rules of business operation, and the front-end, user interaction interface. 
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Fig. 2 Overview of modules that make up AgDataBox-Map application. 

 

The modules that integrate ADB-Map are: 

a) Import and export: import and export data from/to files; 

b) Descriptive and exploratory statistical analysis: calculation of measures of central 

tendency (mean, median, and mode), measures of dispersion (total amplitude, 

variance, standard deviation, and coefficient of variation (CV)), measures of 

distribution shape (asymmetry and kurtosis coefficients), and data normality tests; 

c) Data cleaning: removal of duplicate, null, outliers, and inliers observations; 

d) Data normalization: variables standardization on the same numerical scale using 

the methods of amplitude, mean, standard score, and min-max; 

e) Data interpolation: selection of the best interpolator for a data set and application 

of statistical techniques to estimate values in non-sampled locations; 

f) Thematic maps: TMs creation using interpolated spatial data and definition of layer 

styles depending on the type of data classification (equal distances, quantiles, 

standard deviation, and manual range), number of classes, color palettes, type of 

marker, and pixel size; 

g) Variables selection: use of techniques to select variables for MZs design using 

these techniques: (i) principal component analysis (PCA), (ii) multivariate spatial 

analysis based on Moran and PCA index (MULTISPATI-PCA), and (iii) spatial 

correlation matrix; 

h) Clustering: delineate MZs by seventeen data clustering methods (Fuzzy C-Means, 

K-Means, and others); 
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i) MZs rectification: apply digital image processing filters (median, opening, closure, 

and with the combination of opening and closure) to remove small spots in MZs; 

j) MZs evaluation: use of descriptive statistics and indices to evaluate the quality of 

the delineated MZs; 

k) MZs application: of MZs export to a field operation; 

l) Application maps: create application maps for lime and fertilizer from soil attribute 

availability maps. 

This work aimed to develop the new ADB-Map web application to make TM creation 

and MZ design processes user-friendly and integrated, making it scalable and integrated with 

ADB-MSA. ADB-Map was divided into two parts, the front-end, which contains the user’s 

interfaces, and the back-end, which performs functionalities and stores the user’s data. 

 

6.2 Material and methods 

 

i. AgDataBox-Map architecture 

Compared to the preliminary version, ADB-Map application has been completely 

rewritten (Borges et al., 2020; Michelon et al., 2019). The new application structure aims to 

allow scalability and make it more flexible for agile implementation of new demands. In this 

approach, the application's horizontal separation into two layers, front-end and back-end (Fig. 

3), is different from the preliminary version, which was based on the monolithic conception. 

There is no separation between front-end and back-end according to the monolithic view, but 

application is treated as a single artifact in Model-View-Controller (MVC) architecture, in which 

these layers are dependent and difficult to reuse for other applications. 
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Fig. 3 Architecture of the AgDataBox-Map application containing an overview of the front-end 
and back-end functionalities. 

 

Each part of the application (front-end and back-end) is deployed in a Docker tool 

container and the other services of ADB platform. Back-end application comprises several 

microservices that implement web APIs in the REST architectural style and are deployed in 

ADB Microservices Architecture (ADB-MSA). Requests to the back-end are made by HTTP, 

which uses a method (get, post, put or delete), a Uniform Resource Identifier (URI), and a 

representation of data in a standardized format, in this case, JavaScript Object Notation 

(JSON). APIs respond to requests with messages in JSON format.  

The multilayer architecture approach is also used by other software, like GeoFarmer 

(Eitzinger et al., 2019), a system of modular components (functionalities and interfaces) that 

communicate with a central cloud application, which includes the central database where all 

information is compiled. Cloud applications’ backend also communicates with external 

components and services. 

ADB-Map is under the testing phase and is accessible by URL 

https://adb.md.utfpr.edu.br/map. In addition, there are demonstration videos on URL 

https://adb.md.utfpr.edu.br/help/map to help people with their first contact with ADB-Map. 

 

ii. AgDataBox-Map application development 

ADB-Map front-end (Fig. 3) was implemented to be accessible via Web, with the 

development of technologies based on JavaScript language, style formatting in Cascading 

Style Sheets (CSS), and content structuring in Hypertext Markup Language (HTML). The 

developed platform Node.js was used by the web framework Angular (version 9), TypeScript, 
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the language used by Angular, and OpenLayers (version 6) to present the spatial objects. All 

technologies used are free to be used. 

A microservice was implemented to store ADB-Map data and deployed to ADB-MSA in 

an operating environment (container) separate from the front-end. This microservice contains 

a web API implemented with technologies for software development: Node.js platform, 

Express web framework, and Mongoose library. Data are stored in MongoDB non-relational 

database (often called NoSQL database), unlike the preliminary version (Borges et al., 2020; 

Michelon et al., 2019) that uses PostgreSQL. The objective of changing database was to offer 

flexibility to manage the application's data model and store a large volume of data from the 

projects' layers (data grids). In this database, data are not stored in tables but in document 

collections. 

Data are organized into two collections, one for the project and the other for layers. 

Thus, it is possible to represent data models that the application manages (Fig. 4). The project 

represents a set of layers. A layer represents a set of spatial data, such as crop yield, soil 

chemical attributes, and satellite image spectral bands. 

 

 
Fig. 4 Class diagram of data managed by AgDataBox-Map application. 

 

Data exchanged between the front-end and back-end is represented in JSON format 

(Frame 1). 

  



130 
 
 

 

{ 

    "project": { 

        "person": number, 

        "area": number, 

        "name": string, 

        "description": string, 

        "createdAt": date, 

        "lastUpdate": date, 

        "extras": { 

            "viewMap": boolean 

        }, 

        "id": string 

    }, 

    "type": string, 

    "name": string, 

    "description": string, 

    "data set": [ {"coordinates": [number, number], "data": number }, ...] 

} 

Frame 1 Example of data represented in JSON format. 
 

Layers are categorized according to the representation of the data type: 

• Sampling grid: sample data set, usually with low data density, as soil chemical 

analysis received from a laboratory. 

• Defining sampling grid: definition of a sampling grid with the respective 

georeferenced sampling points to carry out sample collections. 

• Interpolated grid: data set, usually with a higher sample density, arranged 

evenly in the spacing among observations. 

• Application grid: calculation result for lime and fertilizer recommendation; 

• Management zone: resulting from clustering processes. 

• Boundaries: a set of geographic coordinates with the field boundaries. 

 

iii. Data importation and exportation 

Data import and export in ADB-Map are done from text files separated by columns (.txt 

or .csv). The imported data are stored in ADB-MSA (Fig. 3) and consulted by ADB-Map or 

another application. The file must have rows and columns, where the columns contain 

geographic coordinates (X and Y) and data variable are separated by a special character, such 

as tab, space, semicolon, or comma. Each line in the file represents an observation of the 

variables. 

The import process is done following the steps below: 

• Data file pre-processing: this step occurs before using the software, in which 

the user prepares data to be read by ADB-Map. During this step, identifying 

geographic coordinates, variables numerical formatting, standardization of 

column separators, and removing orphan lines must be observed. 
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• The user selects the input file that contains geographic coordinates and 

variables’ data. 

• During the import screen, the user defines the file import parameters to 

recognize the correct way in which data are arranged. 

• Select the DATUM of geographic coordinates. 

• Indicate the columns of file that represent X and Y geographic coordinates. 

• Select which variables will be imported. 

• After user intervention, a computational process reads and stores data in ADB-

MSA. 

 

iv. Statistical analysis 

In ADB-Map, graphical interfaces were implemented to perform descriptive statistical 

analysis for the layers. The analyses are obtained by computational routines available in 

microservices of ADB-MSA (Fig. 3). The graphical interfaces to perform statistical procedures 

are (i) screen for statistical analysis of quantitative layers (Sampling grids, interpolation, and 

nutrient/liming recommendation), (ii) screen for statistical analysis in MZs, and (iii) screen for 

data normalization. 

During the exploratory data analysis, position measures (mean and median), dispersion 

measures (variance, standard deviation, and coefficient of variation (CV)), and distribution 

shape measures (asymmetry and kurtosis coefficient) can be calculated) to identify and 

evaluate whether data are homogeneous and normally distributed. 

Data normality can be tested by the Kolmogorov-Smirnov, Lilliefors, Cramer-Von 

Mises, Shapiro Wilk, Shapiro Francia, and Anderson Darling tests. The provided normalization 

methods are (i) Range (Anderberg, 1973; Milligan and Cooper, 1988 – Equation A1), (i) Mean 

(Swindel, 1997 – Equation A2), (iii) Standard Score or Z-Score (Larscheid and Blackmore, 

1996 – Equation A3), and (iv) Min-Max method (Milligan and Cooper, 1988 – Equation A4). 

 

v. Variables’ selection to delineate management zones 

ADB-Map uses computational routines developed in statistical R software (Gavioli et 

al., 2016) implemented in ADB-MSA microservices (Fig. 3) to select variables to be used in 

MZs delineation. The methods implemented in ADB-Map to select variables are spatial 

correlation matrix (SCM - Reich, 2008; Schepers et al., 2004), principal component analysis 

(PCA - Hotelling, 1933), and multivariate spatial analysis based on Moran’s index and PCA 

(MULTISPATI-PCA - Dray et al., 2008): 

• Spatial correlation matrix: Variable selection by SCM uses the Bivariate Moran’s I 

(Reich, 2008; Schepers et al., 2004 - Equation A5), and applied in three steps, as 
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described by Bazzi et al. (2013) and Schenatto et al. (2016): (i) variables without spatial 

dependence are eliminated, (ii) variables without correlation with the target variable are 

eliminated, and (iii) redundant variables are eliminated. 

• PCA: PCs calculation from all stable variables, such the number of selected PCs is 

based on the criterion of representation of at least 80% of total variability of data 

associated with the original variables (Johnson and Wichern, 2007); 

• MULTISPATI-PCA: calculation of spatial principal components (SPCs) from all stable 

variables that were significantly correlated with the target variable, such the amount of 

selected SPCs, was also based on the criterion of representation of at least 80% of the 

total variability of the original data (Córdoba et al., 2016; Peralta et al., 2015; Gavioli et 

al., 2016).  

 

vi. Selection of interpolators 

The selection of interpolators was obtained by using computational routines developed 

in statistical R software (Betzek et al., 2019), and geoR package, which are available in ADB-

MSA (Fig. 3). Routines determine whether the best interpolator for a data set is Ordinary 

Kriging (OK) or Inverse Distance Weighting (IDW). For the OK interpolator (Equation A16 – 

Cressie, 1993), the theoretical model best fits the experimental semivariogram, and its 

parameters (nugget effect, partial sill, and range) are determined. Also, the exponent value 

and number of neighbors are determined by IDW interpolator (Equation A15). 

In geostatistical analysis, the computational routine tests seven different semivariogram 

models (spherical, gaussian, exponential, Matérn 0.5, Matérn 1.0, Matérn 1.5 and Matérn 2.0) 

and two statistical methods to optimize semivariogram fit (ordinary least squares (OLS) and 

weighted least squares (WLS – Cressie, 1985)), totaling fourteen different models. During IDW 

analysis, the routine analyzes by default twelve different values for the exponent (0.5; 1.0; 1.5; 

...; and 6.0) and the number of neighbors from 4 to 12, totaling 88 analyses. The best model 

is selected by the interpolator selection index (ISI – Bier and Souza, 2017 – Equation A6). ISI 

is determined from cross-validation (Isaaks and Srivastava, 1989), which calculates the mean 

error (ME – Equation A7) and the standard deviation of the mean error (SDME – Equation A8). 

The ME and SDME values calculated for each parameter set are stored and used to determine 

ISI, which compares the deterministic and stochastic interpolation methods, thus, identifying 

the best adjustment for each model analyzed. The best interpolator is the one with the lowest 

ISI value. 

The statistic called error comparison index (ECI – Souza et al., 2016 – Equation A9) 

was used To determine the best semivariogram fit in each 𝑗 model analyzed, which assumes 

that a lower value for the model is better stochastic methods of interpolation. The best 

semivariogram of each 𝑗 model was used in ISI analysis. The reduced mean error (RME – 
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Equation A10) and the standard deviation of the reduced mean error (SDRME – Equation A11) 

were determinated by ordinary kriging cross-validation. 

The selection of the best semivariogram model considers three selection criteria when 

performing the best interpolator analysis: (i) a minimum of 25% of effective spatial dependence 

(%ESD – Equation A12), (ii)  the selected semivariogram model should contemplate a fraction 

of SD due to only the first semivariance significance index (%𝛾(1), Equation A13) lower than 

50%, and (iii) the degree of inclination between the nugget effect and the last adjusted 

semivariance, estimated by slope of the model ends index (%SMEI, Equation A14) should be 

greater than 20%. Otherwise, there is an indication of a pure nugget effect. 

Thus, the selection of the best interpolator model should not depend only on the ISI 

but on the criteria presented in Table 1: 

 

Table 1 Criteria to select the best interpolation method 

Criterion 1 
Minimum of 

effective spatial 
dependence 

 

Criterion 2 
Spatial dependence 
due only to the first 

semivariance 

 Criterion 3 
The model needs to 

express spatial 
dependence  

The best 
interpolation 

method 

If %𝐸𝑆𝐷𝐼 > 25% and If %𝛾(1) < 50% and If %SMEI > 20% 
IDW or OK with 
the lowest ISI 

If %𝐸𝑆𝐷𝐼 ≤ 25% or If %𝛾(1) ≥ 50% or If %SMEI ≤ 20% 
IDW with the 

lowest ISI 

%ESDI: Effective spatial dependence index; %𝛾(1): First semivariance significance index; 
IDW: Inverse distance weighting; OK: Ordinary Kriging; ISI: Interpolator selection index. 

 

In ADB-Map, the interpolator selection routines are used in three screens: 

• Screen for interpolator selection: determines the best interpolator (OK or IDW) 

and determines the interpolation parameters. 

• Screen for IDW interpolation: determines the best exponent value and the 

number of neighbors to be used in interpolation. 

• Screen for OK interpolation: selects a theoretical model that best fits the 

experimental semivariogram and determines its parameters (nugget effect, 

partial sill, and range). 

 

vii. Data interpolation 

Graphical interfaces were implemented for each interpolation method available for 

better interaction with the user in ADB-MSA. The interpolation is performed by computational 

routines developed in statistics R software and made available in a microservice at the ADB-

MSA (Fig. 3). 

The data interpolation methods available in ADB-Map are (i) IDW (Equation A15), (ii) 

OK (Equation A16), (iii) Moving Average (MA – Equation A17), and (iv) Nearest Neighbor (NN). 
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viii. Data clustering  

A specific interface performs the data clustering process in ADB-Map. It is possible to 

choose one of the seventeen clustering methods (Table 2) available for grouping layers by a 

computational process, which aims to find groups of similar data, delimiting different groups 

within a data set. The protocol for designing MZs (Souza et al., 2018) uses these clustering 

methods and has already been evaluated in studies involving MZs (Gavioli et al., 2019). 

 

Table 2 Clustering methods available on AgDataBox-Map 

Methods References 

average linkagea Jain and Dubes (1988) 
centroid linkagea Jain and Dubes (1988) 
complete linkagea Jain and Dubes (1988) 

divisive analysis (diana)a Kaufman and Rousseeuw (1990) 
hybrid hierarchical clusteringa Chipman and Tibshirani (2006) 

median linkagea Jain and Dubes (1988) 
McQuitty’s method (mcquitty)a McQuitty (1966) 

Ward’s method (ward)a Ward (1963) 
single linkagea Jain and Dubes (1988) 

bagged clusteringb Leisch (1999) 
clustering large applications (clara)b Kaufman and Rousseeuw (1990) 

fuzzy analysis clustering (fanny)b Kaufman and Rousseeuw (1990) 
fuzzy c-meansb Bezdek (1981) 
fuzzy c-shellsb Dave (1992) 

hard competitive learningb Xu and Wunsch (2009) 
k-meansb MacQueen (1967) 

neural gasb Martinetz et al. (1993) 
partitioning around medoidsb Kaufman and Rousseeuw (1990) 

spherical k-meansb Dhillon and Modha (2001) 
unsupervised fuzzy competitive learningb Pal et al. (1996) 

a: hierarchical method; b: partitioning method. 
 

In ADB-Map, a graphical interface was implemented to make the data clustering. The 

procedures for clustering data are performed in computational routines developed in statistical 

R software and made available in ADB-MSA (Fig. 3). 

 

ix. Management zones rectification 

The data rectification interface was implemented to select one or more layers to choose 

a rectification method and its parameters. The rectification process is performed in ADB-MSA, 

which has a microservice with rectification routines implemented in Python language and uses 

OpenCV library. The rectification methods of layers are based on morphological filters used in 

digital processing of image: median, opening, closure, and with the combination of opening 

and closure. These indices have already been used to reduce MZs fragmentation (Betzek et 

al., 2018; Albornoz et al., 2017; Córdoba et al., 2016; Gonzalez and Woods, 2008). 
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x. Evaluation of management zones quality 

Indices to evaluate MZs quality are obtained and presented in some ADB-Map's 

graphical interfaces. The indices calculation is done in computational routines developed in 

the statistical R software available in ADB-MSA's microservices (Fig. 3). They are (i) variance 

reduction (VR% – Equation A18 – Xiang et al., 2007; Schenatto et al., 2017), (ii) Fuzziness 

Performance Index (FPI – Equation A19 – McBratney and Moore, 1985; Fridgen et al., 2004), 

(iii) Modified Partition Entropy (MPE – Equation A20 – McBratney and Moore, 1985; Fridgen 

et al., 2004), (iv) Improved Cluster Validation Index (ICVI – Equation A21 – Gavioli et al., 2016), 

(v) Tukey test (ANOVA), (vi)  Smoothness Index (SI% – Equation A22 – Gavioli et al., 2016), 

(vii) Average Silhouette Coefficient (ASC – Equation A23 – Rousseeuw, 1987), (viii) 

Fragmentation index (FI% – Equation A24), (ix) Global Quality Index (GQI – Equation A25 – 

Beneduzzi, 2020), and (x) Modified Global Quality Index (MGQI – Equation A26). 

 

xi. Comparison between thematic maps and between management zones 

Also, ADB-Map's graphical interfaces calculate indices to compare thematic maps with 

management zones. They are: (i) Coefficient of relative deviation (CRD – Equation A27 – 

Coelho et al., 2009), (ii) Mean absolute difference (MAD – Equation A28), (iii) Kappa coefficient 

(Kp – Equation A29 – Cohen, 1960; Congalton, 1991), and (iv) Global accuracy (GA – Equation 

A30 – Foody, 2002). 

 

xii. Nutrient and liming recommendation 

The fertilizer recommendation is based on the study by Beneduzzi (2020), in which 

the recommendation of N is made by yield expectation model, considering soil’s organic matter 

content (OM%) for corn cropping. Two methods were implemented for P and K: soil nutrient 

availability and yield expectation, and the recommendation calculation can be done for 

soybean and corn crops (Table 3). For each nutrient, the recommendation is based on 

available fertilizers. 
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Table 3 Fertilizers used in nutrients’ recommendation, crops, and recommendation methods 
available in AgDataBox Recommendation API  

Nutrients Cultures Methods Fertilizing 

N Corn YEOM 

Urea (UR) 
Ammonium sulfate (AM) 
Ammonium nitrate (AN) 

Ammonium chloride (AC) 

P 
Corn and 
Soybean 

SNA and YE 

Simple Superphosphate (SS) 
Triple superphosphate (ST) 

Monoammonium phosphate (MAP) 
Diammonium phosphate (DAP) 

Araxa phosphate (ARAD) 

K 
Corn and 
Soybean 

SNA and YE 

Potassium oxide (KCL) 
Potassium sulfate (PS) 

Potassium and magnesium sulfate (PMS) 
Potassium double saltpeter (PDS) 

N: Nitrogen; P: Phosphorus; K: Potassium; YEOM: Yield expectation considering the content 
of organic matter on soil; SNA: soil nutrient availability; YE: Yield expectation. 

 

Lime recommendation is made based on the study of Moreira (2019). Thus, the 

following methods to calculate the required lime were selected: Method 1: neutralization of 

exchangeable aluminum; Method 2: exchangeable Al3+ neutralization and elevation of base 

cations (Ca2+ and Mg2+); and Method 3: base saturation. 

 

xiii. Definition of the case study 

Data from a 20-ha agricultural field located in the Serranópolis do Iguaçu – PR city were 

used to demonstrate ADB-Map’s functionalities, with central coordinates −54.01232307º 

(longitude) and −25.39526307º (latitude) in Datum WGS 1984 (Fig. 5). The sampling points 

with irregular distances were located along an imaginary line among the level curves following 

the terrain topography. The sample density of 2.6 ha-1 attends the suggest of a minimum 

density from 1 sample ha-1 (Ferguson and Hergert, 2009) to 2.5 sample ha-1 (Journel and 

Huijbregts, 1978; Doerge, 2000). The minimum and maximum distances between the sampling 

points are 45 and 706 m. 
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Fig. 5 Location of experiment and 52 sampling points in an experimental field in the 
municipality of Serranópolis do Iguaçu, Paraná state, Southern Brazil. Black contour delineates 
the 20 ha area used. Coordinates are in degrees (WGS 1984). The minimum and maximum 
distances between the sampling points are 45 and 706 m. 

 

According to the workflow (Fig. 6) used in this case study, the following modules were 

used: 

• Input data: The field data used were elevation, soil texture (sand, clay, and silt), 

soil resistance penetration from 0 to 20 m depth in 2018 (SPR_0-20), and 

soybeans yields in 2018/2019 (SY_18/19) and 2019/2020 (SY_19/20) crops. 

Soil samples were taken from 0 to 0.20 m depth and analyzed in a commercial 

laboratory. Around each sampling point (using a GNSS Juno SB Trimble 

Navigation Limited, Westminster, CO, USA) and using a 3-m radius, eight 

subsamples were randomly collected, two per quadrant, within a symmetrical 

circle divided into four quadrants.  

• Statistics: descriptive statistics measures and data normality. 

• Data preparation: 

o Cleaning: removal of outliers and inliers. 

o Grid cutting out: points that are outside of field boundaries are 

eliminated. 
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o Adjust grid: process that aims to interpolate data in missing points so 

that two grids have the same number of points and the same geographic 

coordinates. Data interpolation was done by IDW method. 

o Normalization: All variables were normalized before further analysis. 

Yield values were normalized (YN) using the mean method (Equation A2 

– Swindel, 1997) to stabilize these data, which are generally heavily 

influenced by variations in climate and precipitation. This method 

showed better performance with variables that vary from year to year. 

Then, since there is more than one year of yield data, the arithmetic 

mean of normalized yield was calculated, generating a single variable 

corresponding to the mean normalized yield (𝑌𝑁
̅̅ ̅). 

The remaining variables were used to delineate MZs using FCM with 

Euclidean distance. However, this method requires normalizing data 

since this distance is sensitive to the variables' amplitude (Bezdek 1981; 

Fridgen et al. 2004, Schenatto et al. 2017). The normalization used the 

range method (Equation A1 – Mielke and Berry, 2007), as Schenatto et 

al. (2017) suggested. They recommended it as the most suitable method 

to normalize data before the clustering using Euclidean distance 

similarity since this similarity measure is sensitive to the variables' 

variance. With this, the same amplitude was kept for data, regardless of 

the variable used. 

• Variable selection: the variable selection to delineate MZs by SCM, PCA, and 

MULTISPATI-PCA methods. 

• Interpolator selection: Selection of the best interpolator using IDW and OK 

methods. In geostatistics, the Matheron (1963) classic estimator was used to 

calculate semivariances with at least 30 pairs of points (Journel and Huijbregts, 

1978), and the range (Ra) was limited to half of the maximum distance (MD) 

among points (cutoff = 0.5*MD). The lag size h was defined as the 44 meters, 

calculated from the number of lags (relation between cutoff and the shortest 

distance among pairs of points). The minimum and maximum amounts of 53 

and 180 pairs were obtained with this lag distance to calculate semivariances. 

The significant limitation to address in this ADB-Map version is that anisotropy's 

eventual presence is not considered. 

• Interpolation: Since selected variables showed spatial dependence, ordinary 

kriging interpolation was performed after normalizing variables. A 9x9 m (1/100 

of the larger dimension in the Eastern/Western direction) grid was created to 
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increase the density of points to allow smoother delineation and more 

continuous MZs. 

• MZs definition: MZs delineation using FCM method. 

• MZs Rectification: MZs rectification with median, opening, closure, 

opening/closure methods, square kernel format, and 3x3, 5x5, and 7x7 kernel 

sizes applied as needed in each MZ for stain removal. 

• MZs Evaluation: determination of statistics for MZs evaluation. 

• Nutrient/lime recommendation: calculation of lime and nutrient 

recommendation. 

 

 
Fig. 6 Workflow to demonstrate the activities of (i) designing management zones and (ii) 
recommending nutrients and lime. 
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xiv. Software evaluation 

The software evaluation captured the user's perception of ADB-Map, based on a 

software quality model. The product quality model was based on the ISO/IEC 9126 and 14598 

standards, which define a general-purpose quality model, quality characteristics and provide 

examples of metrics. These standards were revised, expanded, and restructured, receiving 

the names ISO/IEC 25030 (ISO/IEC, 2019) and ISO/IEC 25040 (ISO/IEC, 2011), constituting 

part of the set of standards ISO/IEC 25000 (ISO/IEC, 2014).  

The evaluation methodology (Fig. 7) consisted of the following activities: 

 

 
Fig. 7 Activity plan defined for the user's ADB-Map quality evaluation. 

 

The first step was to establish the evaluation requirements and define the evaluators' 

profile and evaluation criteria. Next, the target audience of interest for the research was defined 

as users already registered in ADB-Map application who have already used several application 

features. In this case, they are undergraduate and graduate students, professors, and 

professionals in PA area. For the sample to represent the intended target audience, software 

evaluation must be carried out with at least eight evaluators (NBR ISO/IEC 14598-6; ABNT, 

2004). Then, quality characteristics were evaluated using key-questions (Appendix B) related 

to the perception of the six characteristics specified in the adopted quality model (Table 4). 

 

  

•Selection of the evaluators' profile;

•Specification of quality characteristics.
1. Establish evaluation 

requirements

•Definition of evaluation metrics;

•Association of weights to qualify characteristics 
and attributes.

2. Specify metrics and 
weights used in the evaluation

•Carry out the product evaluation taking into 
account the requirements, metrics and weights 
defined in activities 1 and 2.

3. Carry out the evaluation
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Table 4 Software quality characteristics of ISO/IEC 9126-1 

Characteristics Meaning Key-question 

Functionality 
Shows the set of functions that meet explicit 
and implicit needs for the purpose for which 

the product is intended 

Does it satisfy the 
needs? 

Reliability 
Shows product's capability to keep its 

performance over time and under established 
conditions 

Is it immune to 
failure? 

Usability Shows how easy is to use the product Is it easy to be used? 

Efficiency 
Shows the relationship among the product's 

performance level and the number of 
resources used under established conditions 

Is it fast and ‘lean’? 

Maintainability 
Shows the effort needed to make modifications 

to the product 
Is it easy to modify? 

Portability 
Shows product's ability to be transferred from 

one environment to another 
Is it easy to use in 

another environment? 

Source: ABNT (2003). 
 

In the second step of evaluation, scoring levels and judgment criteria were defined. The 

interviewers assigned scores from 1 to 5 for each question of the evaluation instrument, 

referring to a qualitative scale (Table 5). The interviewers answered the questions regarding 

agreement or satisfaction, depending on the context, with 1 being the lowest and 5 the highest. 

Each level has its respective quantitative score. Thus, it was possible to determine the 

quantitative score for each question, the average score for each characteristic of the quality 

model, and global score (average of all characteristics). 

 

Table 5 Scoring levels for ADB-Map user’s evaluation instrument  

User rating note Meaning Quantitative score 

5 Total 1 
4 Great 0.75 
3 Moderate 0.5 
2 Lowest 0.25 
1 Disagreement/Unsatisfied 0 

 

The criteria to judge the obtained results were based on the evaluation scale for the 

characteristics proposed in NBR ISO/IEC 14598-6 standard – Annex C (ABNT, 2004). The 

acceptance criterion of ADB-Map by the community was adopted to be larger than 0.70 (70%) 

in each characteristic of the quality model evaluated by the user and globally. Data tabulation 

and characteristics calculation were performed using the Microsoft Excel® software. 

In the third step, the evaluation plan was elaborated. The interviewers were invited to 

participate in the study using an invitation letter, sent by digital means, containing instructions 

to carry out the evaluation, together with a link to access ADB-Map and the evaluation 

instrument. As the interviewers were the application's users, they already had the credentials 

to access the software. The evaluation instrument was created using the online questionnaire 

tool Google Forms. The interviewers' responses were automatically obtained by this data 
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collection tool. The data collection period was from September 2020 to November 2020. This 

period was necessary to obtain the minimum number of eight evaluators for each category, as 

recommended by NBR ISO/IEC 14598-6 standard.  

After receiving the invitation, fourteen ADB-Map users, aged from 24 to 63, made the 

proposed evaluation. Most interviewers (86%) have master degree. The others have higher 

education (7%) and doctorate (7%). As for the relationship with AP, most interviewers (93%) 

are undergraduate or graduate students. The others (7%) are researchers in the area. Despite 

being invited, no professional from the PA area participated of the evaluation. As for the 

evaluator's contact time with the AP, most work between 1 and 2 years (50%), followed by 0 

and 1 year (21%), 2 and 3 years (7%), 4 and 5 years (7 %), over 10 years (7%), and over 25 

years (7%). Among other software (Fig. 8) used by interviewers to develop AP activities, R 

(57%), ArcGis/ArcMap (43%), QGis (43%), and Surfer (36%) stand out. 

 

 
Fig. 8 Software already used by the evaluator to perform work with precision agriculture. 

 

6.3 Results and discussion 

 

i. Running AgDataBox-Map and importing data 

Access to ADB-Map is restricted to registered and authenticated users. The user must 

accept ADB disclaimer. User management and authentication are done centrally at ADB-MSA 

and shared with other applications that make up ADB platform. The user has a particular work 

context, which is not visible to other users of application. ADB-Map's primary Graphical User 

Interface (GUI) was designed so that the user has three important access points: (1) list of 

projects and layers; (2) tools menu; (3) component to visualize spatial data (Fig. 9). 
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Fig. 9 Graphical User Interface of AgDataBox-Map application, presenting (1) the list of project 
layers, (2) menu, and (3) the spatial data visualization component. 

 

It is necessary to create a project to use the application. In the workspace project, it is 

possible to create the following types of layers: Sampling grid, Boundaries, Data interpolation, 

Management Zone, Defining sampling grid, and Nutrient/Lime recommendation (Fig. 10). 

 

 
Fig. 10 Component screen to create a new layer showing the layers types available in ADB-
Map application. 

  

1 

2 

3 
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The features for creating TMs and defining MZs in ADB-Map depend on external data 

in the user's domain but need to be imported into ADB-Map’s database. Some of the data sets 

required by ADB-Map are from a sample collection of attributes, thematic maps of attributes, 

field demarcations, satellite, and aerial images, among others, which can be stored in text files, 

spreadsheets, ESRI Shapefile, or other formats standard for data set representation. 

The data import screen (Fig. 11) allows you to import multiple columns (variables) from 

the text file. For example, it is possible to specify the columns that represent X and Y 

geographic coordinates, in addition to the reference datum. Imported data is converted to the 

same project Datum. The file columns selected for import are stored in ADB-MSA. 

 

 
Fig. 11 Import layers interface to read a text file containing multiple variables. 

 

 

ii. Statistical analysis and data preparation 

ADB-Map's graphical statistical analysis interface allows performing descriptive 

statistical analysis of data (Fig. 12a) and testing normality (Fig. 12b). 
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(a) Screen of descriptive statistics 

analysis 
(b) Screen of data normality tests 

Fig. 12 Graphical user interfaces for (a) descriptive statistical analysis and (b) data normality 
tests. 

 

There are data cleaning procedures to remove data with errors and atypical data from 

data set. This procedure may remove duplicate data (in the same geographic position), 

negative, null, or missing data, outliers, and inliers (Fig. 13). 

 

 
Fig. 13 Screen for data cleaning in data preparation process: remove duplicate, negative and 
null data, outlier, and inlier. 
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There are work situations that need grid cutting out. This procedure aims to eliminate 

points that are outside field boundaries. One of the most common cases is removing points 

obtained by the harvest monitor outside the field's limits due to bedside maneuvers. This 

situation can be solved with the functionality called “Grid cutting out” (Fig. 14), which aims to 

cut a grid eliminating the points that are outside the field boundaries. 

 

 
Fig. 14 Screen for grid cutting out during data preparation process to eliminate map pixels that 
are outside the field boundaries. 

 

A situation applied in the experimental field was to reduce the work field, which, until 

the 2018/2019 soybean crop (SY_18/19), was managed with 36.6 ha-1 (Fig. 15a) and, after 

that, was resized to 20.0 ha-1 (Fig. 15b). From 100 sampling points, the field now has 52. For 

studies that depend on the crossing of data collected at these different times, there is a need 

to cut data grids, adjusting all grids from the 2018/2019 crop to the new format.  
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(a) Grid with 100 sampling points 

 
(b) Grid with 52 sampling points 

Fig. 15 Soybean yield sample data (t ha-1) from the 2018/2019 crop (SY_18/19) with the 
number of (a) original points after data cleaning and (b) applied to the grid cutting out 
procedure. 

 

The descriptive statistics of data (Table 6) show that there was an increase of 58% in 

soybean yield from 2018/2019 to 2019/2020 crops. The coefficient of variation (CV) for yield 

in both years was considered medium (Pimentel-Gomes, 2009). 

 

Table 6 Descriptive data statistics 

Variables Samples Minimum Mean Median Maximum SD CV% 
Elevation (m) 52 316 334 335 348 9.5 3 (L) 
Clay (%) 52 61.0 73.8 74.0 84.0 3.9 5 (L) 
Sand* (%) 52 0.7 2.7 2.6 7.0 1.1 43 (VH) 
Silt* (%) 52 14.3 23.6 23.3 36.0 3.8 16 (M) 
SPR_0-20* (kPa) 52 867 1478 1470 2440 355 24 (H) 
SY_18/19* (t ha-1) 49 2.7 3.9 4.0 5.2 0.5 14 (M) 
SY_19/20* (t ha-1) 52 3.9 5.0 5.0 6.3 0.6 11 (M) 

SD: Standard deviation; CV: Coefficient of variation: low (L) when CV ≤ 10%, medium (M) 
when 10% < CV ≤ 20%, high (H) when 20% < CV ≤ 30%, and very high (VH) when CV > 30%. 
* No normality at 5% significance level (Pimentel-Gomes, 2009). 
SY_18/19: soybean yield in 2018/2019; SY_19/20: soybean yield in 2019/2020; SPR_0-20: 
Soil penetration resistance at a depth of 0–20 cm. 

 

Experimental variables were normalized according to two methods: (i) the yield values 

with the mean method (Equation A2), and (ii) the remaining variables with the range method 
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(Equation A1), as suggested by Schenatto et al. (2017). The mean normalized soybean yield 

(mnSY) was obtained by the arithmetic average of nSY_18/19 and nSY_19/20. This operation 

was performed by the “Grid math” procedure (Fig. 16), which allows performing mathematical 

operations among the layers of the project. 

 

  
Fig. 16 Screen for grid math where a grid is generated by applying a mathematical expression 
over multiple existing grids. 

 

iii. Variable Selection 

The graphical interface implemented in ADB-Map allows selecting variables to 

delineate MZs. For each method, the result is presented on a different screen:  

(a) Spatial correlation matrix method (SCM; Bazzi et al., 2013; Fig. 17): the process 

was performed with variables mnSY (mean of nSY_18/19 and nSY_19/20), elevation, clay, 

sand, and silt. The variables selected in each step were: (i) spatially dependent: elevation, 

clay, and sand; (ii) with spatial correlation with the target variable: clay and elevation; and (iii) 

after eliminating redundant variables: elevation. 
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Fig. 17 AgDataBox-Map screen showing the result of variable selection by the spatial 
correlation matrix method. 

 

Autocorrelation (spatial dependence) and cross-correlation (bivariate) between 

variables can be observed in the spatial correlation matrix (SCM) (Fig. 18), provided by ADB-

Map application. However, the values of Bivariate Moran’s I indices are low because they are 

not normalized. 

 

Sand 
0.09648      

pv: 0      

Clay 
-0.04113 0.03521     

pv: 0.1 pv: 0.08     

Elevation 
0.06314 0.0817 0.36498    

pv: 0.01 pv: 0 pv: 0    

SPR_0-20 
-0.00717 0.02569 0.05548 -0.00189   

pv: 0.78 pv: 0.2 pv: 0.33 pv: 0.92   

Silt 
0.00929 -0.02412 -0.12423 -0.02738 0.02259  

pv: 0.73 pv: 0.23 pv: 0.02 pv: 0.12 pv: 0.27  

nmSY 
-0.02387 -0.03993 -0.13152 -0.02831 0.0548 0.02480 
pv: 0.27 pv: 0.06 pv: 0.01 pv: 0.17 pv: 0.01 pv: 0.24 

 Sand Clay Elevation SPR_0-20 Silt nmSY 

pv: p-value (significative when p-value < 0.05). 
Fig. 18 Spatial correlation matrix, in which the cells (i) in blue indicate the significantly auto-
correlated variables, (ii) in green the variables correlated with the average soybean yield, and 
(iii) in salmon the redundant variables, which should be eliminated. 
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(b) Principal component analysis (PCA; Fig. 19): After PCA's execution, the variable 

selection is made after applying one of the defined selection criteria. Using the selection criteria 

of Johnson and Wichern (2007), the principal components (PCs) that together accumulated at 

least 80% of variance of data set were selected, which in this case were PCs from 1 to 3, which 

accumulated 86% of variance. 

 

 
Fig. 19 Screen showing the variable selection by the principal component analysis method. 

 

(c) MULTISPATI-PCA (Fig. 20): the variable selection by MULTISPATI-PCA method 

is similar to PCA analysis has selected the three spatial PCs by the selection criterion of 

Johnson and Wichern (2007).  

 

 
Fig. 20 Screen that presents an example of variable selection results by the MULTISPATI-
PCA method. 
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iv. Data interpolation 

ADB-Map's graphical interfaces for data interpolation allow using the interpolation 

methods IDW, OK, MA, and NN. The interface to select the interpolator and determine its 

parameters was implemented (Fig. 21) to determine the best method of interpolation between 

OK (if there is spatial dependence in the data), or IDW (otherwise), which uses ECI and ISI 

indices. 

 

 
a) Selection screen of the best interpolation method (IDW or OK) and its parameters 

 
b) ISI result for 2018/2019 soybean yield 

 
c) ISI result for 2019/2020 soybean yield 

Fig. 21. Graphical interfaces (a) to select the best interpolation method, Inverse Distance 
Weighting (IDW) or Ordinary Kriging (OK); Ranking of the ten best results for soybean yield 
during the (b) 2018/2019 and (c) 2019/2020 crops. 
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The best interpolation method selection between IDW and OK is performed using a 

graphical interface (Fig. 21a) in which the parameters for IDW and OK interpolators are 

defined. For IDW, exponents’ range and the neighbors’ range to be analyzed are defined. For 

OK, the semivariogram models, adjustment methods, Lambda, number of lags, pairs, cutoff, 

amount of partial sill intervals, and range intervals are defined. The ranking of the best models 

(Fig. 21b and Fig. 21c) is done in descending order of the best performance. Ten of them are 

presented, but the list is long and varies according to the number of parameters selected in 

the analysis. From this list, someone can select the method/model to interpolate. According to 

the harvests, the interpolator selection result changed (SY_18/19, Fig. 21b; SY_19/20; Fig. 

21c). IDW was the best interpolator for the two years of soybean yield, but it varied the 

exponent value and the optimal number of neighbors. The second to the tenth position of ISI 

in variable SY_18/19 indicates the OK interpolator, but in variable SY_19/20, they indicate 

IDW. All geostatistical models were eliminated during the interpolator selection for SY_19/20, 

as this variable has a pure nugget effect. 

It was possible to obtain the semivariogram graph with the adjusted theoretical model 

for each resulting geostatistical model presented on an ADB-Map screen. Considering only the 

result of OK interpolator, we generate the semivariogram for variable SY_18/19 (Fig. 22a), 

adjusted with the exponential model (Nugget effect = 0.14, partial sill = 0.17, and range = 

98 m). The semivariogram of variable SY_19/20 (Fig. 22b) was generated considering pure 

nugget effect (Nugget effect = 0.29, partial sill = 0 and range = 0). 

 

 

(a) SY_18/19 semivariogram adjusted by the 
exponential model 

 

(b) SY_19/20 semivariogram adjusted by 
pure nugget effect 

Fig. 22 Semivariogram of soybean yield variables in crops (a) 2018/2019 and (b) 2019/2020 
considering the best geostatistical model selected in the interpolator selection process. 

 

SY_18/19 and SY_19/20 sample grids were interpolated according to the parameters 

obtained during the interpolator selection (Fig. 22), from the first to the tenth position of ISI 

(Table 7). The maps were divided into four classes by equal distances, considering the 
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minimum and maximum values among the ten maps. The maps differed from the first map 

(considered as reference) from 3.20% to 4.24% (by CRD) in SY_18/19 variable, from 0.0% to 

0.15% (by CRD) in SY_19/20 variable. This variation represents on average 119 to 158 

(kg ha-1), in SY_18/19 variable, and 0.07 to 7.38 (kg ha-1), in SY_19/20 variable. 

 

Table 7 Soybean yield sampling grids interpolated according to interpolator selection and ISI 
ranking from first to the tenth position 

Variables 
Interpolator selection index (ISI) ranking 

1 2 3 4 5 6 7 8 9 10 

SY_18/19 

          
 

    
2747 3338 3929 4520 5111 

CRD% 
MAD (kg ha-1) 

Ref. 
3.26% 

121 
3.26% 

121 
3.20% 

119 
3.20% 

119 
3.48% 

129 
3.65% 

136 
3.75% 

139 
4.24% 

158 
3.94% 

147 

SY_19/20 

          
 

    
3878 4481 5084 5687 6290 

CRD% 
MAD (kg ha-1) 

Ref. 
0.002% 
0.101 

0.002% 
0.0998 

0.004% 
0.186 

0.001% 
0.0674 

0.15% 
7.30 

0.15% 
7.38 

0.006% 
0.318 

0.15% 
7.23 

0.15% 
7.17 

Ref.: Reference; ISI: Interpolator selection index; SY_18/19: Soybean yield in 2018/2019 crop; 
SY_19/20: Soybean yield in the 2019/2020 crop. 

 

IDW was considered the best interpolator for the mean of SY_18/19 and SY_19/20 

(mSY), elevation, and silt variables. On the other hand, OK was considered the best for clay, 

sand, PCA 1 to 3, MPCA 1 to 3, and SPR_0-20 variables (Table 8). 
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Table 8 Interpolator selection analysis and thematic maps of the studied variables  

Varia-
bles 

Selected 
interpolator 

Interpolator 
parameters 

Semivariogram 
(Interpolation by 
Ordinary kriging) 

Thematic 
Map 

Mean 
soybean 

yield 
(mSY) 

IDW 
Exponent: 2 
Neighbors: 9 

 

  

Elevation IDW 
Exponent: 6 
Neighbors: 4 

 

 

Sand 
Ordinary 
Kriging 

Model: Matérn 1 
Method: OLS 
Nugget Effect: 

0.400 
Partial Sill: 1.192 

Range: 392 m 
 

 

Clay 
Ordinary 
Kriging 

Model: Matérn 2 
Method: OLS 

Nugget Effect: 10.4 
Partial Sill: 5.61 

Range: 94 m 

 
 

Silt IDW 
Exponent: 1 
Neighbors: 9 
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Varia-
bles 

Selected 
interpolator 

Interpolator 
parameters 

Semivariogram 
(Interpolation by 
Ordinary kriging) 

Thematic 
Map 

PC1 
Ordinary 
Kriging 

Model: Matérn 1.5 
Method: OLS 

Nugget Effect: 1.74 
Partial Sill: 4.53 
Range: 392 m 

 

 

PC2 
Ordinary 
Kriging 

Model: Matérn 2 
Method: OLS 

Nugget Effect: 0.52 
Partial Sill: 5.87 
Range: 392 m 

 

 

PC3 
Ordinary 
Kriging 

Model: Matérn 1 
Method: WLS 

Nugget Effect: 0.59 
Partial Sill: 0.81 
Range: 172 m 

 

 

MPCA1 
Ordinary 
Kriging 

Model: Gaussian 
Method: WLS 
Nugget Effect: 

0.141 
Partial Sill: 2.99 
Range: 392 m  

 

MPCA2 
Ordinary 
Kriging 

Model: Gaussian 
Method: OLS 
Nugget Effect: 

0.950 
Partial Sill: 1.84 
Range: 392 m  
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Varia-
bles 

Selected 
interpolator 

Interpolator 
parameters 

Semivariogram 
(Interpolation by 
Ordinary kriging) 

Thematic 
Map 

MPCA3 
Ordinary 
Kriging 

Model: Matérn 2 
Method: WLS 
Nugget Effect: 

0.958 
Partial Sill: 0.826 

Range: 245 m  

 

SPR_0-
20 

Ordinary 
Kriging 

Model: Matérn 2 
Method: WLS 
Nugget Effect: 

107717 
Partial Sill: 83622 

Range: 181 m  

 
IDW: Inverse distance weighting; OLS: Ordinary least squares; WLS: Weighted least squares. 

 

v. Clustering data 

In the graphical interface for data clustering (Fig. 23), variables (layers), the clustering 

method, its parameters, and the number of classes are chosen to carry out the clustering. A 

new grid is generated in ADB-Map for each number of chosen classes. 

 

  
a) Configure analysis b) Number of classes and layers name 

Fig. 23 Graphical user interfaces for data clustering: configure analysis (a) and definition of 
class numbers and the name of the new layers. 

 

The grids interpolated from the variables selected in the study were clustered into 2, 3, 

and 4 classes To demonstrate the data clustering process by Fuzzy C-means (FCM; Table 9) 

method, as it follows: 
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• SCM_EL: Elevation variable clustering, selected by SCM method; 

• SCM_EL-MSY: Clustering of the elevation variable, selected by SCM method, 

with the addition of the nmSY variable; 

• PCA_1-3: principal components (1 to 3) selected by Johnson and Wichern 

(2007) and Ferreira (1996) criteria; 

• PCA_1-2: principal components (1 to 2) selected by Kaiser (1960) criterion; 

• MPCA_1-3: spatial principal components (1 to 3) selected by Johnson and 

Wichern (2007) criterion. 
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Table 9 Management zones delineated with the variables selected by SCM, PCA, and 
MULTISPATI-PCA selection methods, clustered into 2, 3, and 4 classes 

Selection method 2 classes 3 classes 4 classes 

SCM _EL 

   

SCM_EL-MSY 

   

PCA_1-3 

   

PCA_1-2 

   

MPCA_1-3 
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Kappa index showed that the agreement among the designs divided into two classes 

was, for the most part, very strong (Table 10). Moderate agreement was obtained to compare 

PCA_1-3 x PCA_1-2. In the division into three classes, comparisons among MZs varied from 

no agreement to very strong agreement, which was obtained only in PCA_1-2 x MPCA_1-3 

and SCM_EL x SCM_EL-MSY. In the division into four classes, the comparisons varied from 

no agreement to strong agreement, and in most cases, they were weak or no agreement. 

 

Table 10 Agreement between management zones (MZs) measured by Kappa coefficient (Kp) 
and Global accuracy (GA)  

NC VSM 
Variable selection method 

SCM_EL SCM_EL-MSY PCA_1-3 PCA_1-2 

2 

MPCA_1-3 0.96 (VS) – 0.98 0.82 (VS) – 0.91 0.89 (VS) – 0.94 0.94 (VS) – 0.97 
PCA_1-2 0.93 (VS) – 0.97 0.88 (VS) – 0.94 0.46 (M) – 0.64  
PCA_1-3 0.91 (VS) – 0.96 0.72 (S) – 0.86   

SCM_EL-MSY 0.81 (VS) – 0.91    

3 

MPCA_1-3 0.21 (W) – 0.47 0.27 (W) – 0.52 0.63 (S) – 0.76 0.80 (VS) – 0.87 
PCA_1-2 0.27 (W) – 0.51 0.34 (W) – 0.57 0.46 (M) – 0.67  
PCA_1-3 0.04 (N) – 0.36 0.04 (N) – 0.36   

SCM_EL-MSY 0.87 (VS) – 0.91    

4 

MPCA_1-3 0.49 (M) – 0.62 0.32 (W) – 0.50 0.26 (W) – 0.45 0.19 (N) – 0.45 
PCA_1-2 0.22 (W) – 0.41 -0.09 (N) – 0.17 0.78 (S) – 0.84  
PCA_1-3 0.23 (W) – 0.42 -0.11 (N) – 0.17   

SCM_EL-MSY 0.04 (N) – 0.29    

NC: number of classes; VSM: Variable selection method; Kappa agreement: N = no agreement 
(Kp ≤ 0.2); W = weak (0.2 < Kp ≤ 0.4); M = moderate (0.4 < Kp ≤ 0.6); S = strong (0.6 < Kp ≤ 
0.8); VS = very strong (0.8 < Kp ≤ 1). 

 

vi. Rectification of management zones 

MZs rectification (Betzek et al., 2018) eliminates spots or isolated pixels in data 

clustering process. In ADB-Map rectification module, there is a graphical interface 

configuration screen (Fig. 24), where someone chooses the rectification method, the brush 

(kernel) format and size, and the number of interactions over MZ. The small spots observed 

(three and four classes) were removed with the rectification process (Table 11).  

 

  

a) Screen to configure the process b) Screen to defining new layers' name 
Fig. 24 Graphical user interfaces for management zone rectification: (a) selecting the layers 
to be rectified and the methods to be used (b) and defining the name of the rectified layers. 
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Table 11 Management zones, original and rectified, delineated with the variables selected by 
SCM, PCA, and MULTISPATI-PCA selection methods, clustered into 2, 3, and 4 classes 

 2 classes 3 classes 4 classes 
 MZo MZr MZo MZr MZo MZr 

S
C

M
_
E

L
 

      

Kp/GA 0.99 – 1.00 0.99 – 0.99 0.97 – 0.97 

S
C

M
_
E

L
-M

S
Y

 

      

Kp/GA 1.00 – 1.00 0.96 – 0.97 0.96 – 0.97 

P
C

A
_
1
-3

 

      

Kp/GA 1.00 – 1.00 1.00 – 1.00 1.00 – 1.00 

P
C

A
_
1
-2

 

      

Kp/GA 1.00 – 1.00 1.00 – 1.00 1.00 – 1.00 

M
P

C
A

_
1
-3

 

      

Kp/GA 1.00 – 1.00 1.00 – 1.00 1.00 – 1.00 

Kp: Kappa; GA: Global Agreement; MZo: Original management zone: MZr: Rectified 
management zone. 
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vii. Evaluation of the management zones 

The delineated MZs were evaluated in the “Statistics” graphic interface by calculating 

the quality indices of each cluster (Fig. 25a), descriptive statistical analysis of the target 

variable (Fig. 25b), and the calculation of agreement indices among the maps (Fig. 26). The 

overall cluster quality indices (Fig. 25a) are (i) the smoothness index (SI), (ii) average silhouette 

coefficient (ASC), (iii) fuzzy performance index (FPI), (iv) modified entropy partition (MPE), (v) 

partition coefficient (PC), (vi) partition entropy coefficient (PE), (vii) Xie and Beni index (XB), 

(viii) variance reduction (VR%),  and (iv) relative efficiency (RE). Statistical measures of 

position (mean, median, and quartiles), dispersion (standard deviation, variance, and 

coefficient of variation), skewness, kurtosis, and Tukey's mean difference test are obtained by 

clustering class (Fig. 25b).  

 

 
a) Quality indices of each grouping 

 
b) Descriptive statistical analysis of the target variable  

Fig. 25 Graphical user interface for descriptive statistical analysis by class and obtaining 
grouping quality indices: (a) quality indices for each cluster and (b) descriptive statistical 
analysis of the target variable. 

 

In the statistical analysis module, it is possible to calculate the Kappa and Global 

Accuracy indices (Fig. 26a) ammong TMs (as long as discretized) and MZs, the CRD and MAD 

quantitative concordance indices (Fig. 26b), and the composite indices for the MZs quality 

evaluation (Fig. 26c). 
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a) Agreement indices b) Quantitative agreement indices 

 
c) Composite indices of MZs quality 

Fig. 26 Tabs of the statistical analysis interface to calculate (a) the Kappa and Global Accuracy 
indices, (b) the quantitative agreement indices, and (c) the composite indices of management 
zone quality. 

 

MZs presented smoothness (SI) above 96%, with the highest smoothness being 99% 

(Table 12). As observed by other authors (Betzek et al., 2018), SI decreased with classes. The 

best ASC was obtained in SCM_EL design in four classes (0.65) and the worst in MPCA_1-3 

in two classes (0.35). SCM_EL design, divided into three and four classes, obtained the best 

ICVI (0.33) and the MPCA_1-3 design into two classes, the worst (0.96). The VR% varied from 

2% (PCA_1-3; 2 classes) to 50% (SCM_EL-MSY; 4 classes). When divided into two classes, 

the mean soybean yield was different among all classes only in SCM_EL, SCM_EL-MSY, 

PCA_1-2, and MPCA_1-3 designs. The lowest MGQI value was found in SCM_EL design, in 

four classes (0.53), and the highest in MPCA_1-3 design, in two classes (2.08).  
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The procedure to select the best method combination to MZs delineation was carried 

out in two steps: (i) the Tukey's test was applied to identify whether the generated classes 

showed significant differences in terms of the normalized average yield values; (ii) it was 

chosen SCM_EL_2-classes as the best clustering method combination by the best MGQI (the 

lowest, 0.71). 

 

viii. Nutrient recommendation 

ADB-Map has modules for nutrient recommendation (Beneduzzi, 2020) and lime 

recommendation (Moreira, 2019). With this, graphical interfaces are available to calculate the 

amount of fertilizer needed to correct the nutrients phosphorus (Fig. 27a), potassium (Fig. 27b), 

and nitrogen (Fig. 27c) on soil, as well as the lime recommendation graphical interface (Fig. 

28). The interfaces are similar, but some fields differ due to the parameters needed to perform 

the calculations. 

 

 
 

 
(a) Phosphorus 

recommendation 
(b) Potassium  

(c) recommendation 
(c) Nitrogen recommendation 

Fig. 27 Screens to calculate phosphorus, potassium, and nitrogen recommendation. 
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Table 12 Evaluation statistics of management zones delineated with the elevation variable, selected by SCM method (SCM_EL) 

VSM NC 
Tukey's Test 

SIr% ASC FPI MPE VR% ICVI FIr% MGQI 
C1 C2 C3 C4 

SCM_EL 

2 

4.30a 4.49b - - 99 0.64 0.05 0.07 7.6 0.45 0 0.71 
SCM_EL-MSY 4.26a 4.62b - - 99 0.53 0.08 0.10 28.6 0.42 0 0.81 
PCA_1-3 4.32a 4.45a - - 99 0.39 0.15 0.19 2.2 0.80 0 2.07 
PCA_1-2 4.27a 4.55b - - 99 0.51 0.08 0.10 18.2 0.49 0 0.96 
MPCA_1-3 4.30a 4.49b - - 99 0.35 0.21 0.26 7.6 0.96 0 2.08 

SCM_EL 

3 

4.27a 4.27a 4.61b - 97 0.62 0.04 0.05 23.6 0.33 0 0.55 
SCM_EL-MSY 4.14a 4.36a 4.61b - 97 0.45 0.13 0.13 31.3 0.45 0 1.05 
PCA_1-3 4.26a 4.37a 4.63b - 98 0.44 0.11 0.12 16.6 0.46 0 0.98 
PCA_1-2 4.21a 4.28a 4.58b - 98 0.48 0.09 0.10 23.0 0.46 0 0.98 
MPCA_1-3 4.24a 4.29a 4.63b - 98 0.39 0.15 0.16 23.6 0.64 0 1.67 

SCM_EL 

4 

4.27a 4.33ab 4.36ab 4.63b 96 0.65 0.03 0.03 13.1 0.33 0 0.53 
SCM_EL-MSY 4.14a 4.35b 4.40b 4.81c 96 0.41 0.13 0.12 50.1 0.36 25 1.13 
PCA_1-3 4.19a 4.31a 4.40ab 4.63b 97 0.45 0.10 0.10 17.6 0.55 0 1.30 
PCA_1-2 4.21a 4.24a 4.40ab 4.63b 97 0.47 0.10 0.10 22.8 0.49 0 1.08 
MPCA_1-3 4.24a 4.30a 4.30a 4.72b 97 0.44 0.13 0.12 24.3 0.55 0 1.29 

VSM: variable selection method (SCM - Spatial Correlation Matrix, PCA - Principal Component Analysis, and MPCA - MULTISPATI-PCA); NC: Number 
of classes; SIr%: Smoothness index of the rectified management zone; ASC: Average silhouette coefficient; FPI: Fuzziness performance index; MPE: 
Modified partition entropy; VR%: Variance reduction; ICVI: Improved cluster validation index; Fir%: Fragmentation index of the rectified management 
zone; MGQI: Modified global quality index; Mean followed by the same letters did not differ by Tukey test at 5% probability. Clusterings that presented 
all statistically different classes are highlighted in gray. The best clustering for each field is highlighted in blue. 
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Fig. 28 Screen to calculate lime recommendation. 

 

ix. User’s evaluation of the software 

As for the general functionality of the ADB-Map: (i) it was consensus that the 

functionalities offered by the ADB-Map are appropriate for the AP (Fig. 29a), (ii) on the 

execution of requests made to ADB-Map, the agreement was higher (50%) and total (50%) 

that they are correctly executed (Fig. 29b), (iii) in the TMs creation and MZs defining, 21% (Fig. 

29c) and 7% (Fig. 29d) of respondents moderately agree that they are generated correctly; 

however, most of them have a great or total agreement (Fig. 29c and Fig. 29d), and (iv) most 

interviewers (93%) agree that the ADB-Map prevents unauthorized access to software and 

data (Fig. 29e). 

 

 
     

1-Disagreement 2-Lowest 3-Moderate 4-Great 5-Total 

Fig. 29 Evaluation of AgDataBox-Map’s general functionality. PA: precision agriculture, TMs: 
thematic maps, and ZMs: management zones. 

 

Most of the features offered by the ADB-Map (Fig. 30) were considered of great or total 

importance. However, there are some answers that users do not know to answer (Interpolation 

by MA, Interpolation by NN, Spatial Correlation Matrix, Grid cutting out, and Agreement 

indices). 

0% 0% 0% 0%
7%

0% 0% 0% 0% 0%0% 0%

21%

7%
0%0%

50%

36%
29%

7%

100%

50%
43%

64%

86%

0%

20%

40%

60%

80%

100%

a) Are the features
appropriate for PA?

b) Are requests
executed correctly?

c) Are TMs
generated
correctly?

d) Are MZs
generated
correctly?

e) Is there
unauthorized
access to the

software and data?
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1-Disagreement 2-Lowest 3-Moderate 4-Great 5-Total Do not know 

Fig. 30 AgDataBox-Map evaluation of user perception of the importance of ADB-Map features.
  

 

In the reliability aspect, most interviewers agree that the ADB-Map does not frequently 

fail, but 14% moderately agree (Fig. 31a). It is important that it reacts to software failure events, 

gets back up and running, and makes users' data available for use. In this aspect, most 

respondents indicated great or total agreement that the ADB-Map returns to work in case of 

failure (Fig. 31b). In addition, there was a total agreement regarding the availability of user 

data in case of application failure (Fig. 31c). 

 

 
      

1-Disagreement  2-Lowest 3-Moderate 4-Great 5-Total 

Fig. 31 AgDataBox-Map user evaluation of application reliability. 
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Regarding the software usability evaluation: a total agreement of users prevails in 

aspects (i) ease of access to the ADB-Map (Fig. 32a, 93%), (ii) ease of learning to use the 

software (Fig. 32c, 93%), (iii) adequacy of layer categories (Fig. 32d, 71%), and (iv) adequacy 

of font type, text size, page colors, and shadows (Fig. 32e, 64%). Furthermore, it prevails great 

and total agreement regarding the ease-of-use aspect (Fig. 32b, 93%). 

 

 
     

1-Disagreement 2-Lowest 3-Moderate 4-Great 5-Total 

Fig. 32 AgDataBox-Map user evaluation of usability aspects. 
 

When investigating the ease-of-use aspect by features available in the ADB-Map (Fig. 

33), it is clear that the predominance of responses is in total agreement that it is easy to use. 

However, some of the features of the ADB-Map were not used by a small part of the 

interviewers (Boundaries definition, OK Interpolation, MA interpolation, NN interpolation, MZ 

rectification, SCM, Grid cutting out, PCA, Composite indices of MZs quality, agreement indices, 

Fast track – TM, and Nutrient/lime recommendation). 
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1-Disagreement 2-Lowest 3-Moderate 4-Great 5-Total Do not know 

Fig. 33 AgDataBox-Map user evaluation of the features ease of use. 
 

In the application efficiency aspect, it is clear that the interviewers were completely 

satisfied with the time to execute the seven evaluated features (Fig. 34), even with the 

interpolator selection process (Fig. 34b), which consumes the most processing resources and 

server memory, was not a cause for dissatisfaction by users. 

 

 
      

1-Disagreement 2-Lowest 3-Moderate 4-Great 5-Total Do not know 

Fig. 34 AgDataBox-Map user evaluation of efficiency regarding the execution time of available 
features. 

 

Among the interviewers who observed problems and failures due to software defects, 

69% had a total and 31% great satisfaction with the time taken to solve problems (Fig. 35). 
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1-Unsatisfied 2-Lowest 3-Moderate 4-Great 5-Total 

Fig. 35 AgDataBox-Map user evaluation regarding the application maintainability. 
 

In terms of application portability, note that the application was run on Google Chrome, 

Mozilla Firefox, Microsoft Edge, and Safari browsers (Fig. 36). Most of the interviewers ran 

ADB-Map on Google Chrome (86%) and were completely satisfied with the quality of running 

on this browser. Interviewers did not use Opera, Internet Explorer, and other browsers. 

 

 
      

1-Unsatisfied 2-Lowest 3-Moderate 4-Great 5-Total Do not know 

Fig. 36 Browsers used by interviewers to run the AgDataBox-Map. 
 

The Windows operating system (OS) was used by 79% of interviewers who were totally 

satisfied with running the ADB-Map (Fig. 37). Linux and iOS were used by a small part of the 

interviewers, who showed great and total satisfaction when the ADB-Map was run on these 

OSs. 

 

 
      

1-Unsatisfied 2-Lowest 3-Moderate 4-Great 5-Total Do not know 

Fig. 37 Operational systems used by interviewers to run the AgDataBox-Map. 
 

All interviewers used the ADB-Map on computers or notebooks, and only 7% also used 

it on mobile devices (Fig. 38). On both types of devices, the satisfaction of use was total. 
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1-Unsatisfied 2-Lowest 3-Moderate 4-Great 5-Total Do not know 

Fig. 38 Electronic devices used by interviewers to run the AgDataBox-Map. 
 

In all categories of the quality model that the ADB-Map was evaluated, a score great 

than 70% was obtained (Fig. 39). Furthermore, the global score for the user’s quality evaluation 

was 92%. Therefore, we consider the software well accepted by users. 

 

 
Fig. 39 Score obtained in the AgDataBox-Map evaluation in each category of the software 
quality model. 

 

6.4 Conclusions 

The application developed in this research allowed quickly generating TMs and 

delineating MZs, as it provides user-friendly graphical interfaces. Moreover, the features could 

be integrated and consumed from ADB-MSA. 

In the quality evaluation performed by the user, the ADB-Map application received a 

score of 92%, considering the criteria defined by the researchers. Thus, we consider the 

application accepted by the community and generate TMs, and delineate MZs. 

The SCM_EL (elevation variable selected by the spatial correlation matrix) design, 

divided into two classes, was considered the best in the case study. 

The new MGQI index evaluated the MZs quality, considering the composition of several 

indices provided by the ADB-Map. 
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Appendix A 

 

Data normalization methods 

• Range (Anderberg, 1973; Milligan and Cooper, 1988 – Equation A1): 

𝑍𝑖𝑁 =
𝑋𝑖 − 𝑀𝑒𝑑𝑖𝑎𝑛

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)
, (A1) 

where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; 𝑀𝑖𝑛(𝑋) – minimum 

value of data set; 𝑀𝑎𝑥(𝑋) – maximum value of the data set. 

• Mean (Swindel, 1997 – Equation A2): 

𝑍𝑖𝑁 =
𝑋𝑖

�̅�
, (A2) 
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where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; �̅� – sample mean of 

data set. 

• Standard Score or Z-Score (Larscheid and Blackmore, 1996 – Equation A3): 

𝑍𝑖𝑁 =
𝑋𝑖 − �̅�

𝑠
, (A3) 

where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; �̅� – sample mean of 

data set; 𝑠 – standard deviation of data set. 

• Min-Max method (Milligan and Cooper, 1988 – Equation A4): 

𝑍𝑖𝑁 =
𝑋𝑖 − 𝑀𝑖𝑛(𝑋)

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)
, (A4) 

where, 𝑍𝑖𝑁 – normalized observation 𝑖; 𝑋𝑖 – original data value 𝑖; 𝑀𝑖𝑛(𝑋) – minimum 

value of data set; 𝑀𝑎𝑥(𝑋) – maximum value of data set. 

 

The Bivariate Moran’s I (Reich, 2008; Schepers et al., 2004 – Equation A5):  

𝐼𝑌𝑍 =
∑ ∑ 𝑤𝑖𝑗𝑦𝑖𝑧𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑊√𝑚𝑌
2𝑚𝑍

2
, (A5) 

 

where 𝐼𝑌𝑍: Degree of spatial association between 𝑌 and 𝑍 variables, ranging from -1 to 1, as it 

is followed: positive correlation 𝐼𝑌𝑍 > 0 and negative correlation 𝐼𝑌𝑍 < 0; 𝑤𝑖𝑗: corresponds to the 

𝑖𝑗 element of spatial association matrix, calculated by  𝑤𝑖𝑗 = (1/(1 + 𝐷𝑖𝑗)), so that 𝐷𝑖𝑗 is the 

distance between 𝑖 e 𝑗 points; 𝑦𝑖  and 𝑧𝑖 : transformed 𝑦 and 𝑧 values, respectively, at point 𝑖 

(𝑖 =  1, 2, … , 𝑛), to get a zero average by the formulas 𝑦𝑖 = (𝑦𝑖 − �̅�) and 𝑧𝑗 = (𝑧𝑗 − �̅�), where �̅� 

and �̅� are the sample means of 𝑌 and 𝑍 variables; 𝑊 : it is the sum of spatial association 

degrees obtained by 𝑤𝑖𝑗 matrix, for 𝑖 ≠ 𝑗; 𝑚𝑌
2 and 𝑚𝑍

2: sample variance of 𝑌 and 𝑍 variables, 

respectively. 

 

The interpolator selection index (ISI – Bier and Souza, 2017 – Equation A6): 

𝐼𝑆𝐼 = {
𝑎𝑏𝑠(𝑀𝐸)

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝑎𝑏𝑠(𝑀𝐸)]

+
[𝑆𝐷𝑀𝐸 − 𝑚𝑖𝑛 |

𝑗
𝑖 = 1

𝑆𝐷𝑀𝐸]

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝑎𝑏𝑠(𝑆𝐷𝑀𝐸)]

}, (A6) 

where 𝑀𝐸 (Equation A7) is the mean error; 𝑆𝐷𝑀𝐸 (Equation A8) is the standard deviation of 

mean error of crossed validation; 𝑛 is the number of data; 𝑎𝑏𝑠 is the module value; 𝑚𝑖𝑛|𝑖=1
𝑗

 is 

the lowest value obtained among the compared 𝑗  models; 𝑚𝑎𝑥|𝑖=1
𝑗

 is the highest value 

obtained among the compared 𝑗 models. 

𝑀𝐸 =
1

𝑛
∑ 𝑍(𝑠𝑖) − �̂�(𝑠𝑖)

𝑛

𝑖=1

, (A7) 
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𝑆𝐷𝑀𝐸 = √
1

𝑛
∑ (𝑍(𝑠𝑖) − �̂�(𝑠𝑖))

2
𝑛

𝑖=1

, (A8) 

where 𝑛 is the number of data; 𝑍(𝑠𝑖) is the value observed at the point 𝑠𝑖; �̂�(𝑠𝑖) is the predicted 

value at the point 𝑠𝑖. 

The statistic called error comparison index (ECI – Souza et al., 2016 – Equation A9) 

was used to determine the best semivariogram fit in each 𝑗 model analyzed, which assumes 

that a lower value for the model is better stochastic methods of interpolation. The best 

semivariogram of each 𝑗 model was used in ISI analysis. 

𝐸𝐶𝐼𝑖 =
|𝑅𝑀𝐸𝑖|

10−10 + 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
|𝑅𝑀𝐸|

+
|𝑆𝐷𝑅𝑀𝐸𝑖 − 1|

10−10 + 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
|𝑆𝐷𝑅𝑀𝐸 − 1|

, 
(A9) 

where 𝐸𝐶𝐼𝑖  is the error comparison index for model 𝑖; and 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
 is the highest value 

among the compared 𝑗 semivariograms. The arbitrary constant 10-10 was included to avoid 

division by zero. 

The reduced mean error (RME – Equation A10) and the standard deviation of the 

reduced mean error (SDRME – Equation A11) were determined by ordinary kriging cross-

validation. 

𝑅𝑀𝐸 =
1

𝑛
∑

𝑍(𝑠𝑖) − �̂�(𝑠𝑖)

�̂�(�̂�(𝑠𝑖))

𝑛

𝑖=1

, (A10) 

𝑆𝐷𝑅𝑀𝐸 = √
1

𝑛
∑

|𝑍(𝑠𝑖) − �̂�(𝑠𝑖)|

�̂�(�̂�(𝑠𝑖))

𝑛

𝑖=1

, (A11) 

where 𝑍(𝑠𝑖) − �̂�(𝑠𝑖) is the prediction error associated wbith estimating yield at spatial location 

𝑠𝑖; 𝑍(𝑠𝑖) is the observed value; �̂�(𝑠𝑖) is the estimated value obtained from the ordinary kriging 

cross-validation; �̂�(�̂�(𝑠𝑖)) is the estimated standard deviation associated with the estimated 

value, and 𝑛 is the sample size. 

 

The selection of the best semivariogram model  

It considers three selection criteria when performing the best interpolator analysis: 

1. A minimum of effective spatial dependence (%ESD) should be observed. The 

effective spatial dependence index (%ESDI – Equation A12), a new measure of 

the degree of spatial dependence, must be greater than 25%. This index 

considers the semivariance (𝛾(1)) in the first lag distance (h(1)).  

%𝐸𝑆𝐷𝐼 =
𝐶 − 𝛾(1)

𝐶
∗ 100, (A12) 
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where 𝐶 is the sill (nugget effect + partial sill) and 𝛾(1) is the first semivariance of 

the semivariogram. The %ESDI was classified as %SDI. 

2. The selected semivariogram model should contemplate a fraction of SD due only 

to the first semivariance significance index (%𝛾(1), Equation A13) lower than 

50%. 

%𝛾(1) =
𝛾(1) − 𝐶0

𝐶1
∗ 100, (A13) 

where 𝐶0  is the nugget effect, 𝐶1  is the partial sill, and 𝛾(1)  is the first 

semivariance of the semivariogram. 

3. The degree of inclination between the nugget effect and the last adjusted 

semivariance, estimated by the slope of the model ends index (%SMEI, Equation 

A14) should be greater than 20%. Otherwise, there is an indication of a pure 

nugget effect. 

%𝑆𝑀𝐸𝐼 = (1 −
𝛾𝑍(0)

10−10 + 𝛾𝑍(𝑛)
) ∗ 100 = (1 −

𝐶0

10−10 + 𝛾𝑍(𝑛)
) ∗ 100, (A14) 

where 𝛾𝑍  is the adjusted theoric semivariance, 𝛾𝑍(0) = 𝐶0 is the nugget effect, 

and 𝛾𝑍(𝑛) is the last adjusted theoretic semivariance, correspondent to the cutoff. 

The arbitrary constant 10-10 was included to avoid division by zero. 

 

Data interpolation 

The data interpolation methods available in ADB-Map are:  

a) Inverse Distance Weighting (IDW – Equation A15): is calculated by: 

Ẑ𝑖 =

∑ (
1

𝑑𝑖
𝑝 ∗ 𝑍𝑖)𝑛

𝑖=1

∑ (
1

𝑑𝑖
𝑝)𝑛

𝑖=1

, (A15) 

where, Ẑ𝑖  – interpolated value; 𝑍𝑖  – sampled attribute value; 𝑑𝑖
𝑝

 – Euclidean 

distance between the ith neighborhood point and the sampled point, elevated to the 

power of p > 0. 

b) Ordinary Kriging (OK – Equation A16) is made after adjusting the semivariogram 

model, and the value to be estimated at the point of interest. 

�̂�(𝑥0) = ∑ 𝜆𝑖 ∗ Z

𝑛

𝑖=1

(𝑥𝑖), (A16) 

where �̂�(𝑥0) – estimated value at a given location; 𝜆𝑖  – weight attributed to the 

sample values; 𝑍(𝑥𝑖)  – sampled attribute value; 𝑛  – number of neighboring 

locations employed for interpolating the point, where the summation of the 𝜆𝑖 

weights must be equal to one. 



180 
 
 

 

c) Moving Average (MA – Equation A17): estimates the non-sampled point values 

based on the mean of the sampled points within a predefined radial distance as 

given i. The points within the predefined radial distance are equally weighted (i.e., 

weight is 1/n) and the resulting value is the arithmetic average of the identified 

neighboring data (Bazzi et al., 2015). 

Ẑ𝑖 =
∑ 𝑍𝑖

𝑛
𝑖=1

n
, (A17) 

where: Ẑ𝑖 is the interpolated value of the non-sampled point; 𝑍𝑖 is the neighboring 

sample point; n is the number of neighboring sample points used for interpolation 

of the non-sampled point. 

 

Indices for evaluation of the management zones quality 

a) Variance reduction (VR% – Xiang et al., 2007; Schenatto et al., 2017 – Equation 

A18): is calculated for a variable, with the expectation that the sum of data variances 

for each MZ is smaller than the total variance of the field.  

𝑉𝑅% = (1 −
∑ 𝑊𝑖 ∗ 𝑉𝑀𝑍𝑖

𝑐
𝑖=1

𝑉𝑓𝑖𝑒𝑙𝑑
) ∗ 100, (A18) 

where c is the number of MZs;  is the field rate of i-th MZ to the total field; Vmzi is 

the data variance of i-th MZ; Vfield is the field data variance. 

b) Fuzziness Performance Index (FPI – McBratney and Moore, 1985; Fridgen et al., 

2004 – Equation A19): measures the degree of separation between the fuzzy c 

groups generated from a data set. FPI varies between 0 and 1.  

𝐹𝑃𝐼 = 1 −
𝑐

(𝑐 − 1)
[1 − ∑ ∑(

𝑚𝑖𝑗)2

𝑛

𝑐

𝑖=1

𝑛

𝑗=1

], (A19) 

where c is the number of groups; n is the number of elements in data set; mij is the 

element of the fuzzy belongs to matrix M. 

c) Modified Partition Entropy (MPE – McBratney and Moore, 1985; Fridgen et al., 

2004 – Equation A20): estimates the difficulty level to organize c groups.   

𝑀𝑃𝐸 =
− ∑ ∑ 𝑚𝑖𝑗 𝑙𝑜𝑔( 𝑚𝑖𝑗)/𝑛𝑐

𝑖=1
𝑛
𝑗=1

𝑙𝑜𝑔 𝑐
, (A20) 

where c is the number of groups; n is the number of elements in the data set; mij is 

the element of the fuzzy belongs to matrix M. 

d) Improved Cluster Validation Index (ICVI – Gavioli et al., 2016 – Equation A21):  

is a composition of FPI, MPE, and VR% indices. 

𝐼𝐶𝑉𝐼𝑖 =
1

3
∗ (

𝐹𝑃𝐼𝑖

𝑀𝑎𝑥{𝐹𝑃𝐼}
+

𝑀𝑃𝐸𝑖

𝑀𝑎𝑥{𝑀𝑃𝐸}
+ (1 −

𝑉𝑅%𝑖

𝑀𝑎𝑥{𝑉𝑅%}
)), (A21) 

where FPIi  is FPI value of the i-th variable selection method; MPEi  is the MPE 

value of the i-th variable selection method; VR%i  is the VR% value of the i-th 

iW
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variable selection method; Max{Index_X} represents the maximum value of the 

Index_X among the n variable selection methods. 

e) Analysis of Variance (ANOVA): Tukey test identified whether the sub-regions of 

design in MZs present significant differences on the average value of the target 

variable. 

f) Smoothness Index (SI% – Gavioli et al., 2016 – Equation A22): gives pixel-by-

pixel frequency of change of classes in a thematic map in horizontal and vertical 

directions and along the diagonal. It also characterizes the smoothness of MZs 

boundary curves. For example, if a map has an entirely homogeneous area, SI 

equals 100% due to the lack of class changes. On the other hand, if the map is 

entirely generated with random values, SI% would have a value close to 0. 

𝑆𝐼 = 100 − (
∑ 𝑁𝑀𝐻𝑖

𝑘
𝑖=1

4𝑃𝐻
+

∑ 𝑁𝑀𝑉𝑗

𝑘
𝑗=1

4𝑃𝑉
+

∑ 𝑁𝑀𝐷𝐷𝑙

𝑘
𝑙=1

4𝑃𝐷𝐷
+

∑ 𝑁𝑀𝐷𝐸𝑚

𝑘
𝑚=1

4𝑃𝐷𝐸
) ∗ 100, (A22) 

where 𝑁𝑀𝐻𝑖
 is the number of changes in row i (horizontal); 𝑁𝑀𝑉𝑗

 is the number of 

changes in column j (vertical); 𝑁𝑀𝐷𝐷𝑙
 is the number of changes in diagonal l (right 

diagonal 𝐷𝐷); 𝑁𝑀𝐷𝐸𝑚
 is the number of changes in diagonal m (left diagonal 𝐷𝐸); k 

is the maximum number of pixels in a row, column, or diagonal; 𝑃𝐻 is the possibility 

of changes in horizontal pixels; 𝑃𝑉 is the possibility of changes in vertical pixels; 𝑃𝐷𝐷 

is the possibility of changes in the right diagonal 𝐷𝐷 ; 𝑃𝐷𝐸  is the possibility of 

changes in the left diagonal 𝐷𝐸. 

g) Average Silhouette Coefficient (ASC – Rousseeuw, 1987 – Equation A23): the 

ASC coefficient is obtained from the silhouette coefficient (SC), an evaluation index 

that measures both levels of satisfactory internal formation and external separation 

of groups. SC value for point p, which is denoted by scp, is calculated using the 

mean of intra-group distances ap and the mean of inter-group distances bp: 

𝑠𝑐𝑝 =
𝑏𝑝 − 𝑎𝑝

𝑀𝑎𝑥(𝑎𝑝, 𝑏𝑝)
, (A23) 

where ap is the mean of distances among point p and all other points in the same 

group; bp is the mean of distances among point p and all points in the closest group 

that contains p. 

h) The group silhouette coefficient (GSC) is obtained by calculating the mean of 

SCs for the points of this group, and the value that corresponds to ASC coefficient 

of k groups is obtained by calculating the mean of GSC values of k groups. ASC 

values vary from -1 to 1; -1 indicates an incorrect clustering, whereas 1 indicates 

groups with the best intra-group formation and the best possible inter-group 

separation. 
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i) Fragmentation index (FI% – Equation A24): considers how higher is the number 

of zones (NMZ) in comparison with the number of classes (NC). The higher FI%, 

the higher is fragmentation.  

𝐹𝐼% = 100
𝑀𝑍 − 𝑐

𝑐
, (A24) 

j) Global Quality Index (GQI – Beneduzzi, 2020 – Equation A25):  aims at finding 

the best number of classes during ZMs delineation, considering the values of ICVI, 

SIr, and FIr: 

𝐺𝑄𝐼𝑖 =  
𝐼𝐶𝑉𝐼𝑖 ∗ (100 + 𝐹𝐼𝑟𝑖)

𝑆𝐼𝑟𝑖

, (A25) 

k) Modified Global Quality Index (MGQI – Equation A26): this coefficient, proposed 

in this work, is an adaptation of GQI to include ASC coefficient. 

𝑀𝐺𝑄𝐼𝑖 =  
𝐼𝐶𝑉𝐼𝑖 ∗ (100 + 𝐹𝐼𝑟𝑖)

𝑆𝐼𝑟𝑖 ∗ 𝐴𝑆𝐶
, (A26) 

 

Indices for comparison among thematic maps and among management zones 

a. Coefficient of relative deviation (CRD – Coelho et al., 2009 – Equation A27): 

calculates the mean difference in modulus of the interpolated values on a thematic 

map compared to a map taken as a reference. 

𝐶𝑅𝐷 = ∑ 𝐴𝐵𝑆(

𝑛

𝑖=1

 
𝑍𝑖𝐵 − 𝑍𝑖𝐴

𝑍𝑖𝐴
), (A27) 

where 𝑍𝑖𝐴 is the estimated value at the location 𝑖 on the reference map, 𝑍𝑖𝐵 is the 

value at location 𝑖  on the map to be compared, and 𝑛  is the total number of 

interpolated locations on the maps.  

b. Mean absolute difference (MAD – Equation A28): computes the mean absolute 

difference among values on both maps. 

𝑀𝐴𝐷 =
∑ 𝐴𝐵𝑆(𝑍𝑖𝐵 − 𝑍𝑖𝐴

𝑛
𝑖=1 ) 

𝑛
, (A28) 

where 𝑍𝑖𝐴 is the value of location (pixel) 𝑖 on the reference map, 𝑍𝑖𝐵 is the value at 

location (pixel) 𝑖  on the map to be compared, and 𝑛  is the total number of 

observations on the maps. 

c. Kappa coefficient (Kp – Cohen, 1960; Congalton, 1991 – Equation A29): 

measures the degree of agreement among MZ maps generated by the clustering 

algorithms. Landis and Koch (1977) proposed the following classification: 0 < Kp ≤ 

0.2 indicates no agreement, 0.2 < Kp ≤ 0.4 weak agreement, 0.4 < Kp ≤ 0.6 

moderate agreement, 0.6 < Kp ≤ 0.8 strong agreement, and 0.8 < Kp ≤ 1 very strong 

agreement. 

𝐾𝑝 =  
{𝑛 ∑ 𝑥𝑖𝑖 −  ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)𝑟

𝑖=1
𝑟
𝑖=1 }

{𝑛2 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)𝑟
𝑖=1 }

, (A29) 
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where 𝑋𝑖𝑖 is the value in row i and column i, 𝑋𝑖+is the sum of line i, and 𝑋+𝑖 is the 

sum of column i of the error matrix, N is the total number of points interpolated and 

sorted by the matrix, and c is the number of classes of the error matrix. 

d. Global accuracy (GA – Foody, 2002 – Equation A30): like Kp, GA measures the 

degree of agreement among maps (MZs) and corresponds to the simple percent 

agreement. 

𝐺𝐴 =
∑ 𝑥𝑖𝑖

𝑐
𝑖=1

𝑛
, (A30) 

where, ∑ 𝑥𝑖𝑖
𝑐
𝑖=1  is the sum of the main diagonal of the error matrix with c classes 

and a total of N samples collected (number of points interpolated). 

 

 

Appendix B - Definition of characteristics and sub-characteristics in each category of 

the quality model presented in the evaluation instrument  

 

Category Characteristic Sub-characteristic 

1 
Functionality 

1.1 Are the software's functionalities 
suitable for Precision Farming? 

 

1.2 In general, what is proposed in 
each feature is done correctly? 

 

1.3 Does the software generate 
maps properly? 

 

1.4 Does the software generate 
Management Zones properly? 

 

1.5 Prevent unauthorized access to 
software and data? 

 

1.6 IMPORTANCE of each feature in 
ADB-Map 

1.6.1 Importing data from a file (sample grids, 
contour, maps, ...) 

1.6.2 Delineate boundaries 

1.6.3 Select the best interpolation method 
(Ordinary Kriging versus Inverse Distance 
Weighting) 

1.6.4 Select interpolation parameter for each 
interpolation method 

1.6.5 Interpolate data by ordinary Kriging 

1.6.6 Interpolate data by Inverse Distance 
Weighting  

1.6.7 Interpolate data by moving average 

1.6.8 Interpolate data by nearest neighbor 

1.6.9 Delineate management zones 

1.6.10 Rectify management zones 

1.6.11 View statistical data 

1.6.12 Spatial correlation matrix 

1.6.13 Variable selection 

1.6.14 Data cleaning 

1.6.15 Grid cutting out 

1.6.16 Principal component analysis 

1.6.17 Quality evaluations indices of 
management zones (FPI, MPE, ICVI, SI) 

1.6.18 Map agreement index (GA and Kappa) 
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1.6.19 Fast Track - Thematic map 

1.6.20 Fast Track - Management zones 

1.6.21 Nutrient recommendation (Nitrogen, 
Phosphorus, and Potassium) 

2 
Reliability 

2.1 It does not frequently have 
software defects 

 

2.2 When failures occur, it reacts 
well (it starts working again) 

 

2.3 When failures occur, are data 
already created still available in 
ADB-Map? 

 

3 
Usability 

3.1 Is access to ADB-Map easy?  

3.2 Is it easy to understand the logic 
of available resources and their 
applicability? 

 

3.3 Is it easy to learn how to use 
software? 

 

3.4 Are the layers categories 
adequate? 

 

3.5 Are the font type, text size, page 
colors, and shadows adequate? 

 

3.6 EASE of using the ADB-Map 
features 

3.6.1 Importing data from a file (sample grids, 
contour, maps, ...) 

3.6.2 Delineate boundaries 

3.6.3 Select the best interpolation method 
(Ordinary Kriging versus Inverse Distance 
Weighting) 

3.6.4 Select interpolation parameter for each 
interpolation method 

3.6.5 Interpolate data by ordinary Kriging 

3.6.6 Interpolate data by Inverse Distance 
Weighting 

3.6.7 Interpolate data by moving average 

3.6.8 Interpolate data by nearest neighbor 

3.6.9 Delineate management zones 

3.6.10 Rectify management zones 

3.6.11 View statistical data 

3.6.12 Spatial correlation matrix 

3.6.13 Variable selection 

3.6.14 Data cleaning 

3.6.15 Grid cutting out 

3.6.16 Principal component analysis 

3.6.17 Quality evaluations indices of 
management zones (FPI, MPE, ICVI, SI) 

3.6.18 Map agreement index (GA and Kappa) 

3.6.19 Fast Track - Thematic Map 

3.6.20 Fast Track - Management zone 

3.6.21 Nutrient recommendation (Nitrogen, 
Phosphorus, and Potassium) 

4 
Efficiency 

4.1 Time to run features 

4.1.1 Data import 

4.1.2 Parameters selection for the interpolator  

4.1.3 Data Interpolation (Ordinary Kriging, 
inverse distance weighting, moving average, 
nearest neighbor) 

4.1.4 Delineate management zones 

4.1.5 Nutrient recommendation (Nitrogen, 
Phosphorus, and Potassium) 

4.1.6 Fast Track - Thematic Map 

4.1.7 Fast Track - Management zone 
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5 
Maintainability 

5.1 Are software failure(s) resolved 
quickly? 

 

6 
Portability 

6.1 ADB-Map execution quality in 
different browsers 

6.1.1 Google Chrome 

6.1.2 Mozilla Firefox 

6.1.3 Microsoft Edge 

6.1.4 Safari 

6.1.5 Opera 

6.1.6 Internet Explorer 

6.1.7 Others 

6.2 ADB-Map execution quality on 
different operating systems 

6.2.1 Windows 

6.2.2 Linux 

6.2.3 iOS 

6.2.5 Android 

6.3 Equipment that ran the ADB-Map 
6.3.1 Computer/Notebook 

6.3.2 Smartphone/Tablet 
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7 PAPER 3 – PROCESS IMPROVEMENT OF SELECTING THE BEST INTERPOLATOR 

AND ITS PARAMETERS TO CREATE THEMATIC MAPS 

 

 

ABSTRACT: Thematic maps (MTs) are essential tools to demonstrate the information of 
spatially distributed phenomena. In precision agriculture, they have the critical role of 
demonstrating the existing variability in factors that influence the crop's yield. This yield can be 
mapped, studied, and used in decision-making. A TM can be created from sampling data, a 
standard procedure for soil attributes, since the aggregate cost in the laboratory analysis 
makes it impossible to perform a meter-by-meter sampling. Statistical interpolation methods 
are used to estimate data in unknown locations, , such as inverse distance weighting (IDW) 
and ordinary Kriging (OK). For both interpolators, it is essential to use the appropriate 
parameters to estimate values in non-sampled locations, either the exponent value and 
number of neighbors for IDW or the theoretical model adjusted to the experimental 
semivariogram for OK. Thus, this trial aims at adopting additional criteria in selecting 
interpolators and evaluating their performance. The selection criteria were (i) effective spatial 
dependence index (%ESDI) > 25%, (ii) the first semivariance significance index 
(%𝛾(1)) < 50% and (iii) slope of the model ends index (%SMEI) > 20%, which were applied 
according to three methods: 1) only with the interpolator selection index (ISI) without 
application of the proposed criteria; 2) the criteria applied after the interpolator selection 
analysis + ISI, and 3) the criteria applied during the interpolator selection analysis + ISI. The 
experimental data come from an experiment in two agricultural areas in Serranópolis do 
Iguaçu–PR, Brazil, using grids with good sampling density (2.7, 2.6, and 3.5 points per ha). It 
was observed that, usually, the three methods selected different models and that Method 3 
was considered the best one. It is essential to highlight that the three criteria must be 
considered altogether in the semivariogram models' selection process. The coefficient of 
relative deviation (CRD) varied from 0.1 to 64% when comparing the maps generated by the 
three methods. 

 

KEYWORDS: Kriging, Inverse distance weighting, precision agriculture. 
 

 

7.1 Introduction 

Maps representing a field and a topic associated with it are called thematic maps (TMs) 

and aim to inform, by graphical symbols, where a specific geographical phenomenon occurs. 

TMs have become an essential tool in geospatial science to understand spatial information 

(Fraser and Congalton, 2019), e.g., digital elevation model, slope map, soil map, aspect map, 

land use/land cover map, and contour map (Gojiya et al., 2018).  

In agriculture, soil is the primary source of nutrients. Crop development is directly 

affected by nutrients availability in soil (Coutinho et al., 2019). Therefore, studying its properties 

and spatial variability patterns are expected to manipulate crop development to our ends 

(Mcbratney and Pringle, 2006). Nutrients, classified as macro and micronutrients, play an 

essential role in energy storage, electrode transport, plant’s enzyme activity and cannot be 

replaced by others (Mikula et al., 2020). Thus, fertilizer application in variable rate, according 



187 
 
 

 

to the crop's spatial variability demand, has been widely discussed in Precision Agriculture 

context (Coutinho et al., 2019). However, crop yield is affected by other factors. Zhang et al. 

(2002) categorize these factors into six groups: (i) yield variability, (ii) field variability, (iii) soil 

variability, (iv) crop variability, (v) variability regarding anomalous factors, and (vi) management 

variability. 

In Precision Agriculture, TM is an essential tool to assist analysts in decision making, 

as it allows to identify spatial variability within the field and manage the area in a localized way. 

TMs development is associated to data collection, analysis, interpretation, and information 

representation on a map, facilitating identifying similarities and enabling spatial correlations 

visualization. One specific case of TMs is contour maps built by connecting points of the same 

value and applying them to geographical phenomena that show continuity in a geographic 

space. Another is choropleth maps that use color to show ranges of values of a specific 

variable within a defined geographic area. Contour and choropleth maps can be built from 

categorical data (yield, elevation, temperature, precipitation, humidity, and atmospheric 

pressure) or relative data (density, percentages, and indexes) (Souza et al., 2021). Usually, 

both maps are called contour maps.  

The advancement of computational technologies allows TMs’ creation and analysis 

using different techniques, methodologies, and software. For example, the geographical 

information systems (GISs) can store, exhibit, recover and dissect spatial data in a friendly 

approach. GIS has been widely used in many studies for spatial and temporal data creation 

(Gojiya et al., 2018). In this sense, AgDataBox (ADB, http://adb.md.utfpr.edu.br; Michelon et 

al., 2019, Dall'agnol et al., 2020) web platform provides tools to create, store, recover, manage, 

exhibit, and analyze geographic and spatial data of TMs focused on agriculture. 

Usually, the sampled data are interpolated in a dense and regular grid to generate 

continuous and smooth TMs. This task is carried out with the aid of interpolation methods. The 

most used methods in precision agriculture (PA) are inverse distance weighted interpolation 

(IDW) and ordinary Kriging (OK – Cressie, 1993), which are differentiated by how weights are 

attributed to different samples, which may influence the estimated values (Reza et al., 2010). 

IDW procedure has been used because it is quick and straightforward; Kriging has been used 

because it provides the best linear unbiased estimates. However, it is more complex and time-

consuming (Mueller et al., 2004). IDW interpolator considers weights at the sample points, 

which are evaluated during the interpolation process. Each sampled point's influence is 

inversely proportional to the distance from the point to be estimated increased to a power 

(Isaaks and Srivastava, 1989). The value of the chosen power predetermines the weight factor; 

that is, the higher this value, the lower the most distant points' influence. IDW is a fast method 

and requires little computational cost (Mazzini and Schettini, 2009). 
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Kriging makes the estimation based on a continuous model of stochastic spatial 

variation. It makes the best use of existing knowledge by considering how a property varies in 

space by the variogram model (Oliver and Webster, 2015). In Kriging, weights are determined 

by statistical dependence (i.e., covariances) among sampled locations, yet respect the 

measurement uncertainty. In general, the greater the covariability, the greater the weight 

(Wikle et al., 2019).  

Kriging has been identified as a BLUE interpolator: Best Linear Unbiased Estimator 

(Diggle and Ribeiro, 2007; Vieira, 2000; Isaaks and Srivastava, 1989). However, it must meet 

the spatial dependence (SD) modeling requests (Oliver and Webster, 2015; Cambardella et 

al., 1994) to have the correct performance and adequate use in creating a TM. The decision 

to use kriging depends on several factors, which influence the choice of a particular 

interpolation technique (Eldeiry and Garcia, 2012). The procedure's performance can be 

influenced by variability and spatial structure of data, semivariogram model, search radius, and 

the used number of the closest neighboring points (Reza et al., 2010; Isaaks and Srivastava, 

1989). Therefore, interpolations' quality depends on variable's spatial structure under study 

(Amaral and Justina, 2019). The deterministic interpolator IDW does not consider SD and 

specific behavior of data, leading to less efficiency in mapping the spatial distribution of a given 

variable than Kriging (stochastic interpolator) (Betzek et al., 2019). However, when there is no 

SD (Rodrigues et al., 2018; Cambardella et al., 1994), the use of a deterministic interpolator 

can be more appropriate. 

 It is necessary to assess its accuracy to properly use a TM as a tool to support a 

decision-making. Precision assessment methods are often based on analyzing values' 

estimation error, comparing predicted values to known values (Fraser and Congalton, 2019). 

The best adjustment model for semivariogram and parameter estimation can be evaluated by 

examining the distribution of errors or residuals (Betzek et al., 2019) using the cross-validation 

technique. The cross-validation technique enables a comparison among estimated and 

sampled values using only the available information in data (Isaaks and Srivastava, 1989). 

Commonly used error measures include mean error, mean absolute error, mean squared error, 

and root mean squared error (Wackernargel, 2003, Carroll and Cressie, 1996). 

The error comparison index (ECI – Souza et al., 2016) selects the best model from a 

set of semivariograms. Like ECI, the interpolator selection index (ISI – Bier and Souza, 2017) 

compares deterministic and stochastic interpolation methods. ISI enables selecting the best 

among several existing mathematical and geostatistical models in a simplified and less 

subjective manner, implemented in computerized systems (Bier and Souza, 2017). Betzek et 

al. (2019) developed computational routines in geoR to determine the best semivariogram 

model (and its parameters) based on ECI and ISI, developed in statistical software R, using 

the geoR library and functions implemented directly in the PostgreSQL database were 
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developed by PL/pgSQL procedural. These computational routines were reimplemented, 

optimized, and made available on ADB platform in a microservice form and a graphical user 

interface (GUI) in ADB-Map application, which allows selecting the best interpolator and its 

parameters for a data set. The routines determine the best semivariogram model (and its 

parameters) for OK and the best power and number of neighbors used in IDW interpolator. In 

the geostatistics module, seven semivariogram models are tested (spherical, gaussian, 

exponential, Matérn 0.5, Matérn 1.0, Matérn 1.5, and Matérn 2.0), as well as two statistical 

methods to optimize the semivariogram adjustment, ordinary least squares (OLS) and 

weighted least squares (WLS – Cressie, 1985), thus totalizing fourteen different models. For 

each model, twenty-five different parameter sets (five initial values for the partial sill parameter 

and five for range) are used, totalizing 350 different adjustments being analyzed to find the 

best one.  

There is no optimal number of neighbors and exponent to be used in IDW interpolation. 

Thus, this parameter should always be individually evaluated and optimized for each dataset 

before final interpolation (Amaral and Justina, 2019). Computational routines implemented in 

ADB-Map allow analyzing a range of values for the exponent (0.5, 1.0, ..., n) and a range of 

values for the number of neighbors (4, 5, ..., n). As in selecting the best semivariogram model, 

ISI is used to identify the best value for the exponent and number of neighbors. 

In geostatistics, variograms (semivariograms) are not only used as an exploratory tool 

but allow estimating parameters (Diggle and Ribeiro Jr., 2007). After the experimental 

semivariogram construction, it is necessary to adjust a theoretical model representing data 

variability. The curve-fitting can be done “by eye” by trying different values for the model 

parameters and visually inspecting the fit to the sample variogram (Diggle and Ribeiro Jr., 

2007). However, parametric covariance functions can be used to estimate semivariogram 

parameters. As a result, the variogram parameter estimates minimize the theoretical model's 

squared differences and experimental variogram (Li et al., 2018). 

The SD degree among the variables can be verified by the spatial dependence index 

(%SDI - Biondi et al., 1994) associated with semivariograms; %SDI represents the percentage 

of the spatially correlated variance (the partial sill) to the total variation (the nugget effect + the 

partial sill). The %SDI classification, adapted from Cambardella et al. (1994), is considered: 

%SDI ≤ 25% - weak SD; 25% < %SDI ≤ 75% - moderate SD; and %SDI > 75% - strong SD. 

When SD is weak, the use of a deterministic interpolator can be more appropriate. 

It was observed that, in some data sets, the routine implemented by Betzek et al. (2019) 

to select an interpolator, may mistakenly select a geostatistical model that does not have 

spatial dependence or consider a model with a lack of adjustment to the experimental 

semivariogram. 



190 
 
 

 

Therefore, this work aimed to adopt criteria to guarantee a minimum spatial 

dependence in the semivariograms applied to the interpolators' selection process. For that, the 

indices were proposed (i) effective spatial dependence index (%ESDI), (ii) the first 

semivariance significance index (%𝛾(1)), and (iii) slope of the model ends index (%SMEI). 

 

7.2 Material and methods 

ADB-Map (http://adb.md.utfpr.edu.br/map; Michelon et al., 2019, Dall'agnol et al., 

2020) application, which is included in ADB platform, was employed for (i) descriptive and 

exploratory analyses, (ii) data interpolation, (iii) selection of the best interpolation method, and 

(iv) TMs creation. 

 

7. 2. 1 Thematic maps 

It is necessary to construct TMs about attributes collected in agriculture fields to follow 

a protocol like the one presented in Fig. 1 (Souza et al., 2018): 

 

 
Fig. 1 Flowchart of the typical protocol to create a thematic map. 
Source: Souza et al. (2018). 

 

i. Location of the field, data collection, and selection of the coordinate system 

Physical and chemical soil attributes were collected based on irregular sampling grids 

in two agricultural fields located in the municipality of Serranópolis do Iguaçu, western Paraná 

state, southern Brazil. The fields have been cultivated under a no-tillage system with a crop 

succession of soybean and corn. The coordinate systems were the geographic coordinate 
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system (GCS) with WGS 1984 datum. The sampling points' locations were obtained by a 

GNSS receiver (Juno SB Trimble Navigation Limited, Westminster, CO, USA). 

 

   

a) Field A, 2018, 100 points b) Field A, 2019, 52 points c) Field B, 2015, 73 points 

 

Fig. 2 Location of experimental fields and sampling grids of 100 points (Field A-2018; 36.6 ha), 
52 points (Field A-2019; 20.0 ha), and 73 points (Field B-2015; 20.9 ha) in the municipality of 
Serranópolis do Iguaçu, Paraná state, Southern Brazil. Black contour delineates the fields 
used. Coordinates are in degrees (WGS 1984). The minimum and maximum distances among 
the sampling points are 41 and 1027 m in field A-2018, 45 and 706 m in field A-2019, and 31 
and 838 m in Field B-2015. 

 

Usually, soil samples are analyzed to determine the soil nutrient levels. Therefore, 

sampling must be dense enough to determine soil nutrients' variability so that fertilizers may 

be used in a profitable and environmentally sustainable way (Ferguson and Hergert, 2009; 

Franzen et al., 2002). Soil samples were taken from 0 to 0.20 m depth and analyzed in a 

commercial laboratory. Around each sampling point (using a GNSS Juno SB Trimble 

Navigation Limited, Westminster, CO, USA) and using a 3-m radius, eight subsamples were 

randomly collected, two per quadrant, within a symmetrical circle divided into four quadrants. 

Field A (Fig.s 2a and 2b) was sampled with 100 sampling points in 2018 (36.6 ha) and 52 in 

2019 (20.0 ha) and Field B (Fig. 2c) was sampled with 73 sampling points (20.9 ha). The 



192 
 
 

 

minimum and maximum distances among the sampling points are 41 and 1027 m in field A-

2018, 45 and 706 m in field A-2019, and 31 and 838 m in Field B-2015. Thus, the sampled 

density corresponds, respectively, to 2.7, 2.6, and 3.5 points ha−1 (Table 1), which were 

considered enough to identify spatial variabilities of the variables of these fields given that they 

exceed the recommended minimum density of 1 sample ha-1 (Ferguson and Hergert, 2009) to 

2.5 samples ha-1 (Doerge, 2000; Journel and Huijbregts, 1978). However, Oliver and Webster 

(2015) observed that at least between 100-150 samples are required for a reliable variogram, 

but Clark (1979) recommended at least 30-50 data points to use Kriging. Nevertheless, the 

threshold for a sufficient density in one case may not enough in another. Therefore, we decided 

to keep this sample density because we wanted to confirm the robustness of ADB’s automated 

procedure and determine whether it can help be employed to determine when to use IDW and 

when to use OK (i.e., to determine whether the sample density is enough and/or if SD is 

detected; the pure nugget effect characterizes this case). 

 

Table 1 Details of the study fields 

Fields Areas (ha) 
Geographical center 
coordinates (WGS84) 

Elevation 
(m) 

Sample 
points 

Points 
(ha-1) 

A-2018 36.6 25º23′48″S 54º0′46″W 345 100 2.7 
A-2019 20.0 25º23′43″S 54º0′44″W 334 52 2.6 

B 20.9 25°24′28″S 54°00′17″W 355 73 3.5 

 

Each point sample was composed of eight individual samples (Wollenhaupt et al., 

1994). The sampling points were located along an imaginary line among intermediate contour 

lines with alternated distances provided a better fit at the smallest lag distances, essential in 

Kriging (Bier and Souza, 2017). The variables obtained from soil analysis were chemical 

attributes (organic matter (OM; g dm-3), zinc (Zn; mg dm-3), iron (Fe; mg dm-3), manganese 

(Mn; mg dm-3), phosphorus (P; mg dm-3), potassium (K; cmolc dm-3), copper (Cu; mg dm-3), the 

potential of hydrogen (pH), calcium (Ca; cmolc dm-3), magnesium (Mg; cmolc dm-3), aluminum 

(Al; cmolc dm-3), pH of buffer solution Shoemaker-McLean-Pratt (SMP) method, potential 

acidity (H+Al; cmolc dm-3), the sum of bases (SB; cmolc dm-3), base saturation (V%), aluminum 

saturation (m%), cation exchange capacity (CTC; cmolc dm-3), the relationship between the 

content K/CTC (%), Mg/CTC (%), Ca/CTC (%) and H+Al/CTC (%)), and physical attributes 

(clay (%), sand (%), and silt (%)). 

 

ii. Exploratory data analysis 

Data were analyzed using descriptive and exploratory statistics and geostatistics. 

During the descriptive analysis of data, measures of central tendency (mean and median), of 

dispersion (standard deviation (SD) and coefficient of variation (CV)), and normality tests 

(Kolmogorov-Smirnov and Anderson-Darling tests at 0.05 significance level) were calculated. 
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Data were considered normal when, in at least one of the tests, they presented normality. The 

coefficient of variation (CV) was classified as low when CV ≤ 10%, medium when 10% < CV ≤ 

20%, high when 20% < CV ≤ 30%, and very high when CV > 30% (Pimentel-Gomes, 2009). 

The exploratory data analysis (EDA) was used to detect and remove outliers and inliers. Using 

the module ADB-Map-Clean of platform AgDataBox, duplicate, negative or null points, outliers, 

and inliers were removed. The outliers were identified as values outside the mean ± 3 SD 

(Córdoba et al., 2016). The inliers were obtained by Moran's local spatial autocorrelation index 

(II) (Anselin, 1995).  

 

iii. Analysis of spatial dependence 

The semivariogram chart (Fig. 3) is determined from a set of observed values in two 

stages (Oliver and Webster, 2015) (i) the calculation of the empirical semivariogram that 

summarizes spatial relations in data, and (ii) the adjustment of a mathematical model that best 

represents semivariances’ distribution in each lag distance. Each calculated semivariance for 

a particular lag (h) is only an estimate of a mean semivariance 𝛾(ℎ) for that lag. The four main 

elements are (i) nugget effect (C0), (ii) partial sill (C1), (iii) sill (C0 + C1), and (iv) the range of 

spatial autocorrelation (Ra). 

 

 
Fig. 3 Semivariogram chart with the four main elements: nugget effect (C0), partial sill (C1), sill 
(C0 + C1), and the range of spatial autocorrelation (Ra). 

 

The nugget effect (C0) is the semivariance value for zero distance (Webster, 1985) and 

represents the component of random variation, i.e., variability for scales is smaller than the 

distance between sample points. According to Cressie (1993), C0 parameter represents small-

scale local variations, such as measurement errors, and corresponds to where the 

semivariogram touches the ordinate axis. This point reveals semivariogram's discontinuity for 
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distances shorter than the shortest distance between the sample points. The partial sill (C1), 

also known as the dispersion variance, represents the spatial differences among C0 values 

and sill, interval in which semivariogram develops and corresponds to SD (Cressie, 1993). The 

range (Ra) is the distance where variogram reaches sill, and from this distance, samples are 

not correlated (Oliver and Webster, 2015). 

Semivariances are calculated from an estimator, as the classic proposed by Matheron 

(1963) (Equation 1). Unfortunately, outliers affect this estimator significantly, and even a single 

discrepant datum can distort the final variogram estimates. The alternative is to use one of the 

robust estimators, such as those of Cressie and Hawkins (1980), Dowd (1984), and Genton 

(1998) (Oliver and Webster, 2015). 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2

𝑁(ℎ)

𝑖=1

, (1) 

where 𝛾(ℎ) is the value of the semivariance estimate; 𝑍(𝑥𝑖) is the value of variable 𝑍 at point 

𝑥𝑖; 𝑍(𝑥𝑖 + ℎ) is the value of variable 𝑍 at point 𝑥𝑖 + ℎ; 𝑁(ℎ) is the number of pairs separated by 

a determined distance ℎ (URIBE-OPAZO et al. 2012). 

The mathematical model adjustment should describe the spatial variation to estimate 

or predict values at unsampled places optimally by Kriging (Oliver and Webster, 2015). Only 

certain mathematical functions are suitable for this purpose, so, choosing and fitting a model 

must be done with care (Lark, 2000). The theoretical models spherical, exponential, gaussian, 

and Matérn’s family are commonly used (Uribe-Opazo et al., 2012; Isaaks and Srivastava, 

1989). 

Semivariance tends to increase with the distance among sampled locations, or lag 

distance (h), to a more or less constant value (the sill or total semivariance) at a given 

separation distance, called SD range. Thus, samples separated by distances closer than the 

range are related spatially, and those ones separated by distances larger than the range are 

not spatially related (Webster, 1985). 

The Matheron (1963) classic estimator was used to calculate semivariances with at 

least 30 pairs of points (Journel and Huijbregts, 1978), and the range Ra was limited to half of 

the maximum distance (MD) among points (cutoff = 0.5*MD). The semivariances' calculation 

should not exceed distances among points greater than half of the maximum distance (Clark, 

1979). Points located beyond cutoff are considered non-influential (Isaaks and Srivastava, 

1989). Lag size (h) was defined by calculating the number of lags, relationship between cutoff 

and the shortest distance among the pairs of points. Therefore, the lag h sizes were 43 m 

(Field A-2018), 44 m (Field A-2019), and 30 m (Field B-2015), while semivariances 102 and 

438 in area A-2018, 53 and 180 in area A-2019, and 55 and 182 in area B-2015. A significant 

limitation to address in this ADB-Map version is that anisotropy's eventual presence is not 

considered. 
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To evaluate the degree of variable SD, we used the spatial dependence index (%SDI - 

Biondi et al., 1994 – Equation 2). The adopted %SDI classification (Konopatzki et al., 2012) 

was: very low for %SDI < 20%; low for 20 ≤ %SDI < 40%; medium for 40 ≤ %SDI < 60%; high 

for 60 ≤ %SDI < 80%; and very high for %SDI > 80%. This classification has the advantage of 

having five interpretation levels instead of three proposed by Cambardela et al. (1994) and is 

proportional to the spatial variability (the higher %SDI, the higher SD). 

%𝑆𝐷𝐼 =
𝐶1

𝐶0 + 𝐶1
∗ 100 =

𝐶1

𝐶
∗ 100, (2) 

where 𝐶0 is the nugget effect, 𝐶1 is the partial sill, and C is the sill.  

Fig. 4 shows hypothetical sample points for which the spherical model was adjusted by 

routine in R. Considering that C0 is 1 and C1 is 9, the associated %SDI is 90%, corresponding 

to a strong SD. However, all semivariances are in the interval from 7 to 10. In this sense, this 

works presents a new index, the effective spatial dependence index (%ESDI – Equation 3), a 

new measure of SD degree. This index considers semivariance (𝛾(1)) in the first lag distance 

(h(1)). 

%𝐸𝑆𝐷𝐼 =
𝐶 − 𝛾(1)

𝐶
∗ 100, (3) 

where 𝐶  is the sill (nugget effect + partial sill) and 𝛾(1)  is the first semivariance of the 

semivariogram. The %ESDI was classified as %SDI. 

The second proposed index was the first semivariance significance index (%𝛾(1), 

Equation 4), SD fraction due only to (%𝛾(1)). 

%𝛾(1) =
𝛾(1) − 𝐶0

𝐶1
∗ 100, (4) 

where 𝐶0 is the nugget effect, 𝐶1 is the partial sill, and 𝛾(1) is the first semivariance of the 

semivariogram. 

Furthermore, we also propose a slope of the model ends index (%SMEI, Equation 5), 

which aims to assess the inclination degree between the nugget effect and the last adjusted 

semivariance. When %SMEI is null, it is a pure nugget effect, characterizing a lack of SD. 

                          %𝑆𝑀𝐸𝐼 = (1 −
𝛾𝑍(0)

10−10+𝛾𝑍(𝑛)
) ∗ 100 = (1 −

𝐶0

10−10+𝛾𝑍(𝑛)
) ∗ 100, (5) 

where 𝛾𝑍 is the adjusted theoric semivariance, 𝛾𝑍(0) = 𝐶0 is the nugget effect, and 𝛾𝑍(𝑛) is the 

last adjusted theoretic semivariance, correspondent to the cutoff. The arbitrary constant 10-10 

was included to avoid division by zero. 
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Fig. 4 Example of semivariogram chart adjusted with spherical semivariogram model, where 
𝛾(1) is the first semivariance, 𝛾𝑍 is the adjusted theoric semivariance, 𝛾𝑍(0) = 𝐶0 is the nugget 
effect, and 𝛾𝑍(𝑛) is the last adjusted theoretic semivariance. 

 

 

iv. Data Interpolation 

The variables used to generate TM were interpolated using OK and IDW in a 9x9-m 

grid with pixels. ADB-Map application automatically sets the pixel size based on the area's 

size, with the value of 1 hundredth of the longest distance (horizontal or vertical). 

Computational routines were implemented in R language in ADB-Map application (Betzek et 

al., 2019). 

 

a) Inverse distance weighting 

IDW deterministic estimator (Equation 6) considers the closest points to the location to 

be estimated more representative than the most distant one according to the samples' linear 

distances. Twelve different values were used as IDW exponents (p) (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 

3.5, 4.0, 4.5, 5.0, 5.5, and 6.0). 

Ẑ𝑖 =

∑ (
1

𝑑𝑖
𝑝 ∗ 𝑍𝑖)𝑛

𝑖=1

∑ (
1

𝑑𝑖
𝑝)𝑛

𝑖=1

, (6) 

where, Ẑ𝑖  – interpolated value; 𝑍𝑖 – sampled attribute value; 𝑑𝑖
𝑝
 – Euclidean distance between 

the ith neighborhood point and the sampled point, elevated to the power of p > 0. 

  

b) Ordinary Kriging 

Variables’ semivariograms were adjusted using theoretical models (spherical, 

gaussian, exponential, Matérn 0.5, Matérn 1.0, Matérn 1.5, and Matérn 2.0) by OLS and WLS 
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methods. WLS weights were considered using the same number of pairs in each bin. Twenty-

five different parameter sets (five initial values for the partial sill parameter and five for range) 

were used for each model, totalizing 350 adjustments. 

 

c) Determination of the best semivariogram model and its parameters 

Bier and Souza (2017) proposed the interpolation selection index (ISI – Equation 7) to 

automatize selecting the best interpolation method, which assumes a lower value as better the 

interpolator is. By cross-validation (Faraco et al., 2008; Isaaks and Srivastava, 1989), mean 

error (ME – Equation 8) and standard deviation of mean error (SDME – Equation 9) are 

calculated. ME and SDME values calculated for each parameter set are stored and used to 

determine ISI that compares the deterministic and stochastic interpolation methods, thus, 

identifying the best adjustment for each model analyzed. 

𝐼𝑆𝐼 = {
𝑎𝑏𝑠(𝑀𝐸)

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝑎𝑏𝑠(𝑀𝐸)]

+
[𝑆𝐷𝑀𝐸 − 𝑚𝑖𝑛 |

𝑗
𝑖 = 1

𝑆𝐷𝑀𝐸]

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝑎𝑏𝑠(𝑆𝐷𝑀𝐸)]

}, (7) 

where 𝑀𝐸 is the mean error; 𝑆𝐷𝑀𝐸 is the standard deviation of mean error of the crossed 

validation; 𝑛 is the data number; 𝑎𝑏𝑠 is the module value; 𝑚𝑖𝑛|𝑖=1
𝑗

 is the lowest value among 

the compared 𝑗 models; 𝑚𝑎𝑥|𝑖=1
𝑗

 is the highest value among the compared 𝑗 models. 

𝑀𝐸 =
1

𝑛
∑ 𝑍(𝑠𝑖) − �̂�(𝑠𝑖),

𝑛

𝑖=1

 (8) 

𝑆𝐷𝑀𝐸 = √
1

𝑛
∑ (𝑍(𝑠𝑖) − �̂�(𝑠𝑖))

2
,

𝑛

𝑖=1

 (9) 

where 𝑛 is the data number; 𝑍(𝑠𝑖) is the value observed at the point 𝑠𝑖; �̂�(𝑠𝑖) is the predicted 

value at point 𝑠𝑖. 

Statistic called error comparison index (ECI – Souza et al., 2016 – Equation 10) was 

used to determine the best semivariogram fit in each 𝑗 model analyzed, which assumes a lower 

value for the model is better stochastic methods of interpolation. The best semivariogram of 

each 𝑗 model was used in ISI analysis. 

𝐸𝐶𝐼𝑖 =
|𝑅𝑀𝐸𝑖|

10−10 + 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
|𝑅𝑀𝐸|

+
|𝑆𝐷𝑅𝑀𝐸𝑖 − 1|

10−10 + 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
|𝑆𝐷𝑅𝑀𝐸 − 1|

, 
(10) 

where 𝐸𝐶𝐼𝑖  is the error comparison index for model 𝑖; and 𝑚𝑎𝑥 |
𝑗

𝑖 = 1
 is the highest value 

among the compared 𝑗 semivariograms. The arbitrary constant 10-10 was included to avoid 

division by zero. 



198 
 
 

 

The reduced mean error (RME – Equation 11) and the standard deviation of the 

reduced mean error (SDRME – Equation 12) was determined by ordinary kriging cross-

validation. 

𝑅𝑀𝐸 =
1

𝑛
∑

𝑍(𝑠𝑖) − �̂�(𝑠𝑖)

�̂�(�̂�(𝑠𝑖))

𝑛

𝑖=1

, (11) 

𝑆𝐷𝑅𝑀𝐸 = √
1

𝑛
∑

|𝑍(𝑠𝑖) − �̂�(𝑠𝑖)|

�̂�(�̂�(𝑠𝑖))

𝑛

𝑖=1

, (12) 

where 𝑍(𝑠𝑖) − �̂�(𝑠𝑖) is the prediction error associated with estimating yield at spatial location 

𝑠𝑖; 𝑍(𝑠𝑖) is the observed value; �̂�(𝑠𝑖) is the estimated value obtained from the ordinary kriging 

cross-validation; �̂�(�̂�(𝑠𝑖)) is the estimated standard deviation associated with the estimated 

value, and 𝑛 is the sample size. 

 

d) Improving models’ selection using effective spatial dependence (%ESD) 

Three problems should be addressed when selecting the best semivariogram: 

1. A minimum of %ESD should be observed. We proposed that %ESDI must be 

greater than 25%. 

2. The selected semivariogram model should contemplate a fraction of SD due only 

to (%γ(1)) lower than 50%. 

3. The inclination degree of between the nugget effect and the last adjusted 

semivariance, estimated by %SMEI, should be greater than 20%. Otherwise, 

there is an indication of a pure nugget effect. 

We proposed that the selection of the best interpolator model should not depend only 

on ISI but on the criteria presented on Table 2. 

 

Table 2 Criteria to select the best interpolation method 

Criterion 1 
Minimum of 

effective spatial 
dependence 

 

Criterion 2 
Spatial dependence 
due only to the first 

semivariance 

 Criterion 3 
The model needs to 

express spatial 
dependence  

The best 
interpolation 

method 

If %𝐸𝑆𝐷𝐼 > 25% and If %𝛾(1) < 50% and If %SMEI > 20% 
IDW or OK with 
the lowest ISI 

If %𝐸𝑆𝐷𝐼 ≤ 25% or If %𝛾(1) ≥ 50% or If %SMEI ≤ 20% 
IDW with the 

lowest ISI 

%ESDI: Effective spatial dependence index; %𝛾(1): First semivariance significance index; 
IDW: Inverse distance weighting; OK: Ordinary Kriging; ISI: Interpolator selection index. 

 

The variable selection process was tested using three methods (Table 3): (i) method 1:   

best ISI, (ii) method 2 (Fig. 5): the three criteria (Table 2) are applied after geostatistics 

analysis, (iii) method 3 (Fig. 6): The three criteria are applied during geostatistics analysis.  
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Table 3 Methods used to select the best interpolation model 

Methods Selection of the best interpolation model 

Method 1 Best ISI 

Method 2 The three criteria are applied after geostatistics analysis + the best ISI 

Method 3 The three criteria are applied during geostatistics analysis + the best ISI 

 

The main difference between methods 2 and 3 is observed when the three criteria are 

applied. In method 2, the three criteria are applied to analyze geostatistical models after the 

ISI determination step and the best interpolator's indication (Fig. 5). For each semivariogram 

model and estimation method (Spherical OLS, Spherical WLS, Exponential OLS, Exponential 

WLS, etc.), all analyses to estimate semivariogram parameters are considered (5 partial sill 

intervals * 5 range intervals = 25 analysis). In method 3 (Fig. 6), a modification was proposed 

to filter out unsatisfactory geostatistical models before ECI has determined a semivariogram 

model's best fit. Therefore, when selecting the analyses by ECI, only the cleaned models (not 

discarded) by the new selection criteria are considered. 
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Fig. 5 Selection process of the best interpolator between inverse distance weighting and 
ordinary Kriging by method 2: the filters using %ESDI, %𝛾(1), and %SMEI were applied after 
geostatistics analysis. 
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Fig. 6 Selection process of the best interpolator between inverse distance weighting and 
ordinary Kriging by method 3: the filters using %ESDI, %𝛾(1), and %SMEI were applied during 
geostatistics analysis. 

 

Selection Methods 2 and 3 can lead to different results. The central aspect of method 

3 is to allow another ‘fitted model’ to be selected in an interpolator selection analysis. In 

geostatistical analysis, for each combination of ‘geostatistical model’ (Spherical, Exponential, 

etc.) vs. ‘estimation method’ (OLS and WLS), 25 ‘fitted models’ (5 partial sill interval * 5 range 

intervals) are generated. When applying the selection criteria by Method 2, and eliminating the 

‘fitted model’ that was considered the best, it is impossible to use another ‘fitted model’ from 

the same combination of ‘geostatistical model’ vs. ‘estimation method.’ In this case, the twenty 

five analyses were eliminated. On the other hand, selection by Method 3 makes it possible to 

use other ‘adjusted models’ within the combined analysis of ‘geostatistical model’ vs. 

‘estimation method’. 
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v. Map’s evaluation 

The interpolated maps were compared using the coefficient of relative deviation (CRD 

– Equation 13) proposed by Coelho et al. (2009): 

𝐶𝑅𝐷 = ∑ |
�̂�𝑖 − �̂�𝑖

∗

�̂�𝑖
∗

|
𝑛

𝑖=1

100

𝑛
, (13) 

where �̂�𝑖
∗ is the location value (pixel) 𝑖 on the reference map, �̂�𝑖 is the value at location (pixel) 

𝑖 on the map to be compared, and 𝑛 is the total number of observations on the maps. The 

coefficient expresses the average absolute percent difference between both maps. The choice 

of a reference map used for comparison is arbitrary. For this study, the map generated by the 

best interpolator selected by Method 3 was considered the reference for each variable. 

 

7.3 Results and discussion 

 

i. Descriptive statistics  

The descriptive analysis of variables (Table 4, 5, and 6) showed that CV varied from 

5% (low, pH SMP) to 119% (very high, Al/CTC in Field A-2018), 5% (low, pH SMP, and Clay) 

to 123% (very high, aluminum saturation-m% in Field A-2019), and from 4% (low, pH SMP, 

Field B-2015) to 157% (very high, Al/CTC in Field B-2015). Variables Al, C, Ca, CTC, Al/CTC, 

Mg/CTC, K/CTC, Ca/CTC, Cu, Fe, K, Mg, OM, P, pH (CaCl2), pH SMP, V, m%, Clay, Sand, 

and Silt had points that were eliminated after eliminating outliers during EDA. Few outliers were 

found and eliminated in ten, nine, and twelve variables in Fields A-2018, A-2019, and B. In 

several cases, variables did not present normality at 5% significance level: i) Field A-2018: Al, 

Al/CTC, K/CTC, Cu, H+Al, K, and P; ii) Field A-2019: Al, m%, P, pH (CaCl2), Zn, and sand; 

and iii) Field B-2015: Al, C, H+Al, P and Al/CTC. 
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Table 4 Descriptive statistics of soil attributes in Field A-2018 (100 samples) 

Variables 
Samples 
remained 

Mini-
mum 

Means Medians 
Maxi-
mum 

Standard 
deviations 

CV% 

Al* (cmolc/dm-3) 99 0.00 0.538 0.280 2.450 0.635 118 (VH) 
C (g/kg) 98 15.5 21.30 21.43 26.45 2.15 10 (M) 
Ca (cmolc/dm-3) 99 2.07 3.52 3.56 5.47 0.722 21 (H) 
CTC (cmolc/dm-3) 100 10.8 13.32 13.20 16.50 1.10 8 (L) 
Al/CTC* (%) 100 0.00 9.84 4.86 43.88 11.68 119 (VH) 
Ca/CTC (%) 99 13.3 26.67 26.99 40.90 6.13 23 (H) 
H/CTC (%) 99 42.8 56.6 57.0 69.1 5.38 10 (L) 
K/CTC* (%) 100 1.18 3.34 3.04 5.79 1.13 34 (VH) 
Mg/CTC (%) 100 4.73 9.49 9.85 14.71 2.30 24 (H) 
Cu* (mg/dm-3) 98 1.86 4.02 3.65 8.66 1.37 34 (VH) 
Fe (mg/dm-3) 99 4.88 15.60 15.26 29.04 4.38 28 (H) 
H+Al* (cmolc/dm-3) 100 3.97 8.09 7.76 13.06 1.74 21 (H) 
K* (cmolc/dm-3) 100 0.160 0.439 0.405 0.700 0.130 30 (H) 
Mg (cmolc/dm-3) 100 0.690 1.245 1.270 1.840 0.247 20 (M) 
Mn (mg/dm-3) 100 42.67 75.12 76.16 110.41 13.79 18 (M) 
OM (g/dm-3) 98 26.72 36.73 36.95 45.60 3.70 10 (M) 
P* (mg/dm-3) 98 2.60 9.65 8.40 23.50 4.48 46 (VH) 
pH (CaCl2) 100 3.58 4.42 4.42 5.21 0.371 8 (L) 
pH SMP 99 4.70 5.37 5.40 5.90 0.275 5 (L) 
SB (cmolc/dm-3) 100 3.29 5.23 5.35 7.98 0.990 19 (M) 
V% 99 20.85 39.47 39.73 57.23 8.62 22 (H) 
Zn (mg/dm-3) 100 4.93 8.12 7.88 12.06 1.85 23 (H) 

CV: Coefficient of variation: low (L) when CV ≤ 10%, medium (M) when 10% < CV ≤ 20%, high 
(H) when 20% < CV ≤ 30%, and very high (VH) when CV > 30%.  
Al: aluminum; C: Carbon; Ca: calcium; CTC: cation exchange capacity; Al/CTC: aluminum 
adsorbed on CTC in %; Ca/CTC: calcium adsorbed on CTC in %; H/CTC: hydrogen adsorbed 
on CTC in %; K/CTC: potassium adsorbed on CTC in %; Mg/CTC: magnesium adsorbed on 
CTC in %; Cu: copper; Fe: iron; H+Al: potential acidity; K: potassium; Mg: magnesium; Mn: 
manganese; OM: organic matter; P: phosphorus; pH: the potential of hydrogen; pH SMP: pH 
of buffer solution Shoemaker-McLean-Pratt; SB: the sum of basis; V%: base saturation; Zn: 
zinc. 
* No normality at 5% significance level. 
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Table 5 Descriptive statistics of soil attributes in Field A-2019 (52 samples) 

Variables 
Samples 
remained 

Mini-
mum 

Means Medians 
Maxi-
mum 

Standard 
deviations 

CV% 

Al* (cmolc/dm-3) 51 0.00 0.27 0.15 1.15 0.30 112 (VH) 
Ca (cmolc/dm-3) 52 1.50 4.08 4.20 6.90 1.21 30 (H) 
CTC (cmolc/dm-3) 52 9.86 11.4 11.3 13.3 0.87 8 (L) 
Ca/CTC (%) 52 14.2 35.4 37.6 51.8 8.59 24 (H) 
H+Al/CTC (%) 52 20.6 46.5 42.9 79.3 11.4 24 (H) 
K/CTC (%) 52 0.73 3.23 3.13 7.28 1.56 48 (VH) 
Mg/CTC (%) 52 3.80 14.9 14.4 24.7 4.3 29 (H) 
Cu (mg/dm-3) 52 4.3 9.2 8.5 14.1 2.2 24 (H) 
Fe (mg/dm-3) 52 36 77 75 121 21 28 (H) 
H+Al (cmolc/dm-3) 52 2.74 5.24 4.96 8.36 1.08 21 (H) 
K (cmolc/dm-3) 51 0.090 0.356 0.330 0.800 0.171 48 (VH) 
m%* 51 0.00 5.1 2.3 24.0 6.3 123 (VH) 
Mg (cmolc/dm-3) 52 0.40 1.71 1.70 3.00 0.54 32 (VH) 
Mn (mg/dm-3) 52 88 162 159 220 31 19 (M) 
OM (g/dm-3) 52 14.7 25.8 26.8 41.6 5.3 21 (H) 
P* (mg/dm-3) 51 4.4 18.1 15.8 53.0 11.0 59 (VH) 
pH* (CaCl2) 51 3.80 4.50 4.50 5.30 0.35 8 (L) 
pH SMP 52 5.30 5.96 6.00 6.80 0.29 5 (L) 
SB (cmolc/dm-3) 52 2.2 6.2 6.3 10.6 1.6 27 (H) 
V% 52 20.7 53.4 57.1 79.4 11.4 21 (H) 
Zn* (mg/dm-3) 50 1.44 3.97 3.77 9.41 1.44 36 (VH) 
Clay (%) 51 68.0 74.0 74.0 84.0 3.50 5 (L) 
Sand* (%) 50 0.70 2.51 2.60 5.10 0.84 33 (VH) 
Silt (%) 51 14.3 23.3 23.2 30.8 3.4 15 (M) 

CV: Coefficient of variation: low (L) when CV ≤ 10%, medium (M) when 10% < CV ≤ 20%, high 
(H) when 20% < CV ≤ 30%, and very high (VH) when CV > 30%. 
Al: aluminum; Ca: calcium; CTC: cation exchange capacity; Ca/CTC: calcium adsorbed on 
CTC in %; H+Al/CTC: aluminum more hydrogen adsorbed on CTC in %; K/CTC: potassium 
adsorbed on CTC in %; Mg/CTC: magnesium adsorbed on CTC in %; Cu: copper; Fe: iron; 
H+Al: potential acidity; K: potassium; m%: aluminum saturation; Mg: magnesium; Mn: 
manganese; OM: organic matter; P: phosphorus; pH: the potential of hydrogen; SB: the sum 
of basis; SMP: pH of buffer solution Shoemaker-McLean-Pratt; V%: base saturation; Zn: zinc; 
* No normality at 5% significance level. 
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Table 6 Descriptive statistics of soil attributes in Field B-2015 (73 samples) 

Variables 
Samples 
remained 

Mini-
mum 

Means Medians 
Maxi-
mum 

Standard 
deviations 

CV% 

Al* (cmolc/dm-3) 72 0.000 0.065 0.020 0.390 0.095 146 (VH) 
C* (g/kg) 72 16.9 21.7 21.4 27.7 2.4 11 (M) 
Ca (cmolc/dm-3) 73 3.11 5.35 5.38 8.36 1.03 19 (M) 
Cu (mg/dm-3) 72 11.6 14.8 14.8 20.3 1.6 11 (M) 
Fe (mg/dm-3) 73 32.3 55.6 53.6 85.0 11.4 20 (H) 
H+Al* (cmolc/dm-3) 73 3.18 5.87 5.76 9.00 1.05 18 (M) 
K (cmolc/dm-3) 72 0.19 0.446 0.430 0.960 0.156 35 (VH) 
Mg (cmolc/dm-3) 72 1.17 2.08 2.06 3.15 0.41 20 (M) 
Mn (mg/dm-3) 73 224 316 313 400 49 15 (M) 
P* (mg/dm-3) 72 4.8 12.4 11.1 29.9 5.4 43 (VH) 
pH (CaCl2) 72 4.40 5.04 5.05 5.70 0.29 6 (L) 
pH SMP 72 5.20 5.78 5.80 6.20 0.22 4 (L) 
SB (cmolc/dm-3) 73 4.7 7.9 8.0 12.0 1.4 18 (M) 
V% 73 34.3 57.2 58.2 79.1 8.4 15 (M) 
Zn (mg/dm-3) 73 2.25 4.76 4.59 8.41 1.42 30 (H) 
CTC (cmolc/dm-3) 72 12.5 13.8 13.6 15.8 0.7 5 (L) 
Al/CTC* (%) 72 0.00 0.98 0.20 6.41 1.55 157 (VH) 
Ca/CTC (%) 73 22.7 38.7 39.7 50.8 6,0 15 (M) 
Mg/CTC (%) 72 8.60 15.1 15.4 22.2 2.8 18 (M) 
K/CTC (%) 71 1.50 3.18 3.10 6.38 0.99 31 (VH) 

CV: Coefficient of variation: low (L) when CV ≤ 10%, medium (M) when 10% < CV ≤ 20%, high 
(H) when 20% < CV ≤ 30%, and very high (VH) when CV > 30%.  
Al: aluminum; C: carbon; Ca: calcium; CTC: cation exchange capacity; Ca/CTC: calcium 
adsorbed on CTC in %; Al/CTC: aluminum adsorbed on CTC in %; K/CTC: potassium 
adsorbed on CTC in %; Mg/CTC: magnesium adsorbed on CTC in %; Cu: copper; Fe: iron; 
H+Al: potential acidity; K: potassium; Mg: magnesium; Mn: manganese; P: phosphorus; pH: 
the potential of hydrogen; pH SMP: pH of buffer solution Shoemaker-McLean-Pratt; SB: the 
sum of basis; V%: base saturation; Zn: zinc. 
* No normality at 5% significance level. 

 

ii. Selection of the best interpolator model 

Method 1: The results of selecting the best interpolator model for IDW and OK using 

ISI for variables of Fields A-2018 (Table 7), A-2019 (Table 8), and B (Table 9) showed that the 

OK one is the best interpolator for 42 variables (10 in Field A-2018, 19 in Field A-2019, and 13 

in Field B-2015) and IDW for 24 variables (12 in Field A-2018, 5 in Field A-2019, and 7 in Field 

B-2015). 

During SD analysis, the 50%-cutoff limited range to 513 m (Field A-2018), 353 m 

(Field A-2019), and 419 m (Field B-2015). Therefore, the correspondent number of lags was 

twelve (Field A-2018), eight (Field A-2019), and fourteen (Field B-2015), always with a 

minimum of 30 pairs of points. The first semivariance corresponded to 41 m (Field A-2018), 45 

m (Field A-2019), and 31 m (Field B-2015). ISI selected IDW as the best interpolator for i) Field 

A-2018: CTC, Ca/CTC, H/CTC, K/CTC, Mg/CTC, H+Al, K, Mn, pH CaCl2, pH SMP, V%, and 

Zn, ii) Field A-2019: Ca, Cu, K, m%, and SB, and iii) Field B-2015: Ca, Fe, Mg, Mn, Zn, Ca/CTC, 

and Mg/CTC. For the remained variables, OK was indicated as the best interpolator. 
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Table 7 Result of selecting the best interpolator model for inverse distance weighted interpolation (IDW) and ordinary Kriging (OK) using the interpolator 
selection index (ISI) for variables of Field A-2018, using Method 1: Selection using only ISI 

Variables 
 Geostatistics IDW Best 

Inter- 
polator Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram Exp Neig ISI ME*102 SDME 

Al 
Gaussian 

WLS 
0.158 0.382 176 

71 
(H) 

65 
(H) 

8 71 0.00223 -0.00650 0.428 

 

5 5 0.0679 0.013 0.458 OK 

C 
Gaussian 

OLS 
3.44 1.75 234 

34 
(L) 

32 
(L) 

5 33 0.0935 -0.817 2.031 

 

1 7 0.419 -3.522 2.067 OK 

Ca 
Matérn 1 

OLS 
0.256 0.495 225 

66 
(H) 

68 
(H) 

-4 60 0.0238 -0.037 0.529 

 

4.5 5 0.0251 0.00876 0.536 OK 

CTC 
Spherical 

OLS 
0.450 0.870 379 

66 
(H) 

53 
(M) 

20 66 0.122 0.226 0.801 

 

3 11 0.0302 0.0593 0.791 IDW 

Al/CTC 
Gaussian 

WLS 
43.9 150 193 

77 
(H) 

71 
(H) 

8 77 0.0436 2.266 7.507 

 

5 5 0.0517 -0.0905 7.914 OK 

Ca/CTC 
Exponential 

OLS 
4.42 42.2 127 

91 
(VH) 

62 
(H) 

32 90 0.115 -2.598 4.506 

 

4.5 4 0.0328 -0.519 4.534 IDW 

H/CTC 
Exponential 

OLS 
12.3 19.5 113 

61 
(H) 

37 
(L) 

39 61 0.138 1.671 4.741 

 

1.5 7 0.0146 -0.0137 4.773 IDW 

K/CTC 
Exponential 

OLS 
0.687 0.624 110 

48 
(M) 

26 
(L) 

46 47 0.103 -0.221 0.960 

 

3.5 12 0.0153 0.0332 0.949 IDW 
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Variables 
 Geostatistics IDW Best 

Inter- 
polator Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram Exp Neig ISI ME*102 SDME 

Mg/CTC 
Spherical 

OLS 
1.197 5.39 359 

82 
(VH) 

62 
(H) 

24 82 0.157 -0.817 1.638 

 

1 6 0.0062 -0.0222 1.606 IDW 

Cu 
Gaussian 

OLS 
0.605 2.03 336 

77 
(H) 

83 
(VH) 

-8 75 0.123 0.591 0.736 

 

6 7 0.540 4.505 0.702 OK 

Fe 
Exponential 

WLS 
11.3 10.2 244 

47 
(M) 

46 
(M) 

3 40 0.0243 0.129 4.024 

 

2 11 0.0308 -0.292 3.989 OK 

H+Al 
Spherical 

OLS 
1.01 2.70 313 

73 
(H) 

54 
(M) 

26 73 0.131 0.672 1.281 

 

5.5 10 0.0032 -0.00144 1.276 IDW 

K 
Spherical 

WLS 
0.00361 0.0123 128 

77 
(H) 

27 
(L) 

65 77 0.1156 -0.0292 0.107 

 

3.5 7 0.00901 -0.000650 0.106 IDW 

Mg 
Matérn 2 

OLS 
0.0348 0.0565 128 

62 
(H) 

68 
(H) 

-10 58 0.0575 -0.0268 0.184 

 

5.5 5 0.108 -0.000691 0.203 OK 

Mn 
Matérn 2 

OLS 
42.06 284 138 

87 
(VH) 

82 
(VH) 

6 85 0.0695 -1.401 7.579 

 

1.5 10 0.0313 -0.161 7.665 IDW 

OM 
Gaussian 

OLS 
10.22 5.19 234 

34 
(L) 

32 
(L) 

5 33 0.0934 -1.408 3.501 

 

1 7 0.419 -6.070 3.564 OK 
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Variables 
 Geostatistics IDW Best 

Inter- 
polator Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram Exp Neig ISI ME*102 SDME 

P 
Exponential 

WLS 
7.62 19.4 200 

72 
(H) 

55 
(M) 

23 70 0.0255 -0.175 3.735 

 

3 9 0.0609 0.154 3.895 OK 

pH CaCl2 
Matérn 2 

OLS 
0.106 0.0744 128 

41 
(M) 

51 
(M) 

-23 38 0.0598 -0.0177 0.308 

 

1 8 0.0234 0.000577 0.303 IDW 

pH SMP 
Matérn 2 

WLS 
0.052 0.0618 128 

54 
(M) 

67 
(H) 

-24 51 0.0745 -0.0323 0.205 

 

4.5 9 0.00942 -0.00171 0.199 IDW 

SB 
Exponencial 

OLS 
0.524 1.125 513 

68 
(H) 

66 
(H) 

3 58 0.0159 -0.039 0.754 

 

3.5 5 0.0172 -0.0226 0.759 OK 

V% 
Exponential 

OLS 
1.94 92.9 120 

98 
(VH) 

64 
(H) 

35 98 0.168 -4.941 6.104 

 

2.5 8 0.0104 -0.0771 6.141 IDW 

Zn 
Gaussian 

OLS 
1.29 3.12 250 

71 
(H) 

67 
(H) 

5 71 0.140 -0.514 1.209 

 

2.5 11 0.0159 0.0107 1.226 IDW 

C0: nugget effect; C1: partial sill; Ra: range; %SDI: Spatial Dependence Index; %ESDI: Effective Spatial Dependence Index; %𝛾(1): First Semivariance 
Significance Index; ISI: Interpolator Selection Index; ME: Mean Error; SDME: Standard Deviation of Mean Error; IDW: Inverse Distance Weighting; OK: 
Ordinary Kriging; Exp: exponent; Neig: neighbors; OLS: Ordinary Least Squares; WLS: Weighted Least Squares. Classification of %SDI and ESDI: 
very low for %SDI < 20%; low for 20 ≤ %SDI < 40%; medium for 40 ≤ %SDI < 60%; high for 60 ≤ %SDI < 80%; and very high for %SDI > 80%. Values 
highlighted in Light Salmon do not agree with the criteria defined in Table 2 (%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20). 
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Table 8 Result of selecting the best interpolator model for inverse distance weighted interpolation (IDW) and ordinary Kriging (OK) using the interpolator 
selection index (ISI) for variables of Field A-2019, using Method 1: Selection using only ISI 

Varia- 
bles 

 Geostatistics IDW Best 
Inter- 

polator Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram Exp Neig ISI ME*102 SDME 

Al 
Spherical 

WLS 
0.00646 0.0885 88 

93 
(VH) 

28 
(L) 

70 93 0.161 0.159 0.282 

 

1 9 0.435 0.736 0.270 OK 

Ca 
Matérn 2 

WLS 
0.732 7.97 353 

92 
(VH) 

91 
(VH) 

1 67 0.289 -1.295 0.925 

 

1 9 0.223 -1.121 0.892 OK 

CTC 
Matérn 1.5 

OLS 
0.425 2.415 353 

85 
(VH) 

84 
(VH) 

1 60 0.0242 -0.022 0.669 

 

3 6 0.0488 -0.0259 0.687 OK 

Ca/CTC 
Gaussian 

WLS 
38.9 111 353 

74 
(H) 

72 
(H) 

2 64 0.251 -10.34 6.432 

 

1 9 0.455 -20.34 6.353 OK 

H+Al/CTC 
Spherical 

WLS 
6.1 117 87 

95 
(VH) 

28 
(L) 

71 95 0.147 1.71 10.579 

 

1 9 0.452 22.46 9.427 OK 

K/CTC 
Spherical 

OLS 
0.764 1.25 88 

62 
(H) 

18 
(VL) 

70 62 0.128 0.156 9.430 

 

1 12 0.330 -2.674 1.316 OK 

Mg/CTC 
Matérn 1.5 

WLS 
15.9 13.12 287 

45 
(M) 

39 
(L) 

13 22 0.025 0.416 1.420 

 

1.5 6 0.0478 0.389 4.302 OK 

Cu 
Matérn 0.5 

WLS 
0.64 7.63 353 

92 
(VH) 

82 
(VH) 

11 88 0.1170 1.898 1.416 

 

4.5 5 0.0594 0.153 1.478 IDW 
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Varia- 
bles 

 Geostatistics IDW Best 
Inter- 

polator Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram Exp Neig ISI ME*102 SDME 

Fe 
Gaussian 

OLS 
253 353 286 

58 
(M) 

56 
(M) 

5 52 0.0082 0.571 16.366 

 

1.5 6 0.0837 -0.958 17.38 OK 

H+Al 
Spherical 

OLS 
0.00 1.18 89.1 

100 
(VH) 

30 
(L) 

70 100 0.111 0.161 16.471 

 

6 4 0.551 2.328 1.105 OK 

K 
Spherical 

OLS 
0.00 0.0243 88.2 

100 
(VH) 

35 
(L) 

65 100 0.138 0.0392 1.012 

 

1 10 0.0954 0.0173 0.145 IDW 

Mg 
Gaussian 

WLS 
0.229 0.183 335 

44 
(M) 

39 
(L) 

13 35 0.00139 0.000468 0.147 

 

1 6 0.0310 0.0250 0.518 OK 

Mn 
Exponential 

WLS 
542 506335 260037 

100 
(VH) 

50 
(M) 

10 56 0.138 -15.778 26.064 

 

6 9 0.221 -24.05 27.08 OK 

OM 
Matérn 2 

WLS 
24.0 6.97 170 

23 
(L) 

-3 
(VL) 

126 13 0.024 -0.434 31.68 

 

1 4 0.481 -7.212 5.814 OK 

P 
Matérn 2 

WLS 
79.0 340 337 

81 
(VH) 

79 
(H) 

3 47 0.00303 -0.217 5.079 

 

1.5 9 0.0645 -0.911 9.950 OK 

pH  
CaCl2 

Gaussian 
OLS 

0.0768 0.0511 88.2 
40 
(L) 

22 
(L) 

46 40 0.0392 -0.0642 9.342 

 

6 8 0.321 -0.272 0.370 OK 



211 
 
 

 

Varia- 
bles 

 Geostatistics IDW Best 
Inter- 

polator Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram Exp Neig ISI ME*102 SDME 

m% 
Spherical 

WLS 
0.0 40.9 89 

100 
(VH) 

30 
(L) 

70 100 0.175 3.372 5.772 

 

1 9 0.388 13.025 5.473 OK 

SB 
Matérn 2 

WLS 
1.48 12.8 353 

90 
(VH) 

88 
(VH) 

2 62 0.277 -1.430 1.330 

 

1 10 0.0876 -0.416 1.316 IDW 

pH  
SMP 

Spherical 
WLS 

0.00 0.0746 86 
100 
(VH) 

28 
(L) 

72 100 0.137 -0.0296 0.266 

 

6 4 0.580 -0.550 0.281 OK 

V% 
Spherical 

WLS 
5.9 118 87 

95 
(VH) 

28 
(L) 

71 95 0.148 -1.66 10.662 

 

1 9 0.443 -21.31 9.472 OK 

Zn 
Gaussian 

OLS 
1.16 3.08 446 

73 
(H) 

43 
(M) 

17 52 0.0229 0.0375 3.286 

 

2.5 5 0.0476 0.0636 1.147 OK 

Clay 
Gaussian 

OLS 
10.9 4.88 205 

31 
(L) 

25 
(L) 

18 30 0.0396 -0.678 0.263 

 

1 5 0.142 -0.996 3.639 OK 

Sand 
Gaussian 

WLS 
0.332 0.435 142.9 

57 
(M) 

45 
(M) 

21 57 0.0825 0.653 0.659 

 

1 4 0.293 1.853 0.706 OK 

Silt 
Gaussian 

OLS 
10.9 2.50 146 

19 
(VL) 

14 
(VL) 

27 19 0.0243 0.277 1.126 

 

1 10 0.0511 -0.407 3.351 OK 

C0: nugget effect; C1: partial sill; Ra: range; %SDI: Spatial Dependence Index; %ESDI: Effective Spatial Dependence Index; %𝛾(1) : the First 
Semivariance Significance Index; ISI: Interpolator Selection Index; ME: Mean Error; SDME: Standard Deviation of Mean Error; IDW: Inverse Distance 
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Weighting; OK: Ordinary Kriging; Exp: exponent; Neig: neighbors; OLS: Ordinary Least Squares; WLS: Weighted Least Squares. Classification of %SDI 
and ESDI: very low for %SDI < 20%; low for 20 ≤ %SDI < 40%; medium for 40 ≤ %SDI < 60%; high for 60 ≤ %SDI < 80%; and very high for %SDI > 
80%. Values highlighted in Light Salmon do not agree with the criteria defined in Table 2 (%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20).  

 

 

Table 9 Result of selecting the best interpolator model for inverse distance weighted interpolation (IDW) and ordinary Kriging (OK) using the interpolator 
selection index (ISI) for variables of Field B-2015, using Method 1: Selection using only ISI 

Varia-
ble 

 Geostatistics IDW Best 
Inter- 

polator 
Model / 
Method 

C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*103 SDME Semivariogram Exp Neig ISI ME*103 SDME 

Al 
Gaussian 

WLS 
0.00658 0.00209 105 

24 
(L) 

34 
(L) 

-42 24 0.0456 0.138 0.0926 

 

2.5 4 0.0783 -0.0378 0.0996 OK 

C 
Gaussian 

WLS 
3.99 1.89 106 

32 
(L) 

24 
(L) 

25 32 0.0681 -9.685 2.123 

 

1 7 0.114 -12.84 2.176 OK 

Ca 
Exponential 

OLS 
0.957 0.308 341 

24 
(L) 

34 
(L) 

-41 19 0.0437 -1.157 1.015 

 

1.5 7 0.0347 -0.800 1.010 IDW 

Cu 
Spherical 

OLS 
1.836 1.19 419 

39 
(L) 

30 
(L) 

25 39 0.116 9.89 1.536 

 

3 10 0.646 57.66 1.531 OK 

Fe 
Matérn 1.5 

WLS 
61.4 81.0 94.5 

57 
(M) 

59 
(M) 

-4 55 0.0689 17.95 9.579 

 

1 5 0.0336 -1.994 9.632 IDW 

H+Al 
Matérn 1.5 

WLS 
1.04 0.02521 105 

2 
(VL) 

32 
(L) 

-1232 2 0.0272 0.2684 1.051 

 

1.5 7 0.0867 1.122 1.109 OK 
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Varia-
ble 

 Geostatistics IDW Best 
Inter- 

polator 
Model / 
Method 

C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*103 SDME Semivariogram Exp Neig ISI ME*103 SDME 

K 
Spherical 

WLS 
0.0141 0.0180 350 

56 
(M) 

46 
(M) 

19 56 0.0026 0.0314 0.130 

 

2 6 0.0344 -0.0992 0.134 OK 

Mg 
Gaussian 

OLS 
0.0987 0.0682 105 

41 
(M) 

49 
(M) 

-20 41 0.0972 -1.444 0.371 

 

1.5 6 0.0533 0.677 0.370 IDW 

Mn 
Matérn 2 

WLS 
625 2706 103 

81 
(VH) 

82 
(VH) 

-1 79 0.127 -159.4 30.04 

 

1 4 0.00380 -11.04 27.75 IDW 

P 
Exponential 

WLS 
17.15 11.86 2.4 

41 
(M) 

-43 
(VL) 

204 41 
0.0000 
0003 

-
0.00001 

5.404 

 

2 7 0.0691 -2.49 5.810 OK 

pH 
CaCl2 

Gaussian 
WLS 

0.0687 0.0103 105 
13 

(VL) 
34 
(L) 

-162 13 0.0801 -0.645 0.274 

 

1 7 0.230 -2.695 0.273 OK 

pH 
SMP 

Matérn 2 
WLS 

0.0448 0.00297 105 
6 

(VL) 
32 
(L) 

-415 5 0.0461 -0.145 0.219 

3

 

1.5 7 0.0625 0.0570 0.226 OK 

SB 
Gaussian 

OLS 
2.019 0.178 118 

8 
(VL) 

31 
(L) 

-281 8 0.0311 -1.457 1.421 

 

1 7 0.0377 -1.620 1.429 OK 

V% 
Exponential 

WLS 
0.00 69.7 22.2 

100 
(VH) 

31 
(L) 

69 100 0.0759 -48.06 8.254 

 

1 7 0.0768 20.69 8.681 OK 
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Varia-
ble 

 Geostatistics IDW Best 
Inter- 

polator 
Model / 
Method 

C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*103 SDME Semivariogram Exp Neig ISI ME*103 SDME 

Zn 
Exponential 

OLS 
1.132 1.22 145 

52 
(M) 

32 
(L) 

39 50 0.0811 5.169 1.260 

 

2.5 12 0.0642 1.654 1.311 IDW 

CTC 
Matérn 0.5 

OLS 
0.343 0.502 419 

59 
(M) 

42 
(M) 

29 48 0.0748 -2.855 0.643 

 

1 7 0.249 -9.229 0.654 OK 

Al/CTC 
Exponential 

OLS 
1.61 1.59 419 

50 
(M) 

52 
(M) 

-5 38 0.0512 2.396 1.530 

 

2 9 0.0564 0.588 1.607 OK 

Ca/CTC 
Exponential 

WLS 
2.93 33.6 25.0 

92 
(VH) 

28 
(L) 

70 92 0.0745 -27.64 5.923 

 

1 8 0.0337 -2.361 6.110 IDW 

Mg/CTC 
Spherical 

WLS 
3.51 3.78 168 

52 
(M) 

47 
(M) 

9 52 0.143 -14.43 2.544 

 

2.5 6 0.0242 -0.944 2.541 IDW 

K/CTC 
Gaussian 

OLS 
0.869 0.344 201 

28 
(L) 

38 
(L) 

-33 28 0.0163 -0.521 0.894 

 

1.5 8 0.0342 0.684 0.907 OK 

C0: nugget effect; C1: partial sill; Ra: range; %SDI: Spatial Dependence Index; %ESDI: Effective Spatial Dependence Index; %𝛾(1):  First Semivariance 
Significance Index; ISI: Interpolator Selection Index; ME: Mean Error; SDME: Standard Deviation of Mean Error; IDW: Inverse Distance Weighting; OK: 
Ordinary Kriging; Exp: exponent; Neig: neighbors; OLS: Ordinary Least Squares; WLS: Weighted Least Squares. Classification of %SDI and ESDI: 
very low for %SDI < 20%; low for 20 ≤ %SDI < 40%; medium for 40 ≤ %SDI < 60%; high for 60 ≤ %SDI < 80%; and very high for %SDI > 80%. Values 
highlighted in Light Salmon do not agree with the criteria defined in Table 2 (%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20). 
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Some variables had their semivariogram models considered unsatisfactory, highlighted 

in Light Salmon (Tables 7, 8, and 9). They did not agree with the criteria defined in Table 2 

(%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20). 

The variables’ spatial dependences (SD, Fig. 7), measured by the traditional %SDI 

(Equation 2), were classified, on average, as medium (24%), as high (23%), and very high 

(30%). However, using %ESDI (Equation 3), SD was classified, on average, as medium (23%), 

as high (18%), and very high (11%). That means that the high and very high sum lowered from 

53% to 29% and that %SDI masks the actual SD.  

 

 
Fig. 7 Number of variables of each class for %SDI and %ESDI (very low, low, medium, high, 
and very high) for each Field (A-2018, A-2019, and B-2015). 

 

According to the visual inspection of each variable semivariogram (Tables 7, 8, and 9), 

there seems to be a lack of adjustment of the model pointed out as the best for some variables 

in the Fields A-2018 (K), A-2019 (Al, H+Al/CTC, K/CTC, H+Al, K, m%, pH SMP, and V%) and 

B (Ca/CTC and V%). In other cases, there is an indication of pure nugget effect in Field A-

2019 (OM, and pH CaCl2) and Field B-2015 (Al, Ca, H+Al, P, pH CaCl2, pH SMP, and SB). 

Clay and silt can also be included in this list (Field A-2019). Among the variables with “doubtful” 

or “pure nugget effect” adjustment, IDW interpolator was considered the best only for K, Fields 

A-2018, and A-2019, and Ca and Ca/CTC, in Field B-2015. 

Another aspect observed was the fact that %SDI (Fig. 7) indicated wrongly the 

presence of strong spatial dependence (high or very high) in some variables in the following 

areas: (i) Field A-2018: K, (ii) Field A-2019: Al, K/CTC, H+Al/CTC, H+Al, K, m%, pH SMP, and 

V% and (iii) Field B-2015: V% and Ca/CTC. The first semivariance plotted in the 

semivariograms of these variables shows a high variance of data at the closest distances and 

that the model was adjusted incorrectly. In these cases, %SDI gives some false feeling of 

having an adequate model, which presents a strong spatial dependence.  

This kind of problem with semivariogram adjustments is due to the model's automatic 

adjustment to the semivariogram made by geoR package's routines. The automatic adjustment 
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of models to semivariograms is pointed out in literature as a notoriously tricky task (WEBSTER; 

OLIVER, 1990; GOOVAERTS, 1997). As with any method for adjusting the variogram model, 

they all assume the model's basic structure in advance and then obtained the predefined model 

structure's optimal coefficients. Selecting the variogram model and its parameters is the most 

controversial aspect of geostatistics; shapes of valid variogram models are finite; sometimes, 

the model's optimal shape cannot be fitted, leading to reduced estimation accuracy (HAN; 

WANG; ZHENG, 2016). In this sense, it is proposed in this work criteria (using %ESDI, %γ(1), 

and %SMEI) to improve the semivariogram adjustment process, which are presented by 

Methods 2 and 3. 

 

Method 2: This method was applied to variables with unsatisfactory semivariogram 

models (Tables 7, 8, and 9). As a result, other semivariogram models were selected for 

variables in Field A-2019 (Al, K/CTC, H+Al, m%, pH CaCl2, m%, and Clay). In another case, 

IDW interpolator was considered the best for variable SB (Field B-2015) (Table 10). It is 

noteworthy that variables OM and silt, from field A-2019, and C, H+Al, P, pH SMP, and V%, 

from Field B-2015, had all semivariogram models eliminated. In these cases, IDW interpolator 

was considered the best one. 

IDW interpolator had was considered using Method 1 as the best interpolator for 

variable K, in Fields A-2018 (Table 7) and A-2019 (Table 8), and for variables Ca and Ca/CTC, 

in Field B-2015 (Table 9). However, other semivariogram models' selection behavior was 

evaluated regardless of whether IDW was identified as the best. As a result, this allowed us to 

verify that the variable K, from Fields A-2018 and A-2019, and the variables Ca and Ca/CTC, 

from Field B-2015, could choose another semivariogram model (Table 10). 

It is essential to highlight that the three criteria must be considered together in the 

semivariogram models' selection process. According to the semivariogram structure, a wrong 

model can be selected when it is not applied in association (see results in Table 11). This issue 

was the most important in Field A-2019 and the least important for Field A-2018. 
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Table 10 Result of selecting the best interpolator model for ordinary Kriging (OK) using the interpolator selection index (ISI) for variables of Fields A-
2018, A-2019, and B-2015 using Method 2: The three criteria (%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20) are applied after geostatistics analysis 

Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

K 
Field A-

2018 

Gaussian 
OLS 

0.0130 0.00808 513 
38 
(L) 

45 
(M) 

-17 28 0.122 -0.015 0.113 

 

IDW 

Al 
Field A-

2019 

Matérn 2 
WLS 

0.0640 0.372 353 
85 

(VH) 
84 

(VH) 
1 52 0.1919 0.279 0.272 

 

OK 

K/CTC 
Field A-

2019 

Gaussian 
OLS 

1.54 1.47 353 
49 
(M) 

33 
(L) 

12 38 0.1540 -1.010 1.324 

 

OK 

H+Al/CTC 
Field A-

2019  

Spherical 
OLS 

46.5 116.6 353 
71 
(H) 

45 
(M) 

37 71 0.2194 10.706 9.404 

 

OK 
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Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

H+Al 
Field A-

2019 

Exponential 
WLS 

0.456 1.54 353 
77 
(H) 

59 
(M) 

24 68 0.2251 1.357 0.916 

 

OK 

K 
Field A-

2019 

Gaussian 
WLS 

0.0116 0.0131 88 
53 
(M) 

36 
(L) 

33 53 0.1474 -0.126 0.136 

 

IDW 

m% 
Field A-

2019 

Gaussian 
OLS 

25.73 49.89 353 
66 
(H) 

62 
(H) 

6 55 0.2179 6.602 5.508 

 

OK 

OM 
Field A-

2019 
All geostatistical models were eliminated IDW 

pH CaCl2 
Field A-

2019 

Matérn 1 
OLS 

0.0672 0.0773 88 
53 
(M) 

31 
(L) 

43 52 0.1255 -0.205 0.313 

 

OK 
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Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

pH SMP 
Field A-

2019 

Spherical 
OLS 

0.0230 0.0650 221 
74 
(H) 

39 
(L) 

47 74 0.1827 -0.249 0.236 

 

OK 

V% 
Field A-

2019 

Spherical 
OLS 

47.4 116.4 353 
71 
(H) 

45 
(M) 

36 71 0.2247 -10.551 9.474 

 

OK 

Clay 
Field A-

2019 

Matérn 2 
OLS 

10.8 5.84 96 
35 
(L) 

29 
(L) 

17 31 0.0452 -0.719 3.290 

 

OK 

Silt 
Field A-

2019 
All geostatistical models were removed IDW 

C 
Field B-

2015 
All geostatistical models were eliminated IDW 
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Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

Ca 
Field B-

2015 

Spherical 
OLS 

0.725 0.425 183 
37 
(L) 

28 
(L) 

25 37 0.0445 -2.865 0.987 

 

IDW 

Ca/CTC 
Field B-

2015 

Matérn 2 
WLS 

17.9 18.6 16 
51 
(M) 

28 
(L) 

46 51 0.0796 -29.649 5.921 

 

IDW 

H+Al 
Field B-

2015 
All geostatistical models were eliminated IDW 

P 
Field B-

2015 
All geostatistical models were eliminated IDW 

pH CaCl2 
Field B-

2015 

Gaussian 
OLS 

0.0624 0.0174 105 
22 
(L) 

35 
(L) 

-59 22 0.0693 -0.891 0.271 

 

OK 
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Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

pH SMP 
Field B-

2015 
All geostatistical models were eliminated IDW 

SB 
Field B-

2015 

Spherical 
WLS 

1.360 0.861 167 
39 
(L) 

32 
(L) 

18 39 0.0527 -5.516 1.398 

 

IDW 

V% 
Field B-

2015 
All geostatistical models were removed IDW 

C0: nugget effect; C1: partial sill; Ra: range; %SDI: Spatial Dependence Index; %ESDI: Effective Spatial Dependence Index; %𝛾(1): First Semivariance 
Significance Index; %SMEI: Slope of the Model Ends Index; ISI: Interpolator Selection Index; ME: Mean Error; SDME: Standard Deviation of Mean 
Error; IDW: Inverse Distance Weighting; OK: Ordinary Kriging; OLS: Ordinary Least Squares; WLS: Weighted Least Squares. Classification of %SDI 
and ESDI: very low for %SDI/ESDI < 20%; low for 20 ≤ %SDI/ESDI < 40%; medium for 40 ≤ %SDI/ESDI < 60%; high for 60 ≤ %SDI/ESDI < 80%; and 
very high for %SDI/ESDI > 80%. 
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Table 11 Result of selecting the best interpolator model for ordinary Kriging (OK) with Method 
2 using each criterion separately and all together for variables of Fields A-2018, A-2019, and 
B-2015 

Variables/ 
Fields 

Criterion 1 only 
%ESDI > 25% 

Criterion 2 only 
%𝜸(𝟏) < 50% 

Criterion 3 only 
%SMEI > 20% 

All criteria 

K 
Field A-

2018 

Spherical – OLS* 

 

Exponential – OLS* 

 

Spherical – OLS* 

 

Exponential – OLS* 

 

Al 
Field A-

2019 

Spherical – WLS  

 

Matérn 2 – WLS  

 

Spherical – WLS  

 

Matérn 2 – WLS  

 

K/CTC 
Field A-

2019 

Gaussian – OLS  

 

Gaussian – OLS  

 

Spherical – OLS 

 

Gaussian – OLS  

 

H+Al/CTC 
Field A-

2019 

Spherical - WLS 

 

Spherical - OLS 

 

Spherical - WLS 

 

Spherical - OLS 

 

H+Al 
Field A-

2019 

Spherical – OLS 

 

Exponential – WLS  

 

Spherical – OLS 

 

Exponential – WLS  

 

K 
Field A-

2019 

Spherical – OLS* 

 

Gaussian – WLS* 

 

Spherical – OLS* 

 

Gaussian – WLS* 

 

m% 
Field A-

2019 

Spherical - WLS 

 

Gaussian - OLS 

 

Spherical - WLS 

 

Gaussian - OLS 

 

OM 
Field A-

2019 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

pH CaCl2 
Field A-

2019 

Matérn 1 – OLS  

 

Gaussian – OLS 

 

Gaussian – OLS 

 

Matérn 1 – OLS  
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Variables/ 
Fields 

Criterion 1 only 
%ESDI > 25% 

Criterion 2 only 
%𝜸(𝟏) < 50% 

Criterion 3 only 
%SMEI > 20% 

All criteria 

pH SMP 
Field A-

2019 

Spherical - WLS 

 

Spherical - OLS 

 

Spherical - WLS 

 

Spherical - OLS 

 

V% 
Field A-

2019 

Spherical - WLS 

 

Spherical - WLS 

 

Spherical - WLS 

 

Spherical - WLS 

 

Clay 
Field A-

2019 

Matérn 2 – OLS  

 

Gaussian – OLS 

 

Gaussian – OLS 

 

Matérn 2 – OLS  

 

Silt 
Field A-

2019 

All geostatistical 
models were 
eliminated 

Gaussian – OLS 

 

Matérn 1 – OLS  

 

All geostatistical 
models were 
eliminated 

C 
Field B-

2015 

All geostatistical 
models were 
eliminated 

Gaussian – WLS 

 

Gaussian – WLS 

 

All geostatistical 
models were 
eliminated 

Ca 
Field B-

2015 

Exponential – OLS 

 

Exponential – OLS 

 

Spherical - OLS 

 

Spherical - OLS 

 

Ca/CTC 
Field B-

2015 

Exponential – WLS* 

 

Matérn 2 – WLS* 

 

Exponential – WLS* 

 

Matérn 2 – WLS* 

 

H+Al 
Field B-

2015 

Matérn 1.5 – WLS 

 

Matérn 1.5 – WLS 

 

Exponential – WLS 

 

All geostatistical 
models were 
eliminated 

P 
Field B-

2015 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

Exponential – WLS 

 

All geostatistical 
models were 
eliminated 

pH CaCl2 
Field B-

2015 

Gaussian – WLS 

 

Gaussian – WLS 

 

Gaussian – OLS 

 

Gaussian – OLS 
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Variables/ 
Fields 

Criterion 1 only 
%ESDI > 25% 

Criterion 2 only 
%𝜸(𝟏) < 50% 

Criterion 3 only 
%SMEI > 20% 

All criteria 

pH SMP 
Field B-

2015 

Matérn 2 – WLS 

 

Matérn 2 – WLS 

 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

SB 
Field B-

2015 

Gaussian - OLS 

 

Gaussian - OLS 

 

Spherical – WLS* 

 

Spherical – WLS* 

 

V% 
Field B-

2015 

Exponential – WLS 

 

All geostatistical 
models were 
eliminated 

Exponential – WLS 

 

All geostatistical 
models were 
eliminated 

OLS: Ordinary Least Squares; WLS: Weighted Least Squares; %ESDI: Effective Spatial 
Dependence Index; %𝛾(1): First Semivariance Significance Index; %SMEI: Slope of the Model 
Ends Index; Al: aluminum; C: carbon; Ca: calcium; Ca/CTC: calcium adsorbed on CTC in %; 
H+Al/CTC: aluminum more hydrogen adsorbed on CTC in %; H+Al: potential acidity; K: 
Potassium; K/CTC: potassium adsorbed on CTC in %; m%: aluminum saturation; OM: organic 
matter; P: phosphorus; pH: the potential of hydrogen; pH SMP: pH of buffer solution 
Shoemaker-McLean-Pratt; SB: sum of basis; V%: base saturation. 
* The IDW interpolator was considered better than the model adjusted to the semivariogram. 

 

Method 3: This method, just as Method 2, was applied to the variables with 

unsatisfactory semivariogram models (Tables 7, 8, and 9). As a result, some models were 

eliminated in favor of others. In OM and Silt variables, from Field A-2019, and in C, H+Al, P, 

and V% variables, from Field B-2015, all geostatistical models were eliminated during the 

geostatistical analysis (Table 12). All other variables had changes in semivariogram 

parameters in comparison to Method 1. 

Other semivariogram models were selected for variables in Field A-2019 (Al, m%, pH 

CaCl2, and Clay) and Field B-2015 (pH CaCl2, pH SMP, and SB) (Table 12). In other cases, 

IDW interpolator was considered the best one: Field A-2019 (OM and silt) and Field B-2015 

(C, H+Al, P, pH SMP, SB, and V%). 

Variables as K/CTC, H+Al/CTC, and V% (Field A-2019) kept the model selected by 

Method 1 (Spherical – OLS or WLS) but with other semivariogram adjusting parameters. In 

variables H+Al, K, and pH SMP (Field A-2019) and Ca, the model selected by Method 1 

(Spherical) remained; however, the method of adjusting the semivariogram changed between 

OLS and WLS. Variables Al, m%, and Clay (Field A-2019) and Ca and SB (Field B-2015) kept 

the model selected in Method 2. Despite maintaining the models, variables K (Field A-2018) 

and pH SMP (Field A-2019) changed the semivariogram adjustment parameters. 
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As it was expected, Methods 2 and 3 conducted different results. Method 3 allows 

another ‘fitted model’ to be selected in the geostatistical analysis, and as it was explained in 

section M&M, it is expected to lead to the best interpolator model (IDW or OK).
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Table 12 Result of selecting the best interpolator model for ordinary Kriging (OK) using interpolator selection index (ISI) for variables of Fields A-2018, 
A-2019, and B-2015 using Method 3: The three criteria (%ESDI > 25%, %γ(1) < 50%, and %SMEI > 20) are applied during geostatistics analysis  

Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

K 
Field A-

2018 

Exponential 
OLS 

0.0109 0.0111 513 
50 
(M) 

47 
(M) 

7 39 0.126 -0.028 0.109 

 

IDW 

Al 
Field A-

2019 

Matérn 2 
WLS 

0.064 0.372 353 
85 

(VH) 
84 

(VH) 
1 52 0.1919 0.279 0.272 

 

OK 

K/CTC 
(%) 

Field A-
2019 

Spherical 
OLS 

1.37 0.894 353 
39 
(L) 

27 
(L) 

31 39 0.1259 -0.968 1.290 

 

OK 

H+Al/CTC 
(%) 

Field A-
2019 

Spherical 
WLS 

45.6 107.3 353 
70 
(H) 

42 
(M) 

41 70 0.2150 10.507 9.399 

 

OK 
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Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

H+Al 
Field A-

2019 

Spherical 
WLS 

0.454 0.899 353 
66 
(H) 

39 
(L) 

41 66 0.1872 1.131 0.907 

 

OK 

K 
Field A-

2019 

Spherical 
WLS 

0.00809 0.0163 154 
67 
(H) 

35 
(L) 

48 67 0.1109 -0.091 0.137 

 

IDW 

m% 
Field A-

2019 

Gaussian 
OLS 

25.73 49.89 353 
66 
(H) 

62 
(H) 

6 55 0.2179 6.602 5.508 

 

OK 

OM 
Field A-

2019 
All geostatistical models were eliminated IDW 

pH 
CaCl2 

Field A-
2019 

Spherical 
OLS 

0.0682 0.0684 287 
50 
(M) 

27 
(L) 

47 50 0.1248 -0.184 0.318 

 

OK 
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Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

pH SMP 
Field A-

2019 

Spherical 
OLS 

0.0253 0.0749 353 
75 
(H) 

47 
(M) 

38 75 0.2185 -0.319 0.233 

 

OK 

V% 
Field A-

2019 

Spherical 
WLS 

46.7 106.7 353 
70 
(H) 

41 
(M) 

40 70 0.2194 -10.318 9.467 

 

OK 

Clay 
Field A-

2019 

Matérn 2 
OLS 

10.78 5.83 96 
35 
(L) 

29 
(L) 

17 31 0.0452 -0.719 3.290 

 

OK 

Silt 
Field A-

2019 
All geostatistical models were eliminated IDW 

C 
Field B-

2015 
All geostatistical models were eliminated IDW 
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Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

Ca 
Field B-

2015 

Spherical 
OLS 

0.725 0.425 183 
37 
(L) 

28 
(L) 

25 37 0.0445 -0.287 0.987 

 

IDW 

Ca/CTC 
Field B-

2015 

Matérn 1.5 
WLS 

16.55 19.20 18 
55 
(M) 

28 
(L) 

50 55 0.0786 -2.898 5.921 

 

IDW 

H+Al 
Field B-

2015 
All geostatistical models were eliminated IDW 

P 
Field B-

2015 
All geostatistical models were eliminated IDW 

pH 
CaCl2 

Field B-
2015 

Spherical 
WLS 

0.062 0.017 183 
21 
(L) 

34 
(L) 

-62 21 0.0673 -0.084 0.271 

 

OK 
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Variables/ 
Fields 

Models C0 C1 Ra %SDI %ESDI %𝜸(𝟏) %SMEI ISI ME*102 SDME Semivariogram 
Best 
Inter- 

polator 

pH 
SMP 

Field B-
2015 

Exponential 
OLS 

0.039 0.011 183 
22 
(L) 

35 
(L) 

-57 21 0.0480 -0.035 0.217 

 

IDW 

SB 
Field B-

2015 

Spherical 
WLS 

1.360 0.861 167 
39 
(L) 

32 
(L) 

18 39 0.0527 -5.516 1.398 

 

IDW 

V% 
Field B-

2015 
All geostatistical models were eliminated IDW 

C0: nugget effect; C1: partial sill; Ra: range; %SDI: Spatial Dependence Index; %ESDI: Effective Spatial Dependence Index; First Semivariance 
Significance Index (%𝛾(1)); %SMEI: Slope of the Model Ends Index; ISI: Interpolator Selection Index; ME: Mean Error; SDME: Standard Deviation of 
Mean Error; IDW: Inverse Distance Weighting; OK: Ordinary Kriging; OLS: Ordinary Least Squares; WLS: Weighted Least Squares. Classification of 
%SDI and ESDI: very low for %SDI/ESDI < 20%; low for 20 ≤ %SDI/ESDI < 40%; medium for 40 ≤ %SDI/ESDI < 60%; high for 60 ≤ %SDI/ESDI < 80%; 
and very high for %SDI/ESDI > 80%. 
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iii. Comparison of the three Methods 

 

When comparing the interpolator selection result for the variables considered with 

inadequate geostatistical models, it was noticed that the selected interpolator might change 

according to the selection method (Table 13). 

 

Table 13 The best interpolation models selected with each of the three methods 

Variables/ 
Fields 

 Method 1 Method 2 Method 3 

K 
 

 Field 
A-2018 

Best 
Semivari-

ogram 

Spherical – OLS 

 

Gaussian – OLS 

 

Exponential – OLS 

 

Best 
Interpolator 

IDWe3.5n7 IDWe3.5n7 IDWe3.5n7 

Al 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Spherical – WLS 

 

Matérn 2 - WLS 

 

Matérn 2 - WLS 

 

Best 
Interpolator 

Spherical – WLS Matérn 2 - WLS Matérn 2 - WLS 

H+Al/CTC 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Spherical – WLS 

 

Spherical – OLS 

 

Spherical – WLS 

 
Best 

Interpolator 
Spherical – WLS Spherical – OLS Spherical – WLS 

K/CTC 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Spherical – OLS 

 

Gaussian – OLS 

 

Spherical – OLS 

 
Best 

Interpolator 
Spherical – OLS Gaussian – OLS Spherical – OLS 

H+Al 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Spherical – OLS 

 

Exponential – WLS 

 

Spherical - WLS 

 
Best 

Interpolator 
Spherical – OLS Exponential – WLS Spherical – OLS 

K 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Spherical – OLS 

 

Gaussian – WLS 

 

Spherical – WLS 
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Variables/ 
Fields 

 Method 1 Method 2 Method 3 

Best 
Interpolator 

IDWe1n10 IDWe1n10 IDWe1n10 

m% 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Spherical – WLS 

 

Gaussian – OLS 

 

Gaussian – OLS 

 
Best 

Interpolator 
Spherical – WLS Gaussian – OLS Gaussian – OLS 

OM 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Matérn 2 – WLS 

 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

Best 
Interpolator 

Matérn 2 – WLS IDWe1n4 IDWe1n4 

pH CaCl2 
Field 

 
A-2019 

Best 
Semivari-

ogram 

Gaussian – OLS 

 

Matérn 1 – OLS 

 

Spherical – OLS 

 

Best 
Interpolator 

Gaussian – OLS Matérn 1 – OLS Spherical – OLS 

pH SMP 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Spherical – WLS 

 

Spherical – OLS 

 

Spherical – OLS 

 
Best 

Interpolator 
Spherical – WLS Spherical – OLS Spherical – OLS 

V% 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Spherical – WLS 

 

Spherical – OLS 

 

Spherical – WLS 

 
Best 

Interpolator 
Spherical – WLS Spherical – OLS Spherical – WLS 

Clay 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Gaussian – OLS 

 

Matérn 2 – OLS 

 

Matérn 2 – OLS 

 
Best 

Interpolator 
Gaussian – OLS Matérn 2 – OLS Matérn 2 – OLS 

Silt 
 

Field 
A-2019 

Best 
Semivari-

ogram 

Gaussian – OLS 

 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

Best 
Interpolator 

Gaussian – OLS IDWe1n10 IDWe1n10 



233 
 
 

 

Variables/ 
Fields 

 Method 1 Method 2 Method 3 

C 
 

Field B-
2015 

Best 
Semivari-

ogram 

Gaussian – WLS 

 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

Best 
Interpolator 

Gaussian – WLS IDWe1n7 IDWe1n7 

Ca 
 

Field B-
2015 

Best 
Semivari-

ogram 

Exponential – OLS 

 

Spherical – OLS 

 

Spherical – OLS 

 
Best 

Interpolator 
IDWe1.5n7 IDWe1.5n7 IDWe1.5n7 

Ca/CTC 
 

Field B-
2015 

Best 
Semivari-

ogram 

Exponential – WLS 

 

Matérn 2 – WLS 

 

Spherical – WLS 

 
Best 

Interpolator 
IDWe1n8 IDWe1n8 IDWe1n8 

H+Al 
 

Field B-
2015 

Best 
Semivari-

ogram 

Matérn 1.5 – WLS 

 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

Best 
Interpolator 

Matérn 1.5 – WLS IDWe1.5n7 IDWe1.5n7 

P 
 

Field B-
2015 

Best 
Semivari-

ogram 

Exponential – WLS 

 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

Best 
Interpolator 

Exponential – WLS IDWe2n7 IDWe2n7 

pH 
CaCl2 

 
Field B-

2015 

Best 
Semivari-

ogram 

Gaussian – WLS 

 

Gaussian – OLS 

 

Spherical – WLS 

 
Best 

Interpolator 
Gaussian – WLS Gaussian – OLS Spherical – WLS 

pH 
SMP 

 
Field B-

2015 

Best 
Semivari-

ogram 

Matérn 2 – WLS 

 

All geostatistical 
models were 
eliminated 

Exponential – OLS 

 
Best 

Interpolator 
Matérn 2 – WLS IDWe1.5n7 IDWe1.5n7 



234 
 
 

 

Variables/ 
Fields 

 Method 1 Method 2 Method 3 

SB 
 

Field B-
2015 

Best 
Semivari-

ogram 

Gaussian – OLS 

 

Spherical – WLS 

 

Spherical – WLS 

 
Best 

Interpolator 
Gaussian – OLS IDWe1n7 IDWe1n7 

V% 
 

Field B-
2015 

Best 
Semivari-

ogram 

Exponential – WLS 

 

All geostatistical 
models were 
eliminated 

All geostatistical 
models were 
eliminated 

Best 
Interpolator 

Exponential – WLS IDWe1n7 IDWe1n7 

Method 1: Only the best ISI; Method 2: the three criteria are applied after geostatistics analysis; 
Method 3: the three criteria are applied during geostatistics analysis; IDWe3.5n7 means: 
Inverse distance weighting with exponent 3.5 and 7 neighbors; OLS: Ordinary Least Squares; 
WLS: Weighted Least Squares; Al: aluminum; C: carbon; Ca: calcium; Ca/CTC: calcium 
adsorbed on CTC in %; H+Al/CTC: aluminum more hydrogen adsorbed on CTC in %; H+Al: 
potential acidity; K: Potassium; K/CTC: potassium adsorbed on CTC in %; m%: aluminum 
saturation; OM: organic matter; P: phosphorus; pH: the potential of hydrogen; pH SMP: pH of 
buffer solution Shoemaker-McLean-Pratt; SB: sum of basis; V%: base saturation. 

 

The variables OM and Silt, from Field A-2019, and C, H+Al, P, pH SMP, SB, and V%, 

from Field B-2015 registered that Method 1 had considered OK as the best interpolator, and, 

after applying the selection criteria by Methods 2 and 3, it started to consider IDW as the best 

interpolator. Most of these variables had all geostatistical models eliminated after applying the 

selection criteria, except for variables SB and pH SMP (by Method 3) from Field B-2015. 

Even with eliminating inappropriate geostatistical models, K, from fields A-2018 and 

A-2019, and Ca and Ca/CTC, from Field B-2015, kept IDW as the best interpolator. The other 

variables, Al, K/CTC, H+Al/CTC, H+Al, m%, pH CaCl2, pH SMP, V%, and Clay, from field A-

2019, and pH CaCl2, from Field B-2015, kept OK as the best interpolator, as selected by 

method 1. However, there was the selection of other geostatistical models after selection by 

Methods 2 and 3. 

 

iv. Thematic maps 

Thematic maps (TMs, Table 14) were generated by OK using the semivariogram 

selected by each of three methods and IDW with its best interpolator. The variables are the 

same as in Table 13. The best interpolator was considered the one selected with Method 3.
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Table 14 Comparison of thematic maps created by OK using the semivariogram selected by each of three methods and IDW with its best interpolator 

Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

A
l 
 -

 F
ie

ld
 A

-2
0

1
8
 

    C
 -

 F
ie

ld
 A

-2
0
1

8
 

    
    
0 0.56 1.19 1.82 2.45 

 

    
17.3 19.3 21.3 23.4 25.4 

 

Gau - WLS Gau - WLS Gau - WLS IDW e5n5 Gau - OLS Gau - OLS Gau - OLS IDW e1n7 

CRD Reference Reference Reference 59.72% CRD Reference Reference Reference 2.38% 

C
a
 -

 F
ie

ld
 A

-2
0

1
8
 

    C
T

C
 -

 F
ie

ld
 A

-2
0
1

8
 

    
    

2.07 2.92 3.77 4.62 5.47 
 

    
10.8 12.2 13.6 15.1 16.5 

 

Mat 1 - OLS Mat 1 - OLS Mat 1 - OLS IDW e4.5n5 Sph - OLS Sph - OLS Sph - OLS IDW e3n11 

CRD Reference Reference Reference 8.23% CRD 2.25% 2.25% 2.25% Reference 

A
l/
C

T
C

 (
%

) 
- 

F
ie

ld
 A

-2
0
1

8
 

    

C
a
/C

T
C

 (
%

) 
- 

F
ie

ld
 A

-2
0

1
8
 

    
    

-1.6 9.8 21.2 32.5 43.9 
 

    
13.3 20.2 27.1 34.0 40.9 

 

Gau - WLS Gau - WLS Gau - WLS IDW e5n5 Exp - OLS Exp - OLS Exp - OLS IDW e4n4 

CRD Reference Reference Reference 74.95% CRD 5.30% 5.30% 5.30% Reference 
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Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

H
/C

T
C

 (
%

) 
- 

F
ie

ld
 A

-2
0

1
8
 

    

K
/C

T
C

 (
%

) 
- 

F
ie

ld
 A

-2
0

1
8
 

    
    

44.0 50.0 56.0 62.0 68.0 
 

    
1.18 2.33 3.48 4.63 5.79 

 

Exp - OLS Exp - OLS Exp - OLS IDW e1.5n7 Exp - OLS Exp - OLS Exp - OLS IDW e3.5n12 

CRD 1.31% 1.31% 1.31% Reference CRD 17.81% 17.81% 17.81% Reference 

M
g

/C
T

C
 (

%
) 

- 
F

ie
ld

 A
-2

0
1

8
 

    C
u

 -
 F

ie
ld

 A
-2

0
1

8
 

    
    

5.12 7.14 9.16 11.18 13.20 
 

    
1.86 3.56 5.26 6.96 8.66 

 

Sph - OLS Sph - OLS Sph - OLS IDW e1n6 Gau - OLS Gau - OLS Gau - OLS IDW e6n7 

CRD 2.00% 2.00% 2.00% Reference CRD Reference Reference Reference 11.47% 

F
e

 -
 F

ie
ld

 A
-2

0
1
8
 

    H
+

A
l 
- 

F
ie

ld
 A

-2
0

1
8
 

    
    

5.08 11.8 18.6 25.4 32.1 
 

    
3.97 6.24 8.52 10.79 13.06 

 

Exp - WLS Exp - WLS Exp - WLS IDW e2.5n12 Sph - OLS Sph - OLS Sph - OLS IDW e5.5n10 

CRD 9.31% 9.31% 9.31% Reference CRD 7.36% 7.36% 7.36% Reference 



237 
 
 

 

Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

K
 (

c
m

o
l c

/d
m

-3
) 

- 
F

ie
ld

 A
-2

0
1

8
 

    

M
g

 -
 F

ie
ld

 A
-2

0
1

8
 

    
    

0.16 0.30 0.43 0.57 0.70 
 

    
0.69 0.98 1.27 1.55 1.84 

 

Sph - OLS Gau – OLS Exp – OLS IDW e3.5n7 Mat 2 - OLS Mat 2 - OLS Mat 2 - OLS IDW e5.5n5 

CRD 7.47% 18.28% 15.04% Reference CRD Reference Reference Reference 8.92% 

M
n

 -
 F

ie
ld

 A
-2

0
1

8
 

    O
M

 -
 F

ie
ld

 A
-2

0
1

8
 

    
    

44.8 60.8 76.8 92.8 108.8 
 

    
29.8 33.3 36.7 40.3 43.8 

 

Mat 2 - OLS Mat 2 - OLS Mat 2 - OLS IDW e1.5n10 Gau - OLS Gau - OLS Gau - OLS IDW e1n7 

CRD 9.08% 9.08% 9.08% Reference CRD Reference Reference Reference 2.38% 

P
 -

 F
ie

ld
 A

-2
0
1

8
 

    

p
H

 C
a
C

l2
 -

 F
ie

ld
 A

-2
0
1

8
 

    
    

2.6 7.8 13.0 18.2 23.4 
 

    
3.70 4.05 4.41 4.76 5.11 

 

Exp - WLS Exp - WLS Exp - WLS IDW e3n9 Mat 2 - OLS Mat 2 - OLS Mat 2 - OLS IDW e1n8 

CRD Reference Reference Reference 11.27% CRD 1.88% 1.88% 1.88% Reference 
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Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

p
H

 S
M

P
 -

 F
ie

ld
 A

-2
0
1

8
 

    S
B

 -
 F

ie
ld

 A
-2

0
1

8
 

    
    

4.70 5.00 5.30 5.60 5.90 
 

    
3.29 4.46 5.64 6.81 7.98 

 

Mat 2 - WLS Mat 2 - WLS Mat 2 - WLS IDW e4.5n9 Exp - OLS Exp - OLS Exp - OLS IDW e3.5n5 

CRD 2.43% 2.43% 2.43% Reference CRD Reference Reference Reference 6.61% 

V
%

 -
 F

ie
ld

 A
-2

0
1

8
 

    Z
n

 -
 F

ie
ld

 A
-2

0
1
8
 

    
    

20.9 30.0 39.00 48.1 57.1 
 

    
4.95 6.72 8.49 10.3 12.0 

 

Exp - OLS Exp - OLS Exp - OLS IDW e2.5n8 Gau - OLS Gau - OLS Gau - OLS IDW n2.5n11 

CRD 2.40% 2.40% 2.40% Reference CRD 5.84% 5.84% 5.84% Reference 

A
l 
(c

m
o

l c
/d

m
-3

) 
- 

F
ie

ld
 A

-2
0

1
9
 

 
 

  

C
a

 -
 F

ie
ld

 A
-2

0
1
9
 

    
    

0.00 0.26 0.52 0.78 1.04 
 

    
1.90 3.00 4.09 5.18 6.27 

 

Sph - WLS Mat 2 - WLS Mat 2 - WLS IDW e1n9 Mat 2 - WLS Mat 2 - WLS Mat 2 - WLS IDW e1n9 

CRD 64.00% Reference Reference 30.98% CRD 5.39% 5.39% 5.39% Reference 
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Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

C
T

C
 -

 F
ie

ld
 A

-2
0

1
9
 

    

C
a
/C

T
C

 (
%

) 
- 

F
ie

ld
 A

-2
0

1
9
 

    
    

9.86 10.7 11.6 12.5 13.3 
 

    
17.8 25.6 33.2 40.9 48.6 

 

Mat 1.5 - OLS Mat 1.5 - OLS Mat 1.5 - OLS IDW e3n6 Gau - WLS Gau - WLS Gau - WLS IDW e1n9 

CRD Reference Reference Reference 2.70% CRD Reference Reference Reference 4.10% 

H
+

A
l/
C

T
C

 (
%

) 
- 

F
ie

ld
 A

-2
0

1
9
 

    

K
/C

T
C

 (
%

) 
- 

F
ie

ld
 A

-2
0

1
9
 

    

    
22.8 36.0 49.2 62.4 75.6 

 

    
0.92 2.23 3.53 4.83 6.13 

 

Sph - WLS Sph - OLS Sph - WLS IDW e1n9 Sph - OLS Gau - OLS Sph - OLS IDW e1n12 

CRD 6.24% 0.16% Reference 2.28% CRD 10.87% 5.54% Reference 5.46% 

M
g

/C
T

C
 (

%
) 

- 
F

ie
ld

 A
-2

0
1
9
 

    C
u

 -
 F

ie
ld

 A
-2

0
1
9
 

    
    

5.17 9.80 14.4 19.1 23.7 
 

    
4.30 6.75 9.20 11.7 14.1 

 

Mat 1.5 - WLS Mat 1.5 - WLS Mat 1.5 - WLS IDW e1.5n6 Mat 0.5 - WLS Mat 0.5 - WLS Mat 0.5 - WLS IDW e4.5n5 

CRD Reference Reference Reference 11.00% CRD 5.58% 5.58% 5.58% Reference 



240 
 
 

 

Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

F
e

 -
 F

ie
ld

 A
-2

0
1

9
 

    

H
+

A
l 
(c

m
o

l c
/d

m
-3

) 
- 

F
ie

ld
 A

-2
0
1

9
 

    

    
30.0 58.0 78.0 98.0 118.0 

 

    
2.74 4.15 5.55 6.96 8.36 

 

Gau - OLS Gau - OLS Gau - OLS IDW e1.5n6 Sph - OLS Exp - OLS Sph - WLS IDW e6n4 

CRD Reference Reference Reference 7.38% CRD 6.02% 0.69% Reference 8.77% 

K
 (

c
m

o
l c

/d
m

-3
) 

- 
F

ie
ld

 A
-2

0
1

9
 

    M
g

 -
 F

ie
ld

 A
-2

0
1

9
 

    
    

0.09 0.27 0.44 0.61 0.78 
 

    
0.55 1.14 1.72 2.31 2.90 

 

Sph - OLS Gau - WLS Sph – WLS IDW e1n10 Gau - WLS Gau - WLS Gau - WLS IDW e1.5n6 

CRD 12.92% 7.19% 7.68% Reference CRD Reference Reference Reference 11.28% 

M
n

 -
 F

ie
ld

 A
-2

0
1

9
 

    

O
M

 (
g

/d
m

-3
) 

- 
F

ie
ld

 A
-2

0
1

9
 

 

No geostatistical 
model selected 

No geostatistical 
model selected 

 

    
88.3 121.2 154.1 187.0 219.9 

 

    
16.4 21.8 27.1 32.5 37.8 

 

Exp - WLS Exp - WLS Exp - WLS IDW e6n9 Mat 2 - WLS - - IDW e1n4 

CRD Reference Reference Reference 9.53% CRD 7.34% - - Reference 



241 
 
 

 

Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

P
 -

 F
ie

ld
 A

-2
0

1
9
 

    

p
H

 C
a
C

l2
 (

F
ie

ld
 A

-2
0

1
9

) 

    

    
5.71 17.1 28.5 39.9 51.3 

 

    
3.80 4.18 4.55 4.93 5.30 

 

Mat 2 - WLS Mat 2 - WLS Mat 2 - WLS IDW e1.5n9 Gau - OLS Mat 1 - OLS Sph - OLS IDW e6n8 

CRD Reference Reference Reference 14.43% CRD 0.79% 0.39% Reference 3.84% 

p
H

 S
M

P
 (

F
ie

ld
 A

-2
0

1
9

) 

    m
%

 -
 F

ie
ld

 A
-2

0
1
9
 

    

    
5.30 5.68 6.05 6.43 6.80 

 

    
-0.59 5.23 11.06 16.89 22.72 

 

Sph - WLS Sph - OLS Sph - OLS IDW e6n4 Sph - WLS Gau - OLS Gau - OLS IDW e1n9 

CRD 1.21% 0.35% Reference 1.81% CRD 62.67% Reference Reference 25.67% 

S
B

 -
 F

ie
ld

 A
-2

0
1

9
 

    V
%

 -
 F

ie
ld

 A
-2

0
1

9
 

    
    

3.13 4.72 6.30 7.89 9.48 
 

    
24.4 37.6 50.8 64.0 77.2 

 

Mat 2 - WLS Mat 2 - WLS Mat 2 - WLS IDW e1n10 Sph - WLS Sph - OLS Sph - WLS IDW e1n9 

CRD 4.74% 4.74% 4.74% Reference CRD 5.71% 0.15% Reference 1.99% 



242 
 
 

 

Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

Z
n

 -
 F

ie
ld

 A
-2

0
1
9
 

    

C
la

y
 (

%
) 

- 
F

ie
ld

 A
-2

0
1
9
 

    
    

1.45 3.43 5.41 7.40 9.38 
 

    
68.8 72.1 75.4 78.7 82.0 

 

Gau - OLS Gau - OLS Gau - OLS IDW e2.5n5 Gau - OLS Mat 2 - OLS Mat 2 - OLS IDW e1n5 

CRD Reference Reference Reference 12.16% CRD 0.09% Reference Reference 1.16% 

S
a

n
d

- 
F

ie
ld

 A
-2

0
1
9
 

    

S
ilt

 (
%

) 
- 

F
ie

ld
 A

-2
0

1
9
 

 

No geostatistical 
model selected 

No geostatistical 
model selected 

 
    

0.80 1.80 2.80 3.79 4.78 
 

    
16.2 19.4 22.6 25.8 28.9 

 

Gau - WLS Gau - WLS Gau - WLS IDW e1n4 Gau - OLS - - IDW e1n10 

CRD Reference Reference Reference 6.24% CRD 2.68% - - Reference 

A
l 
- 

F
ie

ld
 B

-2
0

1
5
 

    C
 -

 F
ie

ld
 B

-2
0
1

5
 

 

No geostatistical 
model selected 

No geostatistical 
model selected 

 
    

0.00 0.10 0.20 0.30 0.39 
 

    
18.0 20.4 22.7 25.0 27.3 

 

Gau - WLS Gau - WLS Gau - WLS IDW e2.5n4 Gau - WLS - - IDW e1n7 

CRD Reference Reference Reference 62.34% CRD 1.83% - - Reference 



243 
 
 

 

Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

C
a

 -
 F

ie
ld

 B
-2

0
1

5
 

    C
u

 -
 F

ie
ld

 B
-2

0
1

5
 

    
    

3.14 4.42 5.70 6.98 8.25 
 

    
11.6 13.8 16.0 18.1 20.3 

 

Exp - OLS Sph - OLS Sph - OLS IDW e1.5n7 Sph - OLS Sph - OLS Sph - OLS IDW e3n10 

CRD 7.39% 4.54% 4.54% Reference CRD Reference Reference Reference 4.58% 

F
e

 -
 F

ie
ld

 B
-2

0
1
5
 

    

H
+

A
l 
(c

m
o

l c
/d

m
-3

) 
- 

F
ie

ld
 B

-

2
0

1
5
 

 

No geostatistical 
model selected 

No geostatistical 
model selected 

 
    

36.9 48.2 59.5 70.8 82.1 
 

    
3.19 4.63 6.07 7.52 8.96 

 

Mat 1.5 - WLS Mat 1.5 - WLS Mat 1.5 - WLS IDW e1n5 Mat 1.5 - WLS - - IDW e1.5n7 

CRD 4.04% 4.04% 4.04% Reference CRD 7.65% - - Reference 

K
 -

 F
ie

ld
 B

-2
0
1

5
 

    M
g

 -
 F

ie
ld

 B
-2

0
1

5
 

    
    

0.20 0.39 0.58 0.77 0.96 
 

    
1.18 1.65 2.12 2.59 3.06 

 

Sph - WLS Sph - WLS Sph - WLS IDW e2n6 Gau - OLS Gau - OLS Gau - OLS IDW e1.5n6 

CRD Reference Reference Reference 9.05% CRD 4.89% 4.89% 4.89% Reference 



244 
 
 

 

Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

M
n

 -
 F

ie
ld

 B
-2

0
1

5
 

    

P
 (

m
g

/d
m

-3
) 

- 
F

ie
ld

 B
-2

0
1
5
 

 

No geostatistical 
model selected 

No geostatistical 
model selected 

 
    

228 271 314 356 399 
 

    
4.83 11.0 17.2 23.4 29.6 

 

Mat 2 - OLS Mat 2 - OLS Mat 2 - OLS IDW e1n4 Exp - WLS - - IDW e2n7 

CRD 3.04% 3.04% 3.04% Reference CRD 23.60% - - Reference 

p
H

 C
a
C

l2
 -

 F
ie

ld
 B

-2
0
1

5
 

    

p
H

 S
M

P
 -

 F
ie

ld
 B

-2
0
1

5
 

 

No geostatistical 
model selected 

  
    

4.92 4.99 5.06 5.13 5.20 
 

    
5.21 5.45 5.68 5.92 6.16 

 

Gau - WLS Gau - OLS Sph - WLS IDW e1n7 Mat 2 - WLS - Exp - OLS IDW e1.5n7 

CRD 0.28% 0.23% Reference 1.47% CRD 1.65% - 1.30% Reference 

S
B

 -
 F

ie
ld

 B
-2

0
1

5
 

    V
%

 -
 F

ie
ld

 B
-2

0
1

5
 

 

No geostatistical 
model selected 

No geostatistical 
model selected 

 
    

4.99 6.71 8.42 10.1 11.9 
 

    
35.3 46.2 57.0 67.9 78.7 

 

Gau - OLS Sph - WLS Sph - WLS IDW e1n7 Exp - WLS - - IDW e1n7 

CRD 6.06% 2.73% 2.73% Reference CRD 2.47% - - Reference 



245 
 
 

 

Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW Var. OK Sem. Meth 1 OK Sem. Meth 2 OK Sem. Meth 3 IDW 

Z
n

 -
 F

ie
ld

 B
-2

0
1
5
 

    

C
T

C
 -

 F
ie

ld
 B

-2
0
1

5
 

    
    

2.27 3.80 5.34 6.87 8.41 
 

    
12.8 13.5 14.1 14.7 15.4 

 

Exp - OLS Exp - OLS Exp - OLS IDW e2.5n12 Mat 0.5 - OLS Mat 0.5 - OLS Mat 0.5 - OLS IDW e1n7 

CRD 8.59% 8.59% 8.59% Reference CRD Reference Reference Reference 0.87% 

A
l/
C

T
C

 -
 F

ie
ld

 B
-2

0
1

5
 

    

C
a
/C

T
C

 (
%

) 
- 

F
ie

ld
 B

-2
0

1
5
 

    
    

0.00 1.60 3.20 4.80 6.40 
 

    
24.5 30.7 36.9 43.2 49.4 

 

Exp - OLS Exp - OLS Exp - OLS IDW e2n9 Exp - WLS Mat 2 - WLS Mat 1.5 - WLS IDW e1n8 

CRD Reference Reference Reference 48.99% CRD 2.38% 2.27% 2.24% Reference 

K
/C

T
C

 -
 F

ie
ld

 B
-2

0
1

5
 

    

M
g

/C
T

C
 -

 F
ie

ld
 B

-2
0
1

5
 

    
    

1.71 2.77 3.83 4.89 5.95 
 

    
8.55 12.0 15.4 18.8 22.2 

 

Gau - OLS Gau - OLS Gau - OLS IDW e1.5n8 Sph - WLS Sph - WLS Sph - WLS IDW e2.5n6 

CRD Reference Reference Reference 9.96% CRD 6.14% 6.14% 6.14% Reference 

Var.: Variable; OK Sem. Methods (1, 2 or 3) means: Ordinary Kriging using the semivariogram selected by method 1 (Only the best ISI), 2 (The three 
criteria are applied after geostatistics analysis), or 3 (The three criteria are applied during geostatistics analysis); Sph: Spherical; Exp: Exponential; 



246 
 
 

 

Gau: Gaussian: Mat: Matérn; IDW e3.5n7 means: Inverse distance weighting with exponent 3.5 and 7 neighbors; OLS: Ordinary Least Squares; WLS: 
Weighted Least Squares; CRD: Coefficient of Relative Deviation. 
Al: aluminum; C: Carbon; Ca: calcium; CTC: cation exchange capacity; Al/CTC: aluminum adsorbed on CTC in %; Ca/CTC: calcium adsorbed on CTC 
in %; H/CTC: hydrogen adsorbed on CTC in %; H+Al/CTC: aluminum more hydrogen adsorbed on CTC in %; K/CTC: potassium adsorbed on CTC in 
%; Mg/CTC: magnesium adsorbed on CTC in %; Cu: copper; Fe: iron; H+Al: potential acidity; K: potassium; Mg: magnesium; Mn: manganese; OM: 
organic matter; P: phosphorus; pH: the potential of hydrogen; pH SMP: pH of buffer solution Shoemaker-McLean-Pratt; SB: the sum of basis; V%: base 
saturation; Zn: zinc. 
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Using CRD to compare the maps generated by the interpolator selected by Method 3 

(IDW or OK) versus the best semivariogram model indicated by Method 1 (Fig. 8), it can be 

seen that: 

• the selection of other interpolator parameters can result in large differences 

among the maps. In variable Al, from area A-2019, the best interpolator model, 

selected by Method 3 (Matérn 2 - OLS), deviated by 64% from the map selected 

by Method 1 (Spherical - WLS). 

• the difference was below 5% in nine variables. 

• the difference was from 5% to 10% in eight variables. 

• over 10% in five variables. 

 

 
Fig. 8 The coefficient of relative deviation (CRD) between the interpolator selected by 
method 3 (IDW or OK) versus the best semivariogram model indicated by method 1. 

 

When comparing the maps generated by the interpolator selected by method 3 (IDW 

or OK) versus the best semivariogram model indicated by method 2 (Fig. 9), it can be seen 

that: 

• The most significant difference was observed in variable K (Field A-2018; 18%). 

• The difference was below 5% in twelve variables. 

• The difference between 5% and 10% in three variables. 
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Fig. 9 The coefficient of relative deviation (CRD) between the interpolator selected by 
method 3 (IDW or OK) versus the best semivariogram model indicated by method 2. 

 

Our study analyzed 66 cases, and in 31 of them, IDW outperformed OK. Consequently, 

in 35 cases, Kriging was better than IDW. These results confirm the ones recorded by Mueller 

et al. (2004) that for sample datasets with semivariograms that did not indicate spatial 

structure, IDW was a better choice than OK with a nugget model. 

 

7.4 Conclusions 

The inclusion of the three criteria (i) effective spatial dependence index 

(%ESDI) > 25%, (ii) the first semivariance significance index (%𝛾(1)) < 50% and (iii) slope of 

the model ends index (%SMEI) > 20% improved the selection of the best interpolator using 

only the interpolator selection index (ISI – Bier and Souza, 2017).  

The comparison carried out the methodology influence on selecting the best 

interpolator among the studied thematic maps using three Methods: (i) Method 1 - best ISI; (ii) 

Method 2 - the three criteria were applied after geostatistics analysis; Method 3 - the three 

criteria are applied during geostatistics analysis. Method 3 showed as the best approach. The 

coefficient of relative deviation (CRD) varied from 0.1 to 64% when comparing the maps 

generated by the three methods. 

The newly proposed measurement of effective spatial dependence index (ESDI) of a 

semivariogram showed better performance than the usual spatial dependence index (%SDI) 

widely adopted in literature. 
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8 FINAL CONSIDERATIONS 

The microservices architecture (MSA) of the AgDataBox (ADB) digital platform made 

available the functionalities for the thematic maps (TMs) creation and management zones 

(MZs) delineation in a satisfactory way. Around this, different applications can be developed. 

ADB-Map application consumes ADB-MSA resources, it is free for access 

(http://adb.md.utfpr.edu.br/map), and can be used by technicians and researchers for 

commercial, educational, or research activities. In addition, this application allows performing 

all steps to easily, and friendly create TMs and delineate MZs. 

ADB-MSA and ADB-Map application contribute to the new agriculture's phase, called 

digital agriculture, favoring the precision agriculture techniques adoption, assisting in data 

analysis and processing from farms, and allowing agricultural management decision-making. 

The case studies have indicated that it is possible to estimate the site-specific fertilizer and 

lime requirements based on soil attributes availability.  

The interpolator selection process and its parameters have been improved in this new 

ADB version based on the inclusion of new selection criteria constituted of (i) effective spatial 

dependence index (%ESDI) > 25%, (ii) the first semivariance significance index 

(%𝛾(1)) < 50%, and (iii) slope of the model ends index (%SMEI) > 20%. These criteria should 

be applied during the interpolator selection analysis and followed the application of interpolator 

selection index (ISI). 
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9 FUTURE WORKS  

• Add functionality of definition of automated sampling grids from aerial images 

established by using level curves. 

• Development of computational module for economic analysis and cost of 

agricultural production (ADB-Economic). 

• Improve MZs rectification module to specify a minimum size of each zone and 

allow MZs realignment demarcations according to the field topography and level 

curves. 

• Delimitation of rectangular and homogeneous management zones with multiple 

widths of the operational range. 


