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RESUMO 

 
Aikes Junior, Jorge. AgDatabox-Map-Fast Track: Módulo Computacional para Geração 
de Mapas Temáticos e Delineamento de Zonas de Manejo Automático. Orientador: 
Eduardo Godoy de Souza; Coorientador: Claudio Leones Bazzi. 2022. 183 f. Tese 
(Doutorado em Engenharia Agrícola) – Universidade Estadual do Oeste do Paraná, 
Cascavel - Paraná, 2022. 

 
 
A agricultura de precisão consiste na aplicação de insumos em quantidades necessárias, no 
local e no momento adequados, de maneira a maximizar a produtividade e reduzir o impacto 
ambiental. Duas tarefas importantes desse processo consistem na criação de mapas 
temáticos (TM) e zonas de manejo (MZ). Apesar de sumamente importantes, os TMs e o 
delineamento de MZs dependem de grande conhecimento técnico para sua construção, 
assim dificulta sua utilização em especial por produtores sem acesso a equipes 
especializadas, devido à necessidade de uma equipe multidisciplinar especializada. Neste 
sentido, este trabalho apresenta um módulo (ADB-MAP-FT) que permite delinear MZs e 
gerar TMs de maneira automática, integrado à aplicação AgDataBox-Map (ADB-Map) da 
plataforma web AgDataBox (ADB; https://adb.md.utfpr.edu.br/). ADB é uma plataforma web 
para integração de dados, software, procedimentos e metodologias para agricultura digital. 
Esta tese foi formatada em três documentos: Livro 1: apresenta conceitos, protocolos, 
softwares e diversos exemplos de uso tanto de TMs quanto de MZs de maneira a se ter um 
entendimento de ambos. Este livro está dividido em duas partes principais: a primeira 
apresenta as TMs, com suas características, importância, uso, definições para a melhor 
escolha do esquema de cores e vários exemplos e a segunda apresenta as MZs e diversos 
exemplos. Como o delineamento de ZMs apresenta várias possibilidades, as definições, 
protocolos, retorno econômico, opções e softwares mais comuns utilizados baseiam-se em 
um estudo sistemático da literatura, constituído a partir da união de técnicas sistemáticas de 
mapeamento de literatura e snowball. Artigo 1: foi desenvolvido o módulo computacional 
web (ADB-MAP-FT) para a geração de TMs, delineamento de MZs automáticos e 
implementação de protocolos definidos com base em extensa pesquisa bibliográfica. O 
módulo e suas características são apresentados, utilizando-se dados reais em um estudo de 
caso. Artigo 2: Foi conduzido um comparativo entre o módulo desenvolvido e os softwares 
mais utilizados na literatura bem como os softwares a partir do estado de arte existente. As 
características e capacidades técnicas dos softwares são comparadas e validadas em um 
estudo de caso utilizando duas áreas comerciais distintas, comparando também os 
resultados do processo. 
 
 
PALAVRAS-CHAVE: AgDataBox-Map, agricultura de precisão, software.  
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ABSTRACT 

 
 
Aikes Junior, Jorge. AgDataBox-Map-Fast Track: Web Application Module for Automatic 
Creation of Thematic Maps and Management Zones. Advisor: Eduardo Godoy de Souza; 
CoAdvisor: Claudio Leones Bazzi. 2022. 183 f. Dissertation (PhD in Agricultural Engineering) 
– Universidade Estadual do Oeste do Paraná, Cascavel - Paraná, 2022. 

 

Precision agriculture consists of applying inputs in the right quantities at the right time and 
place to maximize yield. There are two important tasks in this process: the generation of 
thematic maps (TM) and management zones (MZ). Although the TMs and the MZs 
delineation are extremely important, they depend on great technical knowledge for their 
construction, so, their use is difficult, especially by producers who do not have access to 
specialized teams, due to the need for a specialized multidisciplinary team. Thus, this work 
presents a module (ADB-MAP-FT) able of delineating MZs and generating TMs 
automatically, integrated with AgDataBox-Map (ADB-Map) application of AgDataBox web 
platform (ADB; https://adb. md.utfpr.edu.br/). ADB is a web platform to integrate data, 
software, procedures, and methodologies for digital agriculture. This dissertation was 
organized in three documents: Book 1: presents concepts, protocols, software, and several 
examples of use and understand both TMs and MZs. This book is divided into two main 
parts: the first one presents TMs, their characteristics, importance, use, definitions for the 
best choice of color scheme, and several examples. The second one presents MZs and 
several examples. As ZMs design presents several possibilities, definitions, protocols, 
economic return, options, and most commonly used software are based on a systematic 
study of literature, constituted from the association of systematic techniques of literature 
mapping and snowball. Article 1: the web computational module (ADB-MAP-FT) was 
developed to automatically create TMs and delineate MZs, implementing protocols defined 
based on extensive bibliographic research. The module and its features are presented using 
real data in a case study. Paper 2: It was carried out a comparison between the developed 
module and the most used software in the literature based on the existing state-of-the-art 
software. The characteristics and technical abilities of software are compared and validated 
in a case study using two different commercial areas, also comparing the results of this 
process. 
 
KEYWORDS: AgDataBox-Map, precision agriculture, software. 
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1 INTRODUCTION 

 

The growing population (ONU, 2020) has demanded large amounts of food, 

and environmental issues, for both environment preservation and better rational use of 

all elements on food production chain. So, there is a huge interest by producers to 

make the most optimized use of their lands and  inputs (Baudron and Giller, 2014). 

Precision agriculture (PA) is a management system that aims at optimizing the use of 

agricultural inputs, and meeting this need for more profitability with less environmental 

damage. Several tools can be used to support this, among them, thematic maps and 

management zones stand out. 

Generally, thematic maps (TMs) are used to identify different cartographic 

representations, and they represent not only the land but also some associated 

characteristics. TMs development is related to data collection, analysis, interpretation, 

and representation of information on a map. They facilitate identification of similarities 

and enable visualization of spatial correlations.  

One specific case of TMs is contour maps built by connecting points of the 

same value and applying them to geographical phenomena that show continuity in 

geographic space. Another is choropleth maps that use color to show ranges of a 

specific variable within a defined geographic area. Contour and choropleth maps can 

be built from categorical data (elevation, temperature, precipitation, humidity, and 

atmospheric pressure) or relative data (density, percentages, and indexes). Based on 

samples collected before, during, and after a crop life span , TMs are created to identify 

the variability of topography, soil, and plant properties and to be compared with yield 

(Souza; Schenatto; Bazzi, 2018). Several tasks need to be performed in order to create 

TMs, such as (i) selection of a coordinate system, to store, retrieve, manage, display, 

and analyze all types of geographic and spatial data; (ii) data normalization, where the 

most common methods are the standard score, range, and mean (Schenatto et al., 

2017b); (iii) exploratory data analysis (EDA), where it is employed a variety of 

techniques (mostly graphical) to maximize insight into a data set; uncover underlying 

structure; extract important variables; detect inliers and outliers (atypical values) and 

anomalies; underlying test assumptions; develop parsimonious models; and to 

determine optimal factor settings (NIST/SEMATECH, 2013); (iv) data interpolationis 

usually applied to result in a dense and regular grid to create TMs and management 

zones (MZ) that are continuous and smooth; (v) creation of TMs, where someone must 

decide the number of classes, the method for breaking data into ranges and color 

scheme. 
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One practical way to apply PA in a field is to divide it into homogeneous areas, 

called management zones (MZs). Each zone is a subregion of a field that expresses a 

functional homogeneous combination of yield-limiting factors for which a single rate of 

a specific crop input is appropriate (Doerge, 2000; Moral et al., 2010; Moshia et al., 

2014; Bobryk et al., 2016). Although variable-rate application machines could be used, 

MZs usually involve conventional machinery. After delineation, MZs can be used in 

smart sampling, where one-smart composite sampling is obtained per zone to 

delineate the field soil variability. This approach is likely to reduce laboratory costs 

while maintaining reliability (Ferguson and Hergert, 2009; Mallarino and Wittry, 2004). 

MZs application is economically and productively viable in several situations, 

showing results of cost reduction, increase in yield, and improvement of product quality 

parameters (Bernardi et al., 2018; Cid-Garcia; Ibarra-Rojas, 2019; Kyaw et al., 2008; Li 

et al. 2013; Roberts et al., 2012; Robertson et al., 2008; Schwalbert et al., 2018; 

Velandia et al., 2008; Vitharana et al., 2008; Whetton et al., 2018). Thus, its application 

often leads to an increased profitability and reduces costs with inputs, consequently 

results on fewer environmental impacts. 

However, there are still several outstanding issues, such as: (i) what is the 

ideal protocol for MZs delineation , (ii) what is the best delineation algorithm?; (iii) 

which software allows you to handle all the stages during the process?; (iv) is there a 

way to simplify and/or automatize the process facilitating MZs adoption? So, the task of 

defining ideal MZs is still a challenge. 

The main content of this work is structured in papers (chapters 3 to 5): 

• Book 1 (chapter 3): This book is intended to assist in understanding 

both tools, TMs and MZs. The objective is to define them and present 

an ideal protocol for their development, with examples in both cases. 

This book is divided into two main parts: one that presents TMs, their 

characteristics, importance, usage, definitions for the best choice of 

color scheme, and several examples. The second one presents the 

MZs. As MZs delineation presents several possibilities, definitions, 

protocols, economic return, the most common options and the applied 

software are based on a systematic literature study, constituted from 

the union of systematic literature mapping, snowball, and systematic 

literature review techniques. This ensures that the main procedures 

and trends are achieved, gathering an extensive summary of classic 

works and the most recent ones; 

• Paper 1 (chapter 4): this work presents a new computational module, 

called ADB-Map Fast-Track (ADB-MAP-FT), which allows TMs 
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creation and automatic MZs delineation (following the best protocols - 

a result from the research performed in book 1 by a web-friendly 

interface platform, ideal for users who do not have all the technical 

knowledge necessary for MZs delineation ); 

• Paper 2 (chapter 5): this work compares ADB-MAP-FT with the main 

and the most modern software for MZs delineation, both in technical 

aspects and in a case study using two actual areas. 
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2 OBJECTIVES 

 

 

2.1 General objectives 

 

Develop a computational module to create TMs and delineate MZs 

automatically. 

 

2.2 Specific objectives 

 

• Define a protocol for the automatic design of TMs and MZs; 

• Implement a computational module capable of automatically TMs 

creation and MZs delineation; 

• Evaluate the computational module for MZs delineation developed by 

carrying out a case study; 

• Compare the MZs delineation module to another traditional and state-

of-the-art software. 
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3 BOOK 1 – THEMATIC MAPS AND MANAGEMENT ZONES FOR PRECISION 

AGRICULTURE: SYSTEMATIC LITERATURE STUDY, PROTOCOLS, AND 

PRACTICAL CASES 

 
 

3.1 INTRODUCTION 

 

The growing population has demanded large amounts of food, and 

environmental issues, for both environment conservation and a better rational use of all 

elements of the food production chain. Thus, producers are motivated to optimize the 

use of land and its inputs as best as they can (Baudron and Giller, 2014). Precision 

agriculture (PA) is a management system that aims at optimizing the use of agricultural 

inputs, and meeting this need for better profitability with less environmental damage. 

Climatic, topographic, and biological variations, in both spatial and temporal 

domains, are factors that induce yield variations in the field. The premise of PA is to 

know these variations and provide support for punctual and localized crop 

management. Several tools can be used to support this, and among them, thematic 

maps and management zones stand out. 

Thematic maps (TMs) are used to illustrate themes as well as represent the 

terrain. Generally, TMs are used to identify different cartographic representations, and 

they represent not only the land but also associated characteristics. TMs development 

is associated to data collection, analysis, interpretation, and representation of 

information on a map. They make the identification of similarities easier and enable the 

visualization of spatial correlations. Based on samples collected before, during and 

after the life period of a culture, TMs are usually generated to identify properties 

variability of of topography, soil, and plants and compare with yield. However, firstly, it 

is necessary to interpolate data into a dense and regular grid to provide values for 

locations that were not sampled. This task is performed with interpolation methods 

support, and kriging was the most used interpolation method. 

Timlin et al. (1998) showed that yield and other field attributes presenting 

spatial variability could be effectively used in site-specific management (precision 

agriculture, PA) to increase fertilizer efficiency and environmental sustainability, 

although it is often costly (Khosla et al., 2008). Typically, soil samples are analyzed to 

determine soil nutrient levels. Sampling, therefore, should be dense enough to allow 

nutrient variability determination on soil so that fertilizers can be used profitably and in 

an environmentally sustainable way (Ferguson and Hergert, 2009; Franzen et al., 
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2002). Time and available budget for sampling should be considered to determine the 

right soil sampling density in an area.  

Traditional farm management uses a whole-field approach, in which each field 

is treated as a homogeneous area (Srinivasan, 2006), and variability in soil, 

topography, local weather conditions, and land use are not considered (Nawar et al., 

2017). In this management, inputs are applied uniformly across the field, and it is 

attractive to farmers because it is easy and fast. However, it is possible to achieve 

more economical and environmentally-friendly management with a site-specific input 

application. PA uses this kind of application, and it is defined as a management 

strategy that gathers, processes, and analyzes temporal, spatial, and individual data 

and combines it with other information to support management decisions according to 

estimated variability for improved resource use efficiency, productivity, quality, 

profitability and sustainability of agricultural production (ISPA, 2019).   

One practical way to apply PA in a field is to divide it into homogeneous areas, 

called management zones (MZs). Each zone is a subregion of a field that expresses a 

functionally homogeneous combination of yield-limiting factors for which a single rate of 

a specific crop input is appropriate (Doerge, 2000; Moral et al., 2010; Moshia et al., 

2014; Bobryk et al., 2016). Although variable-rate application machines could be used, 

MZs usually involve conventional machinery. After delineation, MZs can be used in 

smart sampling, where one-smart composite sampling is obtained per zone to 

delineate the field soil variability. This approach is likely to reduce laboratory costs 

while maintaining reliability level (Ferguson and Hergert, 2009; Mallarino and Wittry, 

2004). Smart sampling has been shown to improve nutrient efficiency use while 

keeping or increasing yield and potentially reducing nutrient overloading into the 

environment (Moshia et al., 2014; Khosla et al., 2002). Many studies related to 

sampling density have been performed (Journel and Huijbregts, 1978; Demattê et al., 

2014; Wollenhaupt, Wolkowski, and Clayton, 1994; Franzen et al., 2002; Ferguson and 

Hergert, 2009; Doerge, 2000), which resulted in a suggested minimum density of one 

sample per hectare (Ferguson and Hergert, 2009) to 2.5 samples per hectare (Journel 

and Huijbregts, 1978; Doerge, 2000), which should be composed of at least eight 

individual samples (Wollenhaupt, Wolkowski, and Clayton, 1994). 

Several kinds of sample data can be used to delineate MZs; however, to 

produce more stable MZs, it is advantageous to use a set of multivariate attributes data 

that do not vary significantly over time (topography, electrical conductivity, soil physical 

properties) and that are correlated with the target variable (usually yield) (Buttafuoco et 

al., 2010; Doerge, 2000). That is important because MZs are usually applied for many 
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years. Nevertheless, there are other situations in which the purpose is to use MZs 

immediately but just at once. It is the case of MZs for agrochemical applications.  

MZs use is economically and productively viable in several situations, showing 

results of cost reduction, increase in yield, and improvement of product quality 

parameters (Kyaw et al., 2008; Robertson et al., 2008; Velandia et al., 2008; Vitharana 

et al., 2008b; Roberts et al., 2012; Li et al., 2013; Bernardi et al., 2018; Schwalbert et 

al., 2018; Whetton et al., 2018). Thus, their application often takes to an increase in 

profitability and reduction of costs with inputs, consequently leading to fewer 

environmental impacts. 

However, there are still several outstanding issues, such as: (i) what is the ideal 

protocol for MZs delineation?; (ii) what is the best delineation algorithm?; (iii) which 

software allows you to handle all the stages in the process? Therefore, the task of 

defining the ideal MZs is still a challenge. 

This book aims at assisting in understanding both tools, TMs and MZs. The 

objective is to define them and present an ideal protocol for their development, with 

examples in both cases. This book is divided into two main parts: Chapter 2 presents 

TMs, with their characteristics, importance, usage, definitions for the best choice of 

color scheme, and several examples. Chapter 3 presents MZs. As MZs delineation 

presents several possibilities, definitions, protocols, economic return, and the most 

common options and software used are based on a systematic study of literature, 

constituted from the union of systematic literature mapping and snowball techniques. 

This ensures that the main procedures and trends are achieved, gathering an 

extensive summary of classic works and the most recent ones. At the end of this 

chapter, there are also several examples of MZs to offer the reader several 

possibilities. 

 

3.2 THEMATIC MAPS 

 

Maps that represent the land and a topic associated with it are called thematic 

maps (TMs), and they aim at informing by graphic symbols where a specific 

geographical phenomenon occurs. TM development is linked to data collection, 

analysis, interpretation, and representation of information on a map, facilitating the 

identification of similarities and enabling spatial correlations visualization. The 

information presented in TMs may include, for example, maximum temperature or 

maximum precipitation at a given date, amount of calcium and potassium in soil, and 

soybean yield at a given agricultural area. Figure 1 shows a TM of world apple 

production in 2009. 
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Figure 1. Thematic map of world apple production in 2009 

Source: Carvalho (2011). 

 

One specific case of TMs is contour maps, built by connecting points of the 

same value and applying them to geographical phenomena that show continuity in a 

geographic space. While choropleth maps use color to show ranges of a specific 

variable within a defined geographic area. Contour and choropleth maps can be built 

from categorical data (elevation, temperature, precipitation, humidity, and atmospheric 

pressure) or relative data (density, percentages, and indexes). Figure 2 shows 

examples of contour and choropleth maps. Thus, it is necessary to follow a protocol to 

construct TMs about attributes collected in agriculture fields,like the one presented in 

Figure 3. 
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a) Elevation b) Elevation 

 
 

c) sand d) Clay 

Figure 2. Examples of contour map: a) elevation (m), and choropleth maps: b) 

elevation (m), c) sand (%), d) Clay (%) 

 

 

Figure 3. Flowchart of the typical protocol to create a thematic map 

 

I. Selection of the coordinate system - A geographic information system 

(GIS Software) is designed to store, retrieve, manage, display, and analyze all kinds of 
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geographic and spatial data. Thus, it is necessary a GIS software, and a file with at 

least three columns representing X (longitude) and Y (latitude) coordinates to construct 

2-D TMs as well as the value of the measured attribute (for 3-D, we need one more 

coordinate, Z (altitude)). The most typical coordinate systems are the geographic 

coordinate system (GCS) and universal transverse Mercator (UTM). GCS is associated 

with a model of the Earth shape (reference ellipsoid) called a datum. The datum 

WGS84 (World Geodetic System 84) is the most commonly used. Units are in degrees, 

minutes, and seconds with GCS and meters for UTM. 

II. Data normalization - Variables normalization is interesting when someone 

wants to construct and compare TMs of a variable that has been measured several 

times. This is the case of yield from an area measured for several years and/or with 

several crops. The most common methods are the standard score, range, and mean 

(Schenatto et al., 2017b). 

III. Exploratory data analysis (EDA) - is the summarization of data set by 

their main characteristics. EDA employs a variety of techniques (mostly graphical) to 

maximize insight into a data set; uncover underlying structure; extract important 

variables; detect inliers, outliers (atypical values) and anomalies; test underlying 

assumptions; develop parsimonious models; and determine optimal factor settings 

(NIST/SEMATECH, 2013). When constructing TMs, the essential use of EDA is to 

detect and remove outliers. According to Amidan et al. (2005), data outliers can have a 

significant impact upon data-driven decisions, and in many cases, they do not reflect 

the true nature of data and, hence, should not be included in the analyses. They 

proposed an outlier detection method using Chebyshev’s inequality to form a data-

driven outlier detection method that is not dependent upon knowing data distribution. 

According to Córdoba et al. (2016), values outside the mean ± 3 SD (standard 

deviation) are identified as outliers and should be removed (also Haghverdi et al., 

2015). They remarked that even though real data could belong to this interval, upper 

and lower limits should be modified to obtain robust variance estimators. It is also 

necessary  the removal of inliers, data that differ significantly from their neighborhood 

but lie within the variation range of data set (Córdoba et al., 2016). Moreover, additional 

care should be taken for yield data obtained with yield monitor. Many approaches for 

yield data cleaning have already been proposed just like by Blackmore and Moore 

(1999) to eliminate errors associated with unknown header width, combine 

filling/emptying times, the time lag of grain with the combine, positional errors, fast 

changes, and others (Sudduth and Drummond, 2007). Vega et al. (2019) proposed a 

protocol to automate error removal from yield maps divided into two steps: (1) removal 

of yield data with values equal to zero, removal edge values and potential end-of-field 
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yield monitor errors, and removal of yield data that are outside the mean ± 3 SD; and 

(2) use of the local Moran's spatial autocorrelation index and Moran's plot to identify 

and remove data that are inconsistent with their neighbor points. The protocol was 

evaluated on 595 real yield datasets with good results and can be used with other geo-

referenced variables in precision agriculture. 

VI. Data interpolation - The sample data are usually interpolated in a dense 

and regular grid to generate TMs and MZs that are continuous and smooth. This task is 

performed by interpolating methods. The inverse distance weighting (IDW) and kriging 

are the interpolation methods commonly used in PA. They are differentiated by how 

weights are assigned to different samples, influencing estimated values (Reza et al., 

2010). Several software packages are available to perform data interpolation, such as 

Surfer (Golden Software, LLC) and ArcGIS (ESRI, Environmental Systems Research 

Institute).  

Kriging is considered the best method of data interpolation when data present 

spatial dependence. Nevertheless, first, the appropriated geostatistical model for data 

needs to be found out by cross-validation. This technique compares theoretical values 

with those obtained from sampling, then analyzes the estimation errors, and chooses 

the best model (Arlot and Celisse, 2010; Kohavi, 1995). Faraco et al. (2008) 

considered cross-validation better to evaluate the adjustment of theoretical spatial 

models than Akaike’s and Filiben’s information criteria and the maximum logarithm 

value of likelihood function. The following measures are calculated using cross-

validation: average error (AE), reduced average error (𝑅𝐸̅̅ ̅̅ ), standard deviation of 

average error (SAE), and standard deviation of reduced error (SRE) (Cressie, 1993; 

McBratney and Webster, 1986). According to non-tendentiousness criteria, values for 

AE and 𝑅𝐸̅̅ ̅̅  should be as close to zero as possible to choose the best-adjusted model, 

SAE value should be as small as possible, and  SRE value should be close to 1 

(Cressie, 1993; McBratney and Webster, 1986). Souza et al. (2016) proposed the error 

comparison index (ECI, Equation 1) since cross-validation makes it possible the 

occurrence of ambiguous situations. As lower ECI is, the better semivariogram is.  

 

𝐸𝐶𝐼𝑖 =
𝐴𝐵𝑆(𝑅𝐸̅̅ ̅̅ )𝑖

max |𝑖=1
𝑗 [𝐴𝐵𝑆(𝑅𝐸̅̅ ̅̅ )]

+
𝐴𝐵𝑆(𝑆𝑅𝐸 − 1)𝑖

max |𝑖=1
𝑗 [𝐴𝐵𝑆(𝑆𝑅𝐸 − 1)]

           Eq. 1 

 

where 𝐸𝐶𝐼𝑖is the error comparison index for model i, 𝐴𝐵𝑆(𝑅𝐸̅̅ ̅̅ )is the module 

value of the reduced average error, andmax |𝑖=1
𝑗

is the highest value among the 

compared j semivariograms. 
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One recurrent issue when interpolating agricultural data is choosing between 

deterministic and stochastic methods of interpolation. Bier and Souza (2017) proposed 

the interpolation selection index (ISI, Equation 2), which assumes a lower value as 

better the interpolator is. 

 

𝐼𝑆𝐼 = {
𝐴𝐵𝑆(𝐴𝐸)

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝐴𝐵𝑆(𝐴𝐸)]

+
[𝑆𝐴𝐸 −𝑚𝑖𝑛 |

𝑗
𝑖 = 1

𝑆𝐴𝐸]

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝐴𝐵𝑆(𝑆𝐴𝐸)]

}           Eq. 2 

 

where𝑛 is the number of data; 𝐴𝐵𝑆(𝐴𝐸) is the module value of the average 

error of crossed validation; 𝑚𝑖𝑛|𝑖=1
𝑗

 is the lowest value obtained among the compared j 

models; 𝑚𝑎𝑥|𝑖=1
𝑗

 is the highest value obtained among the compared j models. 

V. TMs Creation – after data interpolation, we must decide both the number 

of classes and the method to splitdata into ranges and draw TMs with our data. The 

goal is to group similar observations and split up substantially different observations 

(Indiemapper, 2016). The first decision-making is to look at the histogram (or 

scatterplot) to determine the 'form' of the researcher’s observations. This critical step to 

build a map, how we can dramatically change a map perspective, and thus, its 

message, it is one of the easiest ways to "lie with maps". There is no escape from the 

cartographic paradox: to present a useful and truthful picture, since an accurate map 

must tell white lies (Monmonier, 1996). There are many ways to classify data 

systematically and each GIS software will offer some of them. The most popular are 

described below (Indiemapper, 2016; ESRI ArcGIS 9, Help Menu, Standard 

Classification Schemes): 

Manual interval: we set one or all of the class breaks manually. We use this 

method when the others do not give a good solution. So, a good way is to start with 

one of the standard classifications and make adjustments as they are needed; 

Equal interval: we divide data into equal size classes, and it works well on 

data that is generally spread across the entire range. This classification should be 

avoided if data are skewed to one end or there are one or two large outlier values; 

Quantile: we divide it into classes with an equal number of features, and it 

works well on data that is linearly distributed across the entire range. Nevertheless, the 

resulting map can be misleading, with similar features placed in adjacent classes, or 

widely different values put in the same class;  

Standard deviation: it is a particular case of equal interval where the class size 

is a multiple of standard deviation. It works well with data that has normal distribution. It 

is good to see which features are above or below an average value. 
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The number of data classes is also an essential part of map design. When 

there is an increase on the number of data classes, it will result on a more revealing 

map, but this requires more colors. Generally, it is advised not to exceed seven 

classes.   

Examples of choropleth maps are presented in Figure 4. Each case presents 

the map using five classes, classified by equal interval, quantile, and standard 

deviation, and its corresponding histogram. For example, in pH (Figure 4a), there is an 

attribute with a distribution close to normal, and the equal interval classification looks 

like the best choice, but the standard deviation classification is also good. However, 

with the map of aluminum (Figure 4b), the distribution is moderately skewed right, and 

then quantile is visually the best option.  

After we selected how data should be classified, it is crucial choosing an 

effective color scheme for TM. A good color scheme needs to be attractive but also 

support the map's message and be appropriately matched to the nature of data 

(Harrower and Brewer, 2003), therefore, it is relevant to choose three dimensions of 

color: hue, lightness, and saturation. There are three kinds of color scheme: 

nominal/qualitative (unorderable data, like land use, Figure 5a): different hues that 

keep lightness and saturation constant should be used; sequential (orderable, like 

numerical data (or low/med/high), like yieldFigure 5b): single or multihue with different 

lightness/saturation should be used; diverging (when there is a mid-point, like zero, or 

if we want to compare with an average, like profitFigure 5c). Harrower and Brewer 

(2003) designed an online tool “ColorBrewer.org” to help users on selecting the 

appropriate color schemes for their specific mapping needs.Figure 6 presents some 

practical examples of color schemes application. 
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a) pH   

  

 

 

b) Aluminum   

Figure 4. Thematic Maps for pH (a), and aluminium (b) using three forms of 

classification (equal interval, quantile, and standard deviation) 

 

 

  

a) Nominal Color Scheme            b) Sequential Color Scheme        c) Diverging Color Scheme  

Figure 5. Three kinds of color scheme: nominal/qualitative (a), sequential (b), and 

diverging (c)  
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                      a.1)                                     a.2)                                                        a.3) 

a) Nominal Color Scheme: maps with two (a.1), three (a.2), and four (a.3) management 

zones (MZs) 

 

 

 

 

b.1) Altitude 

 

b.2) Yield 

 

 

 

 

b.3) SPR 0.0 -0.1 m 

b) - Sequential Color Scheme: maps of altitude (b.1), yield (b.2), and Soil Penetration 

Resistance – SPR (b.3) 

 

 
 

 

 

                   c.1)                                        c.2)                                                       c.3)                        

c) - Diverging Color Scheme – Profit Maps (US$ ha-1) 

Figure 6. Examples of color scheme: nominal/qualitative (a), sequential (b), and 

diverging (c) 
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Contour maps use a continuous scale - despite being the most common map 

using a discrete scale, some people prefer continuous scale. The problem with a color 

ramp is that the perception of color intensity is not linear, consequently, the user could 

make a false assumption about what data value it represented. Basso et al. (2009) 

studied the effects of landscape position and rainfall on spatial variability of wheat yield 

and protein on a 10-ha field with the rolling landscape of Southern Italy, and presented 

an interpolated map of wheat yield (Figure 7) using a continuous scale. 

 

 

Figure 7. 3D interpolated map of wheat yield (kg ha-1) for 2003 

Source: Basso et al. (2009). 

 

3.2.1 Examples of thematic maps 

 

In order to demonstrate several situations in which TMs can be used, in 

sequence, several examples of TMs will be presented, associated with a brief 

discussion of data that have originated them. 

 

3.2.1.1 Yield, protein, and oil content maps 

 

Silva (2016) carried out a spatial analysis of quality parameters (protein and oil 

content) for soybean and corn crops in two experimental areas (field A - 10.0 ha, and 

field B - 23.8 ha) and two agricultural years (2012/2013 and 2013/2014.). Figure 8 

shows the thematic maps of soybean yield and the corresponding protein and oil 

content. Statistical analysis using Moran’s bivariate spatial autocorrelation statistic 

showed that soybean protein and oil content were inversely correlated for both 

experimental areas and agronomic years (2012/13 and 2013/14). It can be highlighted 

how important it is to choose the right color scheme. In this case, variables are 

quantitative, and therefore, the scheme should be sequential (singlehue with different 
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lightness/saturation). Only to compare, the same variable is presented using a nominal 

color scheme, and map readability is reduced.  

 

 

Yield 

 

Protein 

 

Oil 

content 

 

Figure 8. Thematic maps of soybean yield and the corresponding protein and oil 

content for fields A and B in 2012 and 2013, using a sequential (different colors) and 

nominal (singlehue with different lightness/saturation) color scheme 

Source: adapted from Silva (2016). 
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3.2.1.2. Yield, profit, and profitability maps 

 

Bazzi et al. (2015) studied the economic viability of agricultural products using 

profit and profitability maps. For each data set, yield, profit, and profitability maps 

(Figure 9) were generated using the following interpolation methods: inverse of 

distance (ID), inverse of square distance (IDS), and kriging (KRG). The authors 

concluded that profit and profitability maps are important tools to diagnose the spatial 

variability of economic return because they have assisted farmers in management 

decision-making. The impact of the interpolator type was less than 200 kg ha-1 for yield, 

US$ 30 ha-1 for profit, and 7% for profitability. Figure 9 shows that, in this 45-ha area, 

there are variations from 2.5 to 5.5 t ha-1 for yield, from -300 to 450 $ ha-1 for profit, and 

from -45 to 45% for profitability. 

 

 

Figure 9. Yield, profit, and profitability maps for the 2006 Soybean harvest using the 

interpolation methods (i) inverse distance weighted (IDW), (ii) inverse distance 

weighted squared (IDS) and (iii) kriging (KRG). The production cost and sale prices of 

the product were obtained in the harvest month in a 45-ha field. 

Source: Bazzi et al. (2015).  
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3.2.1.3. Grape yield maps 

 

Martínez-Casasnovas and Bordes (2005) used information obtained from 

multispectral images to estimate crop vigor and to forecast yield (Figure 10) in Spain, at 

the wine farm of Raimat (Lleida). 

 

Figure 10. Comparison of the 2004 yield map of a ‘Cabernet Sauvignon’ plot (left) with 

the map obtained from a prediction model using NDVI (normalized difference 

vegetation index) from a QuickBird-2 multispectral image acquired one month before 

harvesting (center) (R2 = 0.72). The map on the right shows the differences of both 

maps 

Source: Martínez-Casasnovas and Bordes (2005). 

 

3.2.1.4. Apple attributes maps 

 

Longo (2017) developed a tool (apple show) to map the apple quality indices 

georeferenced and turn them into a graphics variable to provide support in the orchard 

management. Figure 11 presents the firmness of fruit pulp and total soluble solids of 

fruits in an area of 3.13 hectares.  



 
 

38 
 

 

a)                                      b) 

Figure 11. The firmness of fruit pulp (a) and total soluble solids of apple fruits (b) in a 

3.13-ha area 

Source: adapted from Longo (2017). 

3.2.1.5. Weed infestation maps 

 

Balastreire and Baio (2001) evaluated a practical method for weed mapping 

by driving over the patch contour with an all-terrain vehicle. Figure 12 presented a 

weed map showing three infestations levels. An important conclusion obtained was that 

timing to perform the weed mapping is a crucial factor to be considered for site-specific 

chemical applications. 
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Figure 12. Weed maps showing three infestations levels from a 72-ha flat terrain, 

planted in no-tillage system and with soil covered by soybean stubble 

Source: adapted from Balastreire and Baio (2001). 

 

3.2.1.6. Dry matter yield, stocking rate, and milk yield maps 

 

Bernardi et al. (2016) evaluated the spatial variability of soil properties, yield, 

lime and fertilizer needs, and economic return of an alfalfa grassland. The study was 

conducted in a 5.3-ha irrigated alfalfa grassland in São Carlos, SP, Brazil, directly 

grazed and intensively managed in a 270-paddock rotational system. According to 

them, the stocking rate is a key-management variable to determine productivity and 

profitability of grazing systems, and Figure 13 illustrates that the simulation based on 

dry matter yield allowed estimation of stocking rates and milk yield within the area. 

Therefore, these kinds of maps may be used to avoid over-or under-grazing. In 

addition, this study showed the methodology's advantages that allow identifying areas 

for differentiated paddocks management instead of homogeneous fertilizer application.   

 High 

infestation 

 Average 

infestation 

 Low 

infestation 
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Figure 13. Kriged maps for dry matter yield (a), stocking rate (b), and milk yield (c) of a 

grazed alfalfa pasture in Brazil 

Source: Bernardi et al. (2016). 

 

3.3 MANAGEMENT ZONES (MZs) 

 

MZ is a kind of choropleth map that is a sub-region of a field that expresses a 

functionally homogeneous combination of yield-limiting factors. However, despite this 

original concept of an MZ, the target agricultural variables can be other than yield, like 

pest and disease infestation, water content, Brix, soil resistance to penetration, and 

crop quality. An MZ can be used for one year, but also for several ones (usually three 

to five). This fact is essential when we are choosing variables. If we are planning to use 

only once, as in weed infestation, we can use variables that are not temporally stable to 

delineate the MZs. However, in most cases, we want to use MZs during several years, 

and we should use relatively temporally stable variables like topography data (elevation 

and slope) and physical data (Bulk density, soil texture, soil penetration resistance – 

SPR).  

Considering the importance of MZs delineation in the current PA context, we 

made a systematic literature study (SLS) that had as the primary focus to identify 

researches about MZs delineation , as well as reporting the results of their use and 

synthesizing evidence that allows a common understanding of this research area. In 
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this SLS, we used three techniques: (i) systematic literature mapping (SLM), which 

identifies searches in a given topic by choosing keywords and conducting database 

searches, (ii) snowballing (SB), which expands the initial selection by adding new 

studies to the classification process, consulting the references of the selected studies, 

(iii) systematic literature review (SLR), which summarizes the studies identified with 

SLM and SB. 

 

3.3.1 Systematic Literature Study (SLS) 

 

As mentioned, three steps were followed for the study: 

Step 1 – Systematic Literature Mapping (SLM): The SLM was developed 

according to the following sequence of steps: keywords definition , scientific databases 

selection, determination of study selection criteria, study analysis, and synthesis 

methodology (Kitchenham and Charters, 2007; Talavera et al., 2017). 

The following questions were asked to define the keywords: (1) what are the 

procedures and protocols to delineate MZs? (2) what are the most common algorithms 

to delineate MZs? (3) how the ideal number of MZs classes was found out? (4) what 

are the economic or environmental advantages to adopt MZs? (5) which software was 

used to delineate MZs? The site of Coordination for the Upgrading of Higher Education 

Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES) 

was accessed to obtain some scientific databases by remote access platform of the 

Federated Academic Community, CAFe (Comunidade Acadêmica Federada) (Fig. 14). 

We searched for four considered relevant databases on this researched area: Scopus, 

Science Direct, Web of Science, and Wiley. 

The period covered by SLM searches was limited from 2008 to 2019 to 

present the most recent papers. However, SB had rescued relevant researches that 

were left behind. The standardized information extracted from all papers were: title, 

authors, journal, publication volume, the country in which the research was developed, 

year of publication, abstract, DOI, software used, and results.  

Step 2 - Snowballing (SB): The SB is characterized by the addition of new 

references to classify the process by consulting the references of selected studies and 

share references from people with knowledge in the area, thus, characterizing a 

sample of chain references (Biernacki and Waldorf, 1981; Cohen and Arieli, 2011). In 

this book, snowballing was used as a complementary strategy to increase efficiency 

and quality of the search, reducing the chances to obtain a search bias (Cohen and 

Arieli, 2011) and rescue important classic texts from the period before 2008. It is 
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important to observe that no survey method is 100% effective, but the combination of 

both techniques is expected to reduce omission problems. 

 

 

Fig. 14. Workflow used with the Systematic Literature Mapping (SLM) 

 

Snowballing can be categorized as backward snowballing (BSB) or forward 

snowballing (FSB). New papers are included with BSB, based on the list of references 

raised with SLM. Nevertheless, with FSB, new studies are included from the list of 

references of ones selected by BSB (Wohlin, 2014). 

The flow to select works used in SLS is shown in Figure 15 and Figure 16. 

Table 1 presents the 165 studies selected based on the research technique (SLM, 

BSB, and FSB). Only researchers directly related to agriculture (excluding, for 

example, those related to forestry or geological management) and that have explained 

the MZs delineation process were kept. Studies that delineate MZs using algorithms 

based only on images (without other layers of information or indexes) were also 

excluded. 
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Table 1 Clustering of studies selected by research technique 

Techniques  studies 

Systematic 

literature 

mapping (SLM) 

96 references 

(Ikenaga and Inamura, 2008; Kyaw et al., 2008; Mishra et al., 

2008; Molin and de Castro, 2008; Robertson et al., 2008; Velandia 

et al., 2008; Vitharana et al., 2008b; Vitharana et al., 2008a; Li et 

al., 2008; Morari et al., 2009; Song et al., 2009; Xin-Zhong et al., 

2009; Buttafuoco et al., 2010; Castrignanò et al., 2010; Fu et al., 

2010; Guastaferro et al., 2010; Moral et al., 2010; Aimrun et al., 

2011; Arno and Martinez-Casasnovas, 2011; Moral et al., 2011; 

Salami et al., 2011; Suszek et al., 2011; Jiang et al., 2011; Bansod 

et al., 2012; Davatgar et al., 2012; Jiang et al., 2012; McClymont et 

al., 2012; Roberts et al., 2012; Valente et al., 2012; Aggelopooulou 

et al., 2013; Alves et al., 2013; Bazzi et al., 2013; Benedetto et al., 

2013b; Benedetto et al., 2013a; Cid-Garcia et al., 2013; Córdoba 

et al., 2013; Diacono et al., 2013; Li et al., 2013; Lin et al., 2013; 

Meirvenne et al., 2013; Peralta et al., 2013; Peralta and Costa, 

2013; Ruß, 2013; Santesteban et al., 2013; Santi et al., 2013; 

Scudiero et al., 2013; Tagarakis et al., 2013; Chang et al., 2014; 

Galambošová et al., 2014; Gozdowski et al., 2014; Patil et al., 

2014; Urretavizcaya et al., 2014; Yao et al., 2014; Bazzi et al., 

2015; Caires et al., 2015; Landrum et al., 2015; Rodrigues and 

Corá, 2015; Santos and Saraiva, 2015; Tripathi et al., 2015; 

Peralta et al., 2015; Boluwade et al., 2016; Cavallo et al., 2016; 

Córdoba et al., 2016; Damian et al., 2016; Gavioli et al., 2016; 

Oldoni and Bassoi, 2016; Ortuani et al., 2016; Schenatto et al., 

2016b; Shaddad et al., 2016; Shamal et al., 2016; Sobjak et al., 

2016; Xiaohu et al., 2016; Bottega et al., 2017; Buttafuoco et al., 

2017; Gili et al., 2017; González-Fernández et al., 2017; Jacintho 

et al., 2017; Schenatto et al., 2017b; Servadio et al., 2017; Yari et 

al., 2017; Shukla et al., 2017; Agati et al., 2018; Albornoz et al., 

2018; Behera et al., 2018; Bernardi et al., 2018; Betzek et al., 

2018; Karlik et al., 2018; Miao et al., 2018; Schwalbert et al., 2018; 

Scudiero et al., 2018; Whetton et al., 2018; Martínez-Casasnovas 

et al., 2018; Khan et al., 2018; Verma et al., 2018; González-

Fernández et al., 2019; Moral et al., 2019) 

Backward 

Snowballing 

(BSB) 18 

references 

(MacQueen, 1967; Bezdek, 1981; McBratney and Moore, 1985; 

Hotelling, 1933; Odeh et al., 1992 Gnanadesikan  et al., 1995; 

Dobermann et al., 2003; Hornung et al., 2006; Dray et al., 2008; 

Schenatto et al., 2016a; Nawar et al., 2017; Souza et al., 2018; 

Albornoz et al., 2019; Betzek et al., 2019; Gavioli et al., 2019; 

Loisel et al., 2019; Bazzi et al., 2019; Nascimento et al., 2019) 

Forward 

Snowballing 

(Biernacki and Waldorf, 1981; Rousseeuw, 1987; Webster, 1990; 

Blackmore and Moore, 1999; Khosla and Alley, 1999; Blackmore, 
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(FSB) 51 

references 

2000; Doerge, 2000; Fleming et al., 2000; Fridgen et al., 2000; 

Fraisse et al.,, 2001; Boydell and McBratney 2002; Franzen et al., 

2002; Khosla et al., 2002; Kitchen et al., 2002; Minasny and 

McBratney, 2002; Molin, 2002; Ping and Dobermann, 2003; Taylor 

et al., 2003; Adamchuk et al., 2004; Fridgen et al., 2004; Amidan et 

al., 2005; Brock et al., 2005; Jaynes et al., 2005; Kitchen et al., 

2005; Frogbrook and Oliver, 2007; Kitchenham and Chartes, 2007; 

Li et al., 2007; Sudduth and Drummond, 2007; Taylor et al., 2007; 

Xiang et al., 2007; Gonzales and Woods, 2008; Inman et al., 2008; 

Coelho et al., 2009; Kitchenham et al., 2009; Zhang et al., 2010; 

Cohen and Arieli, 2011; Kuang et al., 2012; NIST/SEMATECH, 

2012; Hörbe et al., 2013; Baudron and Giler, 2014; Wohlin, 2014; 

Mieza et al., 2016; Mulla and Khosla, 2016; Arango et al., 2017; 

Talavera et al., 2017; Schemberger et al., 2017; Schenatto et al., 

2017a; Yang et al., 2017; Ortuani et al,. 2019; Reyes et al., 2019; 

Vega et al., 2019) 

 

After the selection, the studies (165) were clustered in chronological order of 

publication (Figure 17). A smooth growth tendency was observed until 2013, which 

presented the largest number of studies (19). In 2014, there was a decrease on the 

number of these studies (8 studies), but with a tendency to increase in later years.  
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Figure 15. Workflow used for the Systematic Literature Study (SLS) 
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Figure 16. Stages followed in the systematic literature study (SLS) to select the 

primary papers: Identification (ID); discarding duplicates (DD), selection by title reading 

(STR); selection by abstract reading (SAR), selection by paper reading (SPR), adding 

by Backward Snowballing (BSB), and adding by Forward Snowballing (FSB) 

 

 

Figure 17. Quantity of selected studies classified in chronological order and type of 

research technique, Systematic Literature Mapping (SLM), Backward Snowballing 

(BSB), and Forward Snowballing (FSB) 

 

Except for Antarctica, all continents were represented by at least one of the 

selected studies (Fig. 18). They were classified by the country where the authors 

conducted the research and when is only a theoretical manuscript, where it was 
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published. Regarding the distribution vehicle (Figure 19), the journals Computers and 

Electronics in Agriculture and Precision Agriculture presented the best selected 

studies, with 17 and 14%, respectively. Journals and publishers that showed less than 

three studies in the review were clustered into a single item named as “others”. 

 

 

Figure 18. Distribution of selected studies by country of study (classified by the country 

where the authors conducted the research, and when it is only a theoretical 

manuscript, where it was published) 
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Figure 19 Distribution of selected papers by journals in which the selected studies 

were published 

 

 

Step 3 - Systematic literature review (SLR): After identifying the relevant 

scientific papers using SLM and SB, SLR (Kitchenham et al., 2009) was conducted to 

aggregate the existing information on each researched question. 

 

3.3.1.2 Results and discussion of SLS 

 

The terms MZ and management class (MC) are frequently used in PA 

literature and often interchangeable terms. However, these terms are not identical. An 

MC is an area in which a particular treatment may be applied. A management zone is a 

spatially contiguous area to which a specific treatment may be used. Thus, an MC may 

consist of numerous zones, whereas an MZ can contain only one MC (Taylor et al., 

2007). 
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Procedures and protocols for management zones delineation (Question 1) 

 

Much effort has been made and it is being made to define the best delineation 

process for MZs. While some studies focus on creating a protocol that includes the 

entire process, from the initial treatment of the variables to the evaluation of the result, 

others work on specific parts of the process. 

In this survey, we found out four studies that define a complete protocol to 

delineate MZs, but only one considers temporal issues. The first one, developed by 

Santos e Saraiva (2015), uses the Business Process Model and Notation (BPMN) to 

facilitate the interpretation. The authors proposed five macro steps: (1) data collection, 

(2) data filtering, (3) data selection, (4) data clustering, and (5) map evaluation. Each 

macro step is subdivided into several steps, some with sequential and others with 

iterative flow. Córdoba et al. (2016) proposed a seven-step protocol: (1) conversion of 

spatial coordinates, (2) removal of outliers, (3) removal of inliers, (4) spatial 

interpolation, (5) multivariate site classification, (6) smoothing of classification results, 

and (7) smoothing of classification results. A script in the R language is also available 

since it contains codes ready to execute each of the steps. 

Souza et al. (2018) presented a more specific protocol, divided into nine main 

stages: (1) selection of the coordinate system, (2) removal of the outliers and inliers, (3) 

data normalization, (4) variable selection which will be used to delineate MZs, (5) data 

interpolation, (6) MZs delineation, (7) MZs rectification , and (8) selection of optimal 

number of MZs, and (9) MZs evaluation. Although there are subtle differences among 

the cited protocols, all primarily perform the same tasks and are very similar. The 

protocol proposed by Souza et al. (2018), considered more completed, is presented in 

Figure 20. 

Differently of the three other protocols, the one outlined by Scudiero et al. 

(2018) takes into account variations between soil-plant, and consists of four main 

steps: (1) soil and time-specific plant spatial information acquisition, pre-processing 

interpretation, and interpolation, 2. time-specific sub-field soil-plant modeling, (3) time-

specific MZ delineation with cluster analysis, and (4) evaluation and interpretation of 

MZs. The authors point out that traditional MZ delineation methods create static zones 

that are not ideal since the spatial patterns of soil-plant relationship change over time 

due to weather changes and/or other transient factors. 
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Figure 20. The protocol of management zones delineation , according to Souza et al. 

(2018). ANOVA: analysis of variance, SD: standard deviation, MZ: Management Zone, 

SD: standard deviation, ANOVA: analysis of variance, FPI: Fuzziness Performance 

Index), MPE: Modified Partition Entropy, VR: variance reduction, ICVI: improved cluster 

validation index, ASC: average silhouette coefficient 

Source: Souza et al. (2018). 
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In addition to previous efforts to define a complete protocol to delineate MZs, 

some authors addressed specific issues at each stage, that is, they carried out studies 

aimed at improving part of the process. Thus, the studies selected by the research are 

organized below according to the sequence in the process: 

1. Acquisition of variables: According to Nawar et al. (2017), the seven most 

common properties that can be used as an input variable to delineate MZs are related 

to:  

Farmer knowledge – this knowledge may allow identifying different MZs in a 

field, based on the production history (Fleming et al., 2000, Khosla et al., 2002, Hörbe 

et al., 2013, Schenatto et al., 2017a). 

Geomorphology – elevation is the most used topographic variable to delineate 

MZs. However, other variables such as elevation, slope, plan curvature, aspect, and 

depression depth have been successfully used (Jaynes et al., 2005). Another 

possibility is the topographic position index (Mieza et al., 2016).  

Soil chemical and physical analyses – the soil chemical variables are often 

discarded to delineate MZs to be used for several years (Doerge, 2000) because of 

their temporal variability. However, they can be very interesting to delineated MZs to be 

used only once, as in the variable-rate fertilizer application. Nevertheless, soil physical 

variables, such as sand, silt and clay contents, organic matter, and soil water content 

are often used to delineate MZs (Doerge, 2000; Buttafuoco, 2010).  

Soil class – the general sense is that soil maps, even with high resolution, are 

alone not enough to reliably identify crop productivity MZs since in a zone with the 

same soil series, many other variables can influence yields (as topography and 

chemical attributes) (Khosla and Alley, 1999; Franzen et al., 2002; Brock et al., 2005). 

In addition, Franzen et al. (2002) further reported that Order 1 soil survey maps (i.e., 

map scales of 1:5000 to 1:10 000) were helpful to develop Nitrogen-MZs. 

Yield maps – they are the complete information to visualize the spatial 

variability of crops (Molin, 2002). However, their temporal variation hinder when a 

single-year yield map is used to delineate MZs reliably. Blackmore (2000) and Molin 

(2002) used normalized data from multiple years to make up for this problem. Although 

one-year yield data alone are not directly suitable for MZs determination, because their 

availability and low cost make them a valuable possibility to improve effectiveness of 

MZs delineation based on other information (Nawar, 2017). Two approaches are 

commonly used to delineate MZs using yield maps (Xiang et al., 2007): (1) the 

empirical method, which uses frequency distribution of yield and expertise knowledge 

to divide the field usually in three or four MZs (Blackmore, 2000), and (2) cluster 

analysis such as K-means and fuzzy c-means (FCM) (Taylor et al., 2003; Taylor, 
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Mcbratney, and Whelan, 2007; Li et al., 2007) (USAR VÍRGULAS - APAGUE). and/or 

iterative self-organizing of data analysis technique (Fridgen et al., 2000; Kitchen et al., 

2002).  

Crop coverage – the most used information about crop coverage are 

vegetation indices (VI) and leaf area index (LAI). Both of them can be manually 

measured and with remote sensing (RS) methods. Traditional methods to acquire crop 

traits (plant height, leaf color, LAI, chlorophyll content, biomass, yield) rely on manual 

sampling, which is time-consuming and laborious (Yang et al., 2017). However, RS 

platforms, like unmanned aerial vehicles (UAV), equipped with different sensors, are 

currently an important approach. The most common RS application in PA is detecting 

spatial and temporal patterns in crop nutrient deficiencies (Mulla and Khosla, 2016), 

and it can provide information about photosynthetically active biomass – ie canopy 

health and vigor. Several authors use RS data to delineate MZs based on RS data 

alone (Inman et al., 2008; Song et al., 2009; Chang et al., 2014) or to improve 

effectiveness of MZs delineation based on other information (Li et al., 2007; Inman et 

al. 2008; Song et al. 2009; Ortuani et al., 2019, Tagarakis et al,. 2013). 

Proximal soil sensors – conventional soil sampling and analyses have shown 

mixed economic returns due to the high costs associated with labor-intensive sampling 

and analysis procedures, which map uncertainties might accompany. Therefore, 

conventional laboratory methods are being replaced or complemented with analytical 

soil sensing techniques (Kuang et al., 2012). Typically, sensor sampling is taken at 

fixed intervals using a vehicle while driving along straight parallel lines, thus, there is a 

result in a regular grid of sample points, which produces a fine-resolution spatial data 

that can reveal detailed spatial patterns of measured parameters (e.g., electrical, 

optical, mechanical, electrochemical, acoustic, and pneumatic) (Nawar, 2017; 

Adamchuk et al., 2004; Kuang et al., 2012). 

Scudiero et al. (2013) emphasized the potential of using multiple-sensor 

platforms to delineate MZs. For example, they combined two proximal-sensing (the 

apparent electrical conductivity of soil (ECa) and bare-soil NDVI) data and FCM 

algorithm to divide a 21-ha cornfield into five zones. The authors highlighted that even 

when measurements as ECa and bare-soil NDVI are not directly correlated to a corn 

yield, their combined use could help on classifying the soil according to its fertility.  

2. outliers and inliers Removal: exploratory data analysis (EDA) is a summary 

of data set according to their main characteristics and employs a variety of techniques 

(mostly graphical) to maximize insight into a data set (NIST/SEMATECH, 2013). When 

constructing MZs, the essential use of EDA is to detect and remove outliers. According 

to Amidan et al. (2005), data outliers can significantly impact data-driven decisions, and 
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in many cases, they do not reflect the true nature of data and, hence, they should not 

be included in the analyses. According to Córdoba et al. (2016), the values outside the 

mean ± 3 SD are identified as outliers and should be removed. They remarked that 

even though real data could belong to this interval, the upper and lower limits should be 

modified to obtain robust variance estimators. It is also necessary to remove inliers, 

data that differ significantly from their neighborhood but lie within the variation range of 

data set (Córdoba et al., 2016). An additional care should be taken for yield data 

obtained with yield monitor. Many approaches for yield data removal were already 

being proposed (like by Blackmore and Moore, 1999) to eliminate errors associated 

with unknown header width, combine filling/emptying times, time lag of grain with the 

combine, positional errors, rapid velocity changes, and others (Sudduth and 

Drummond, 2007). Vega et al. (2019) proposed a protocol to automate error removal 

from yield maps divided in two steps: (1) removal of yield data with values equal to 

zero, removal edge values and potential end-of-field yield monitor errors, and removal 

of yield data that are outside the mean ± 3 SD; and (2) use of the local Moran's spatial 

autocorrelation index and Moran's plot to identify and remove data that are inconsistent 

with their neighbor points. The protocol was evaluated on 595 real yield datasets with 

good results and can be used with other geo-referenced variables in precision 

agriculture. 

3. Data normalization: some clustering techniques such as FCM algorithm with 

Euclidean are sensitive to characteristics of the input variables. Fridgen et al. (2004) 

reported that Euclidean distance should be used only for statistically independent 

variables to show equal variances. In this sense, when the Euclidean distance is used 

to clustering, normalization data can be a crucial step before creating MZs (Schenatto 

et al. 2017b). Schenatto et al. (2017b) evaluated the influence of using three data 

normalization methods (amplitude, mean, and standard score) to delineate MZs with 

FCM algorithm using Euclidean distance, with corn and soybean data. The authors 

concluded that the amplitude normalization method was the most appropriate. 

4. Selection of input variables: The selection of variables that are most related 

to the target variable, usually crop yield, can be done before or after delineating MZs. 

According to Gnanadesikan et al. (1995), the weighting and selection of variables are 

the most challenging issues in cluster analysis. However, the capacity of clustering 

software to process a large number of variables encourages users to be generous in 

the number of variables used in the process. Furthermore, the variable choice (as well 

as their weights) can and often will influence clustering (MZs delineation) (Gozdowski, 

2014; Sobjak, 2016). Sobjak et al. (2016) showed that with FCM algorithm, no 

combination of variables produced statistically better performance than the MZ 
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delineated only with non-redundant variables. Therefore, the selection of variables 

before the delineation process is recommended. 

4.1 Selection of variables before the delineation process: in this case, 

techniques are applied to reduce the variables' number and/or dimensionality. The use 

of redundant variables decreases clustering performance and increases computational 

time (Bazzi et al., 2013; Schenatto et al., 2016a; Sobjak et al., 2016). Good results 

were obtained with multivariate techniques to reduce the dimensionality of variables 

and promote orthogonality among them (Hotelling, 1933; Dray et al., 2008; Gavioli et 

al., 2016). Three-variable selection techniques (Table 2) that are most used in 

combination with FCM algorithm are: 

Spatial correlation analysis (Bazzi et al., 2013): is a method using Moran's 

bivariate spatial autocorrelation statistic to build a spatial correlation matrix. The 

procedure was: (1) elimination of variables with no significant spatial autocorrelation at 

5% significance; (2) removal of variables that were not correlated with yield (or other 

target variables); (3) decreasing ordination of the remaining variables, considering the 

degree of correlation with yield; and (4) elimination of variables which are correlated 

with each other, with preference to remove those variables with lower correlation with 

yield. 

Principal component analysis (PCA) (Hotelling, 1933): is a multivariate 

technique that consists of building a new set of orthogonal synthetic variables 

denominated principal components (PC) and is the most frequently reported technique 

(Table 2) in the process of selection/reduction of variables to delineate MZs. These 

PCs are linear combinations of the original variables whose results come from 

transformations that prioritize the representation of data variability in the first 

components. Thus, if the original variables have a high degree of dependence among 

them, it is possible to reduce data dimensionality using the first PCs. Another possibility 

is to select only the variables that had the most significant influence on PCs 

delineation. 

Multivariate spatial analysis based on Moran’s index PCA (MULTISPATI-PCA) 

(Dray et al., 2008; Córdoba et al., 2013; Gavioli et al., 2016): is an extension of PCA 

that adds spatial restriction considering data georeferencing (and, therefore, spatial 

dependence) by adding a spatial weighting matrix created with Moran's bivariate 

spatial autocorrelation statistic. The MULTISPATI-PCA aims to maximize the spatial 

autocorrelation between the points, while the traditional PCA, aims to maximize the 

total variance. 
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Table 2 Main techniques for variables’ selection and management zones (MZs) 

delineation 

Selection of 

techniques 

N° of 

papers 
Papers 

Spatial correlation 

analysis 
10 

(Bazzi et al., 2013; Gavioli et al., 2016; Schenatto et 

al., 2016a; Schenatto et al., 2016b; Sobjak et al., 

2016; Jacintho et al., 2017; Schenatto et al., 2017b; 

Betzek et al., 2018; Bazzi et al., 2019; Betzek et al., 

2019) 

Principal 

Component 

Analysis (PCA) 

38 

(Fraisse et al., 2001 ; Li et al., 2007; Molin and de 

Castro, 2008; Vitharana et al., 2008a; Morari et al., 

2009; Xin-Zhong et al., 2009; Buttafuoco et al., 2010; 

Castrignanò et al., 2010; Guastaferro et al., 2010; 

Moral et al., 2010 ; Salami et al., 2011; Jiang et al., 

2011; Bansod et al., 2012; Davatgar et al., 2012; 

Jiang et al., 2012; Benedetto et al., 2013b; Li et al., 

2013; Lin et al., 2013; Meirvenne et al., 2013; Peralta 

et al., 2013; Peralta and Costa, 2013; Urretavizcaya 

et al., 2014; Yao et al., 2014; Caires et al., 2015; 

Landrum et al., 2015; Tripathi et al., 2015; Córdoba 

et al., 2016 ; Gavioli et al., 2016; Ortuani et al., 2016; 

Buttafuoco et al., 2017; Gili et al., 2017; Shukla et al., 

2017; Behera et al., 2018; Schwalbert et al., 2018; 

Scudiero et al., 2018; Verma et al., 2018; González-

Fernández et al., 2019; Reyes et al., 2019) 

MULTISPATI-PCA 4 
(Córdoba et al., 2013; Peralta et al., 2015; Gavioli et 

al., 2016; Gili et al., 2017) 

 

Gavioli et al. (2016) evaluated the efficiency of each of these three techniques 

(spatial correlation analysis, PCA, MULTISPATI-PCA) and two new methods proposed 

by them. One, the MPCA-SC, is based on the combined use of spatial correlation 

analysis and MULTISPATI-PCA, and the other, PCA-SC, which applies PCA only to 

the stable variables that showed significant spatial correlation with the target variable 

(selected by the spatial correlation matrix). They found out that MPCA-SC provided the 

best performance for FCM algorithm, reduced data dimensionality without losing 

essential information in most cases.  

4.2 Selection of variables after the delineation process: Although selecting 

variables before the delineation process is the most common, some authors decided to 

proceed it after. These are the cases:  

Kitchen et al. (2005) compared the productivity zones (SPZ) delineated using 

ECa and elevation with the ones from yield map data (YPZ). Using overall accuracy 
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and Kappa coefficient K, they found out the best combination of ECa and/or elevation 

data combinations. They considered it a promising level of agreement (until 60–70%), 

especially due to many other yield-limiting factors unrelated to ECa and elevation. 

Gozdowski et al. (2014) used logistic regression to find out which soil 

attributes were more correlated with the MZs delineated according to the multiyear 

mean standardized yield divided each field into two zones, one above and the other 

below the mean yield. They analyzed several variables, including soil chemical and 

physical properties and topographic attributes, and concluded that soil sand and 

organic carbon content produced the most proper delineation of MZs. 

Bottega et al. (2017) delineated MZs based on the one-year yield data and 

MZs based on ECa, coarse sand, fine sand, silt, clay, and combinations among them. 

They concluded that ECa provided the best agreement by using Kappa coefficient. 

Miao et al. (2018) evaluated three approaches to delineate MZs on two no-till 

corn-soybean rotation fields: (1) ROSE-YSTTS, using relative elevation, organic matter 

(OM), slope, ECa), yield spatial trend map, and yield temporal stability map, (2) ROSE, 

using soil and landscape information (relative elevation, OM, slope, and ECa), and (3) 

CMYYM, using clustering multiple-year yield maps corn-soybean turnover. They 

evaluated the accuracy of different approaches using relative variance (Dobermann et 

al., 2003) and concluded that the ROSE-YSTTS approach could overcome the 

weaknesses of approaches using only soil, landscape, or yield information and is more 

robust for MZ delineation. 

5. Data interpolation: data to delineate MZs are usually interpolated to 

delineate MZs that are continuous and smooth. Typically, this task is performed with 

inverse distance weighting (IDW) or kriging interpolation methods. Kriging is the best 

interpolator when a minimum spatial dependence is confirmed; otherwise, IDW 

presents an advantage (Betzek et al., 2019). 

6. MZs Delineation - Two approaches are commonly used to delineate MZs: 

(1) the empirical method, which uses frequency distribution of target variable (usually 

yield) to divide the MZs field (Blackmore, 2000), and (2) cluster analysis such as K-

means and FCM (Taylor et al., 2003; Taylor et al., 2007; Li et al., 2007). The cluster 

analysis methods divide data points of an agricultural area into classes, which are also 

termed groups, by employing a similarity evaluation function for this division. In 

practice, these classes are applied to delineate MZs, which can be subsequently 

delimited in field (Boydell and McBratney, 2002; Córdoba et al., 2016). 

7. MZs Rectification : After their delineation, MZs often present isolated pixels, 

small regions, or even a transition border among very irregular zones, making it difficult 

or even impossible to operate in a field. Thus, a smoothing process called rectification 
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can be applied to optimize the zones. Betzek et al. (2018) presented a solution based 

on the filters mode and median application with 3 × 3 and 5 × 5 pixel masks. The best 

results were obtained with masks of 5x5 pixels, regardless if it is used mode or median. 

Gonzalez and Woods (2008), Córdoba et al. (2016), and Albornoz et al. (2018) used 

median and dilatation filters and erosion to reduce MZs fragmentation . 

8. Evaluation of delineated MZs: the performance of a delineation process can 

be assessed using indices and analysis of variance (ANOVA). The most used statistics 

are: (1) variance reduction (VR) (Ping and Dobermann, 2003), (2) the fuzziness 

performance index (FPI) (Fridgen et al., 2004), (3) modified partition entropy (MPE) 

(McBratney and Moore, 1985), (4) normalized classification entropy (NCE) (Bezdek, 

1981), (5) improved cluster validation index (ICVI) (Gavioli et al., 2016), (6) 

smoothness index (SI) (Gavioli et al., 2016), (7) average silhouette coefficient (ASC) 

(Rousseeuw, 1987), (8) Kappa coefficient (K) (Cohen, 1960), and (9) coefficient of 

relative deviation (CRD) (Coelho et al., 2009). Depending on the MZ delineation 

approach, only some of these indices can be used: FPI, MPE, NCE, and ICVI can only 

be used with fuzzy logic. These measures aim to quantify how heterogeneous the 

zones are across the studied field (important for MZ delineation or similarity among the 

zones (important for most segmentation algorithms, in their zone fusion stage), but not 

simultaneously.  

In this sense, Loisel et al. (2019) presented a criterion that considers both 

questions, conducting tests on 50 hypothetical and one real database. Their results 

showed relevancy of the methodology to compare maps with different zones and to 

sort them and provided a ranked set of possible maps with different within-field zones.  

 

Algorithms for management zones delineation (Question 2) 

 

Many techniques and algorithms are available for each stage of the MZs 

delineation. Choosing the best algorithm is not a trivial task, and it should be conducted 

based on empirical analysis. However, although several statistical or even empirical 

approaches exist, the cluster methods, more specifically FCM, and k-means, are the 

most applied ones (Table 3). 

FCM unsupervised classification algorithm (Bezdek, 1981), sometimes also 

named as Fuzzy K-means, produces a continuous cluster of objects considering the 

principles of fuzzy logic. It minimizes the variability within the cluster while it maximizes 

variability among them in order to create homogeneous clusters. In addition, the fuzzy 

logic principle allows a specific element to be contained in more than one cluster 



 
 

58 
 

simultaneously by assigning degrees of permanence in each one, which reduces some 

possible distortion caused by outliers. 

 

Table 3 Algorithms used for management zones (MZs) delineation 

Algorithm 
N° of 

papers 
Papers 

Fuzzy c-means 
(FCM) 

74 

(Bezdek, 1981; Boydell and McBratney, 2002; 
Kitchen et al.,, 2002; Fridgen et al.,, 2004; Kitchen et 
al.,, 2005; Li et al., 2007; Kyaw et al., 2008; Mishra et 
al., 2008; Molin and de Castro, 2008; Vitharana et al., 
2008b; Vitharana et al., 2008a; Li et al., 2008; Morari 
et al., 2009; Song et al., 2009; Xin-Zhong et al., 2009; 
Fu et al., 2010; Guastaferro et al., 2010; Moral et al., 
2010; Zhang et al., 2010; Arno and Martinez-
Casasnovas, 2011; Jiang et al., 2011; Bansod et al., 
2012; Davatgar et al., 2012; Jiang et al., 2012; 
McClymont et al., 2012; Roberts et al., 2012; Valente 
et al., 2012; Bazzi et al., 2013; Córdoba et al., 2013; 
Li et al., 2013; Lin et al., 2013; Meirvenne et al., 2013; 
Scudiero et al., 2013; Tagarakis et al., 2013; Chang 
et al., 2014; Patil et al., 2014; Urretavizcaya et al., 
2014; Yao et al., 2014; Bazzi et al., 2015; Caires et 
al., 2015; Rodrigues and Corá, 2015; Santos and 
Saraiva, 2015; Tripathi et al., 2015; Peralta et al., 
2015; Boluwade et al., 2016; Gavioli et al., 2016; 
Oldoni and Bassoi, 2016; Ortuani et al., 2016; 
Schenatto et al., 2016b; Schenatto et al., 2016a; 
Sobjak et al., 2016; Bottega et al., 2017; Gili et al., 
2017; Schemberger et al., 2017; Schenatto et al., 
2017b; Servadio et al., 2017; Yari et al., 2017; Shukla 
et al., 2017; Albornoz et al., 2018; Behera et al., 
2018; Betzek et al., 2018; Miao et al., 2018; 
Schwalbert et al., 2018; Scudiero et al., 2018; 
Martínez-Casasnovas et al., 2018; Khan et al., 2018; 
Verma et al., 2018; Bazzi et al., 2019; Betzek et al., 
2019; Gavioli et al., 2019; González-Fernández et al., 
2019; Nascimento et al., 2019; Ortuani et al., 2019; 
Reyes et al., 2019) 

K-means 18 

(Taylor et al., 2003; Jaynes et al., 2005; Hornung et 
al., 2006; Xiang et al., 2007; Ikenaga and Inamura, 
2008; Inman et al., 2008; Robertson et al., 2008; Arno 
and Martinez-Casasnovas, 2011; Meirvenne et al., 
2013; Galambošová et al., 2014; Santos and Saraiva, 
2015; Damian et al., 2016; Schemberger et al., 2017; 
Agati et al., 2018; Karlik et al., 2018; Whetton et al., 
2018; Gavioli et al., 2019; Loisel et al., 2019) 

non-parametric 
estimate of 

probability density 
function 

5 
(Castrignanò et al., 2010; Guastaferro et al., 2010; 
Aggelopooulou et al., 2013; Benedetto et al., 2013b; 
Benedetto et al., 2013a; Diacono et al., 2013) 
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Ordinary kriging / 
Factorial kriging / 

Factorial cokriging /  

Multicollocated 
cokriging /  

Multicollocated 
factor cokriging 

5 
(Buttafuoco et al., 2010; Landrum et al., 2015; 
Cavallo et al., 2016; Shaddad et al., 2016; Buttafuoco 
et al., 2017) 

Ward 5 
(Fleming et al., 2000; Salami et al., 2011; 
Santesteban et al., 2013; Galambošová et al., 2014; 
Gavioli et al., 2019) 

ISODATA 3 
(Fraisse et al., 2001; Guastaferro et al., 2010; 
González-Fernández et al., 2017) 

RASCH 2 (Moral et al., 2011; Moral et al., 2019) 

others 21 

(Blackmore, 2000; Franzen et al., 2002; Molin, 2002; 
Frogbrook and Oliver, 2007; Velandia et al., 2008; Fu 
et al., 2010; Suszek et al., 2011; Bansod et al., 2012; 
Cid-Garcia et al., 2013; Hörbe et al., 2013; Peralta 
and Costa, 2013; Ruß, 2013; Gozdowski et al., 2014; 
Shamal et al., 2016; Xiaohu et al., 2016; Jacintho et 
al., 2017; Nawar et al., 2017; Schemberger et al., 
2017; Bernardi et al., 2018; Gavioli et al., 2019; 
Reyes et al., 2019) 

 

Three matrices are needed to develop FCM (McBratney and Moore, 1985). 

The first one, matrix X, consists of the data to be classified. The second one, Matrix V, 

is the matrix with centroids of clusters, and consists of k centroids of clusters contained 

in the searched space defined by matrix X. The third one, matrix U, consists of 

assigning the pertinence value of each cluster in V for each point in X, considering that 

the sum of pertinence values of each observation must be equal to 1. An ideal fuzzy k 

partitioning is defined as a weighted minimization of the square distance between the 

observation points and the centroid of the classes, according to Equation 3: 

 

𝑗𝑚(𝑈, 𝑣) = ∑∑(𝑢𝑖𝑗)
𝑚
(𝑑𝑖𝑗)

2
𝑘

𝑖=1

𝑛

𝑗=0

 Eq. 3 

 

where m is the fuzzy weighting coefficient (1≤m<∞) that controls the 

pertinence value shared among classes. The closer to 1, the smaller the sharing 
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among classes; the closer to infinity, the greater the value of sharing pertinence 

resulting in less distinct classes; u represents the pertinence of an element in a class; 

and (dij)
2 is the square of distance (usually Euclidean distance) in the space between 

point j and the centroid of class i. 

Despite the lack of an explicit criterion to choose the parameter m, when 

related to agriculture, values between 1 and 2 are generally used, so that 1.3 and 1.5 

are the most recurrent ones (Table 4). 

 

Table 4 Values adopted for fuzzy weighting coefficient in fuzzy c-means algorithm 

Exponent 
N° of 

papers 
Papers 

1 1 (Servadio et al., 2017) 

1,3 24 

(Kitchen et al., 2002; Kitchen et al., 2005; Kyaw et al., 
2008; Vitharana et al., 2008b; Morari et al., 2009; Moral et 
al., 2010; Arno and Martinez-Casasnovas, 2011; Roberts 
et al., 2012; Bazzi et al., 2013; Córdoba et al., 2013; 
Meirvenne et al., 2013; Tagarakis et al., 2013; Patil et al., 
2014; Rodrigues and Corá, 2015; Peralta et al., 2015; Gili 
et al., 2017; Schenatto et al., 2017b; Yari et al., 2017; 
Betzek et al., 2018; Schwalbert et al., 2018; Martínez-
Casasnovas et al., 2018; Khan et al., 2018; Betzek et al., 
2019; Reyes et al., 2019) 

1,5 13 

(Fridgen et al., 2004; Vitharana et al., 2008a; Xin-Zhong et 
al., 2009; Davatgar et al., 2012; Jiang et al., 2012; Lin et 
al., 2013; Scudiero et al., 2013; Chang et al., 2014; 
Tripathi et al., 2015; Cavallo et al., 2016; Shukla et al., 
2017; Albornoz et al., 2018; Behera et al., 2018) 

2 2 (Valente et al., 2012; Alves et al., 2013) 

 

Although Euclidean distance (Table 5) is usually used as a parameter for both 

FCM and k-means, it generates spherical clusters, hardly present in soil data, and it is 

sensitive to the amplitude (thus requiring data normalization) of variables when two or 

more input variables are used (Bezdek, 1981; Fridgen et al., 2004, Schenatto et al., 

2017b). Mahalanobis distance is often used as an alternative, especially when 

clustering multivariate data since it adds intra-class variance restrictions to the 

calculation (Bezdek, 1981; McBratney and Moore, 1985). 

 

 



 
 

61 
 

Table 5 Types of distances used in Fuzzy c-means algorithm 

Distance 
N° of 

papers 
Papers 

Euclidian Distance  28 

(Fraisse et al., 2001; Kyaw et al., 2008; Molin and de 
Castro, 2008; Robertson et al., 2008; Morari et al., 2009; 
Xin-Zhong et al., 2009; Guastaferro et al., 2010; 
Davatgar et al., 2012; Jiang et al., 2012; Roberts et al., 
2012; Aggelopooulou et al., 2013; Alves et al., 2013; 
Benedetto et al., 2013b; Benedetto et al., 2013a; Lin et 
al., 2013; Scudiero et al., 2013; Tagarakis et al., 2013; 
Chang et al., 2014; Galambošová et al., 2014; Rodrigues 
and Corá, 2015; Tripathi et al., 2015; Damian et al., 
2016; Oldoni and Bassoi, 2016; Ortuani et al., 2016; Gili 
et al., 2017; Whetton et al., 2018; González-Fernández 
et al., 2019; Reyes et al., 2019) 

Mahalanobis 17 

(Kitchen et al., 2002; Fridgen et al., 2004; Kitchen et al., 
2005; Mishra et al., 2008; Vitharana et al., 2008a; Arno 
and Martinez-Casasnovas, 2011; Jiang et al., 2012; 
McClymont et al., 2012; Roberts et al., 2012; Córdoba et 
al., 2013; Tagarakis et al., 2013; Ortuani et al., 2016; 
Servadio et al., 2017; Yari et al., 2017; Martínez-
Casasnovas et al., 2018; Khan et al., 2018; González-
Fernández et al., 2019) 

 

The k-means unsupervised clustering algorithm (MacQueen, 1967) aims to 

separate data set elements by clustering them into k sets. Initially, the algorithm 

chooses the position of k initial centroid points, usually randomly, within the set of 

points in matrix X and calculates the distance of all points (typically using Euclidean 

distance) to the centroids and assigns the location to the nearest centroid. That is, 

considering xj∈X, it is associated with cluster Cj* that has the closest zi centroid 

(Equation 4). Once this assignment is made, the average distance from all points 

connected to a centroid is calculated. Subsequently, the centroid is repositioned at the 

average distance from all points connected to that centroid. This change can cause 

some points to be attributed to another centroid since it is always the nearest centroid. 

This procedure is repeated until no centroid has its position changed. This will occur 

when all the centroids are in the central position of the distance among the points take 

part of that centroid. 

 

𝑗∗ = argmin
𝑖=1,…,𝑘

{|𝑥𝑗 − 𝑧𝑖|} Eq. 4 
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We must consider that fuzzy algorithms c-means and k-means are available in 

most software, which contributes to the preference of their use over the others. Despite 

this, validations are still necessary to determine the clustering algorithm considering 

agricultural data. Gavioli et al. (2019) evaluated twenty different clustering algorithms, 

including FCM and k-means, to delineate MZs with data of three commercial 

agricultural fields cultivated with soybean and corn. They used elevation, clay, sand, 

silt, soil penetration resistance, slope, and bulk density. McQuitty’s Method and Fanny 

obtained the best results in the three areas, but the results were equivalent to FCM and 

k-means in two. 

Other algorithms, such as RASCH, kriging and derivatives, and linear 

programming, are also being researched. Still, present works are low enough to allow a 

direct and more in-depth comparison in multiple situations.  

Guastaferro et al. (2010) evaluated ISODATA, FCM algorithm, and a density-

based non-parametric clustering method to delineate MZs in wheat. They considered 

that, although ISODATA presents a lower computational cost and a better visual 

distinction of MZs, the lack of information on the transition areas was a problem.  

Gili et al. (2017) stated that choosing the ideal algorithm of MZ delineation 

depends on the objectives to use MZs. In their research with corn, they used 

MULTISPATI-PCA to produce synthetic variables (PCs) and three clustering strategies: 

(1) S1- the first PC and the Jenk’s natural rupture method, (2) S2- FCM using directly 

on soil variables (Clay + silt, OM, pH, ECa, and organic matter index) data, and (3) S3- 

FCM using the first three PCs. The different strategies resulted in a different number of 

zones with different characteristics: for fertilization management zonification, it might be 

prioritized OM differentiation, available P contents and the S3 use; if water were the 

main limiting factor, there should be two management zones according to S1 or S2, 

responding to textural and altimetry differences. 

Boluwade et al. (2016) analyzed irrigation on MZs delineation, employing ECa 

and elevation, with FCM, regionalization and partitioning clustering algorithms. Their 

results indicate that the use of both algorithms presents very similar results. 

It is also possible to combine algorithms in sequence. Galambošová et al. 

(2014), clustering yield and electromagnetic data of a 17 hectares, used Ward’s 

method (to obtain information on clusters as the ideal number of clusters) followed by 

k-means clustering method. The delineated MZs showed more quality and information 

on clusters than if both algorithms had been applied separately.  

The adaptation of traditional algorithms to consider new spatial constraints can 

also be performed. An example is the adaptation of the Hierarchical Agglomerative 
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Constrained Clustering algorithm (HACC) to analyze spatial data (HACC-SPATIAL), 

which has been tested on wheat data, and demonstrated its viability (Ruß, 2013). 

Another possibility is the modification of algorithms that were not initially 

developed for MZs delineation. Zhang et al. (2016) introduced improvements to a 

method that uses Binary Integer Linear Programming (BILP) and semivariograms, 

aiming to delineate rectangular MZs, due to it is easy its handling in a field. Their 

results, based on rice data, demonstrate the effectiveness of using this method. Cid-

Garcia et al. (2013) used the computational technique of the Integer Linear 

Programming Management Zone to delineate MZs in a rectangular format. Albornoz et 

al. (2019) extended the approach Cid-Garcia et al. (2013), adding temporal variability 

restrictions, which improved the process. 

 

Definition of the ideal number of classes of management zones 

(Question 3) 

 

Most clustering techniques allow the user to choose the number of classes 

(MCs), making it possible to test several subdivisions in the area. Thus, it must be 

defined a way to select the most appropriate MCs, usually the one that presents the 

most significant reduction in the overall variance of the target variable (typically yield) 

(Frogbrook and Oliver, 2007; Nawar et al., 2017). Zhang et al. (2010) proposed a two 

criteria method to decide the optimal number of zones: (1) overall reduction of variance 

is >50%, and (2) progressive reduction of variance is <20%. More advanced analysis 

regarding clustering process performance can be assessed using indices and analysis 

of variance (ANOVA).  

According to Souza et al. (2018), it is logical to divide the entire field into MZs 

with a statistically distinct target variable. They proposed that after confirming that there 

is no spatial dependence within each class, an ANOVA is conducted in the average 

values of the target variable (usually, the yield), using Tukey test. Secondly, it is 

calculated indices of performance.  

Table 6 presents several measures (showing only the ones used in three or 

more studies) used in this task, but, in most cases, they are related and restricted in 

conjunction with the algorithm used in the delineation. Considering that this is the most 

frequently used MZ delineation algorithm in clustering applications, it would be 

expected that they are among the most used measures. 

Fuzziness Performance Index (FPI) measures the degree of separation 

among the fuzzy partitions of X. Their values range from 0 to 1. Values close to zero 

indicate distinct classes with only a small value of the shared pertinence function, and 
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values close to 1 indicate that there is no distinction among the classes, presenting a 

high value of shared pertinence function (Equation 5): 

 

𝐹𝑃𝐼 = 1 −
𝑐

𝑐 − 1
[1 −

∑ ∑ (𝑢𝑖𝑘)
2𝑐

𝑖=1
𝑛
𝑘=1

𝑛
] Eq. 5 

 

where c is the number of clusters; n is the number of elements in the data set; 

and uik is the element of fuzzy pertinence matrix. 

FPI, NCE, and MPE measures (Bezdek, 1981; McBratney and Moore, 1985; 

Odeh et al., 1992) are strongly connected to FCM algorithm. The Normalized 

Classification Entropy (NCE) aims to model the amount of disorganization of a fuzzy 

partition c, and can be defined by (Equation 6): 

 

𝑁𝐶𝐸 = 
𝑛

𝑛 − 𝑐
[−

∑ ∑ 𝑢𝑖𝑘 log𝑎(𝑢𝑖𝑘)
𝑐
𝑖=1

𝑛
𝑘=1

𝑛
] Eq. 6 

 

where loga is the logarithmic base, a is any positive integer. 
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Table 6 The most used measures to choose the number of management zones (MZs) 

Measure 
N° of 

papers 
Papers 

Fuzziness 
Performance 
Index (FPI) 

62 

(McBratney and Moore, 1985; Boydell and McBratney, 
2002; Kitchen et al., 2002; Fridgen et al., 2004; Li et al., 
2007; Kyaw et al., 2008; Mishra et al., 2008; Molin and 
de Castro, 2008; Vitharana et al., 2008a; Li et al., 2008; 
Morari et al., 2009; Song et al., 2009; Xin-Zhong et al., 
2009; Guastaferro et al., 2010; Moral et al., 2010; Arno 
and Martinez-Casasnovas, 2011; Jiang et al., 2011; 
Bansod et al., 2012; Davatgar et al., 2012; Jiang et al., 
2012; Roberts et al., 2012; Valente et al., 2012; Alves et 
al., 2013; Bazzi et al., 2013; Córdoba et al., 2013; Li et 
al., 2013; Lin et al., 2013; Meirvenne et al., 2013; 
Scudiero et al., 2013; Tagarakis et al., 2013; Chang et 
al., 2014; Patil et al., 2014; Urretavizcaya et al., 2014; 
Yao et al., 2014; Caires et al., 2015; Rodrigues and 
Corá, 2015; Tripathi et al., 2015; Peralta et al., 2015; 
Boluwade et al., 2016; Gavioli et al., 2016; Ortuani et al., 
2016; Schenatto et al., 2016a; Schenatto et al., 2016b; 
Sobjak et al., 2016; Bottega et al., 2017; Gili et al., 2017; 
Schenatto et al., 2017b; Servadio et al., 2017; Yari et al., 
2017; Shukla et al., 2017; Albornoz et al., 2018; Behera 
et al., 2018; Betzek et al., 2018; Miao et al., 2018; 
Schwalbert et al., 2018; Martínez-Casasnovas et al., 
2018; Khan et al., 2018; Verma et al., 2018; Bazzi et al., 
2019; Betzek et al., 2019; González-Fernández et al., 
2019; Ortuani et al., 2019) 

Analysis of 
Variance 
(ANOVA) 

46 

(Fleming et al., 2000; Jaynes et al., 2005; Ikenaga and 
Inamura, 2008; Inman et al., 2008; Molin and de Castro, 
2008; Vitharana et al., 2008b; Xin-Zhong et al., 2009; 
Zhang et al., 2010; Aimrun et al., 2011; Arno and 
Martinez-Casasnovas, 2011; Jiang et al., 2011; Davatgar 
et al., 2012; Jiang et al., 2012; McClymont et al., 2012; 
Bazzi et al., 2013; Córdoba et al., 2013; Li et al., 2013; 
Lin et al., 2013; Peralta et al., 2013; Santesteban et al., 
2013; Scudiero et al., 2013; Chang et al., 2014; 
Urretavizcaya et al., 2014; Yao et al., 2014; Bazzi et al., 
2015; Santos and Saraiva, 2015; Tripathi et al., 2015; 
Peralta et al., 2015; Damian et al., 2016; Gavioli et al., 
2016; Oldoni and Bassoi, 2016; Ortuani et al., 2016; 
Schenatto et al., 2016b; Schenatto et al., 2016a; Sobjak 
et al., 2016; González-Fernández et al., 2017; Schenatto 
et al., 2017b; Shukla et al., 2017; Betzek et al., 2018; 
Martínez-Casasnovas et al., 2018; Khan et al., 2018; 
Verma et al., 2018; Betzek et al., 2019; Gavioli et al., 
2019; Bazzi et al., 2019; Reyes et al., 2019) 

Normalized 
Classification 

Entropy (NCE) 
45 

(Kitchen et al., 2002; Fridgen et al., 2004; Li et al., 2007; 
Kyaw et al., 2008; Mishra et al., 2008; Vitharana et al., 
2008a; Li et al., 2008; Morari et al., 2009; Xin-Zhong et 
al., 2009; Guastaferro et al., 2010; Moral et al., 2010; 
Arno and Martinez-Casasnovas, 2011; Jiang et al., 2011; 
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Bansod et al., 2012; Davatgar et al., 2012; Jiang et al., 
2012; Roberts et al., 2012; Alves et al., 2013; Córdoba et 
al., 2013; Li et al., 2013; Lin et al., 2013; Scudiero et al., 
2013; Tagarakis et al., 2013; Chang et al., 2014; Patil et 
al., 2014; Caires et al., 2015; Rodrigues and Corá, 2015; 
Santos and Saraiva, 2015; Tripathi et al., 2015; Peralta 
et al., 2015; Boluwade et al., 2016; Ortuani et al., 2016; 
Gili et al., 2017; Servadio et al., 2017; Yari et al., 2017; 
Shukla et al., 2017; Albornoz et al., 2018; Behera et al., 
2018; Miao et al., 2018; Schwalbert et al., 2018; 
Martínez-Casasnovas et al., 2018; Khan et al., 2018; 
Verma et al., 2018; González-Fernández et al., 2019; 
Ortuani et al., 2019) 

Modified Partition 
Entropy (MPE) 

17 

(Boydell and McBratney, 2002; Molin and de Castro 
,2008; Song et al., 2009; Valente et al., 2012; Meirvenne 
et al., 2013; Urretavizcaya et al., 2014; Yao et al., 2014; 
Gavioli et al., 2016; Oldoni and Bassoi, 2016; Schenatto 
et al., 2016a; Schenatto et al., 2016b; Sobjak et al., 
2016; Bottega et al., 2017; Schenatto et al., 2017b; 
Betzek et al., 2018; Betzek et al., 2019; Bazzi et al., 
2019) 

Variance 
Reduction (VR) 

9 

(Gavioli et al., 2016; Schenatto et al., 2016b; Schenatto 
et al., 2016a; Sobjak et al., 2016; Schenatto et al., 
2017b; Betzek et al., 2018; Betzek et al., 2019; Gavioli et 
al., 2019; Bazzi et al., 2019) 

Smoothness Index 
(SI) 

6 
(Gavioli et al., 2016; Schenatto et al., 2016a; Schenatto 
et al., 2017b; Betzek et al., 2018; Betzek et al., 2019; 
Bazzi et al., 2019) 

Relative Variance 
(RV) 

4 
(Xiang et al., 2007; Dobermann et al., 2003, Ping and 
Dobermann, 2003; Miao, Mulla, and Robert, 2018) 

Improved Cluster 
Validation Index 

(ICVI) 
4 

(Arango et al., 2017; Gavioli et al., 2019; Schenatto et 
al., 2016a; Betzek et al., 2019) 

Average silhouette 
coefficient (ASC) 

3 
(Rousseeuw, 1987; Gavioli et al. 2019; Reyes et al., 
2019) 

 

The Modified Partition Entropy (MPE) estimates the difficulty level in 

organizing c clusters, with values close to 0. This indicates some low difficulty in 

organizing the clusters. It can be defined by (Equation 7): 

 

𝑀𝑃𝐸 =
−∑ ∑ 𝑢𝑖𝑘 log(𝑢𝑖𝑘)/𝑛

𝑐
𝑖=1

𝑛
𝑘=1

log 𝑐
 Eq. 7 
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Combinations of more than one measure of FPI with NCE and FPI with MPE 

are common (Table 7). In both cases, it must be sought the number of clusters in which 

values of both measures are the lowest ones. Unfortunately, there may be times when 

these measures do not agree. In these situations, the choice of value may be 

subjective or require help of other measures, such as ICVI. 

 

Table 7 Combination of the most used measures to choose the number of 

management zones (MZs) 

Measures 
N° of 

papers 
Papers 

Fuzziness 
Performance Index 

(FPI) e Modified 
Partition Entropy 

(MPE) 

39 

(Fridgen et al., 2004; Li et al., 2007; Kyaw et al., 2008; 
Vitharana et al., 2008a; Li et al., 2008; Morari et al., 
2009; Xin-Zhong et al., 2009; Guastaferro et al., 2010; 
Moral et al., 2010; Arno and Martinez-Casasnovas, 
2011; Jiang et al., 2011; Bansod et al., 2012; Davatgar et 
al., 2012; Jiang et al., 2012; Roberts et al., 2012; Alves 
et al., 2013; Córdoba et al., 2013; Li et al., 2013; Lin et 
al., 2013; Scudiero et al., 2013; Chang et al., 2014; Patil 
et al., 2014; Caires et al., 2015; Rodrigues and Corá, 
2015; Santos and Saraiva, 2015; Tripathi et al., 2015; 
Peralta et al., 2015; Boluwade et al., 2016; Ortuani et al., 
2016; Gili et al., 2017; Servadio et al., 2017; Yari et al., 
2017; Shukla et al., 2017; Behera et al., 2018; 
Schwalbert et al., 2018; Martínez-Casasnovas et al., 
2018; Khan et al., 2018; Verma et al., 2018; González-
Fernández et al., 2019) 

Fuzziness 
Performance Index 
(FPI) e Normalized 

Classification Entropy 
(NCE) 

17 

(Kitchen et al., 2002; Molin and de Castro, 2008; Song et 
al., 2009; Valente et al., 2012; Meirvenne et al., 2013; 
Urretavizcaya et al., 2014; Yao et al., 2014; Gavioli et al., 
2016; Oldoni and Bassoi, 2016; Schenatto et al., 2016a; 
Schenatto et al., 2016b; Sobjak et al., 2016; Bottega et 
al., 2017; Schenatto et al., 2017b; Betzek et al., 2018; 
Betzek et al., 2019; Bazzi et al., 2019). 

 

The Variance Reduction (VR) (Gavioli et al., 2016) is a relative variance (RV) 

change proposed by Webster and Oliver (1990) (Xiang et al., 2007, Dobermann et al., 

2003, Ping and Dobermann, 2003). It is calculated for the target variable, with the 

expectation that the sum of data variances from delineated MZs is smaller than the 

total variance (Equation 8): 

 

𝑉𝑅 =(1 −
∑ 𝑊𝑖 ∗ 𝑉𝑚𝑧𝑖
𝑐
𝑖=1

𝑉𝑓𝑖𝑒𝑙𝑑
) ∗ 100 Eq. 8 
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where c is the number of MZs, Wi is the field proportion of i-th MZ of the total 

field; Vmzi is the data variance of i-th MZ; and Vfield is the data variance to the field. 

The Improved Cluster Validation Index (ICVI) (Gavioli et al., 2016) was 

proposed to solve the possible problem of non-agreement of FPI, MPE, and VR 

measures in MZs delineation. The higher VR value and the lower FPI and MPE values 

are, the closer ICVI will be to 0; the lower ICVI, the better the result of the clustering 

method. It can be determined as follows (Equation 9): 

 

𝐼𝐶𝑉𝐼𝑖 =
1

3
∗ (

𝐹𝑃𝐼𝑖
𝑀𝑎𝑥{𝐹𝑃𝐼}

+
𝑀𝑃𝐸𝑖

𝑀𝑎𝑥{𝑀𝑃𝐸}
+(1 −

𝑉𝑅𝑖
𝑀𝑎𝑥{𝑉𝑅}

)) Eq. 9 

 

where 𝐹𝑃𝐼𝑖 is FPI value of i-th (variable selection) method; 𝑀𝑃𝐸𝑖is the MPE 

value of i-th method; 𝑉𝑅𝑖is the VR value of i-th method; and 𝑀𝑎𝑥{𝑖𝑛𝑑𝑒𝑥_𝑋}represents 

the maximum value of index_X among n variable selection methods. 

Smoothness Index (SI) (Gavioli et al., 2016) gives pixel-by-pixel frequency of 

classes change in a thematic map in horizontal and vertical directions and along the 

diagonal. For maps with more uniform classes, SI tends to 100, while maps with many 

exchanges among classes tend to lower values. It can be calculated by (Equation 10): 

 

𝑆𝐼 = 100 −(
∑ 𝐶𝐻𝑖

𝑘
𝑖=1

4𝑃𝐻
+
∑ 𝐶𝑉𝑗
𝑘
𝑗=1

4𝑃𝑉
+
∑ 𝐶𝐷𝑅𝑙
𝑘
𝑙=1

4𝑃𝐷𝑅
+

∑ 𝐶𝐷𝐿𝑚
𝑘
𝑚=1

4𝑃𝐷𝐿
) ∗ 100 Eq. 10 

 

where 𝐶𝐻𝑖
 is the number of changes on row i (horizontal); 𝐶𝑉𝑗 is the number of 

changes in column j (vertical); 𝐶𝑅𝐷𝑙
 is the number of changes on diagonal l (diagonal 

right - DR); 𝐶𝐿𝐷𝑚 is the number of lines on diagonal m (diagonal left - DL); k is the 

maximum number of pixels in a row, column or diagonal; 𝑃𝐻is the possibility of 

changes in horizontal pixels; 𝑃𝑉 is the possibility of changes in vertical pixels; 𝑃𝐷𝑅is the 

possibility of changing in the right diagonal; and 𝑃𝐷𝐿is the possibility of changes in the 

left diagonal. 

Average silhouette coefficient (ASC) is obtained from the silhouette coefficient 

(SC) (Rousseeuw, 1987), which is an evaluation index that measures both levels of 

satisfactory internal formation and external separation of groups. The SC value for 

point p, denoted by scp, is calculated using the average of intra-group distances ap 

and the average of inter-group distances bp (Equation 11).  
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𝑠𝑐𝑝 =
𝑏𝑝 − 𝑎𝑝

𝑀𝑎𝑥(𝑎𝑝, 𝑏𝑝)
 Eq. 11 

 

where ap is the average of distances among point p and all other points in the 

same group, and bp is the average of distances among point p and all points in the 

closest group containing p.  

The group silhouette coefficient (GSC) is obtained by calculating the average 

of silhouette coefficients for the points of this group, and the value that corresponds to 

ASC coefficient of k groups is obtained by calculating the average of GSC values of k 

groups. ASC values vary from -1 to 1; -1 indicates an incorrect grouping, and 1 

indicates groups with the best intra-group formation and the best possible inter-group 

separation. 

Based on the Analysis of Variance (ANOVA), the target variable (usually yield) 

is compared among classes by using the average target variable and performing the 

Tukey range test to identify whether the generated classes showed significant 

differences (first, we confirmed that there was no spatial dependence within each 

class). 

Despite plurality of measures, the most usual measures, used together or not, 

are mainly related to the clustering methods based on FCM. A few, such as VR, ASC, 

SI, and Tukey test (ANOVA) can be used regardless of the algorithm used for 

delineation. It is expected that, with the increase in research related to other algorithms 

for MZs delineation , there will also be an increase in the number of measures used to 

define the ideal number of MZs. 

Although they have not appeared consistently in SLM, some of the measures 

often used that deserve to be highlighted are: 

Fragmentation index (FI%): it takes into account how higher is the number of 

zones (NMZ) in comparison with the number of classes (NC). If each class 

corresponds to a single zone, then the estimated fragmentation by FI% will be zero. If, 

for example, for a four-class design, five zones are created, then FI% will be 25%. The 

higher the fragmentation of delineation is, the higher FI% is (Equation 12): 

 

𝐹𝐼% = 100
𝑁𝑀𝑍 − 𝑁𝐶

𝑁𝐶
 Eq. 12 

 

Global Quality Index (GQI): it looks for finding the best number of classes 

during ZMs’ delineation, taking into account the values of ICVI, SIr and FIr (Equation 

13): 
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𝐺𝑄𝐼𝑖 =
𝐼𝐶𝑉𝐼𝑖 ∗ (100 + 𝐹𝐼𝑟𝑖)

𝑆𝐼𝑟𝑖
 Eq. 13 

 

Kappa coefficient (K) (Cohen, 1960): this index is not used to validate the 

clustering process but to compare the agreement of two MZ delineation approach. 

Landis and Koch (1977) proposed the following classification: 0 < K ≤ 0.2 indicates no 

agreement, 0.2 < K ≤ 0.4 weak agreement, 0.4 < K ≤ 0.6 moderate agreement, 0.6 < K 

≤ 0.8 strong agreement, and 0.8 < K ≤ 1 very strong agreement.  

Coefficient of relative deviation (CRD) (Coelho et al., 2009): it calculates the 

mean difference in modulus of the interpolated values on a thematic map when 

compared to a map taken as a reference (Equation 14): 

 

𝐶𝑅𝐷 =∑𝐴𝐵𝑆(

𝑛

𝑖=1


𝑍𝑖𝐵 − 𝑍𝑖𝐴

𝑍𝑖𝐴
) Eq. 14 

 

where ZiA is the estimated value at the location i on the reference map, ZiB is 

the value at location i on the map to be compared, and n is the total number of 

interpolated locations on yield maps.  

Mean absolute difference (MAD, Equation 15): it computes the mean absolute 

difference among values on the two maps. 

 

𝑀𝐴𝐷 =
∑ 𝐴𝐵𝑆(𝑍𝑖𝐵 − 𝑍𝑖𝐴
𝑛
𝑖=1 )

𝑛
 Eq. 15 

 

Possible economic or environmental advantages of management zones 

adoption (Question 4) 

 

Despite the complexity involved in the procedure, delineating MZs in itself is 

not an end goal. Instead, its premise is to serve as a subsidy for decision-making on 

how to allocate better resources in the field, aiming at a more rational use with less 

environmental impact and higher profitability. Despite this, most studies only present 

the ideal number of MZs and the MZs map as the final product, often omitting if the 

zones are significant and the possible economic or environmental advantages of their 

adoption. This remark was also made by Nawar et al. (2017). 

It is important to perform a statistical analysis of MZs delineated to validate the 

zones division. One way to do this is with ANOVA where the target variable (usually 
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yield) is compared among classes by using the average target variable and performing 

the Tukey range test to identify whether the generated classes showed significant 

differences (first, we confirmed that there was no spatial dependence within each 

class). Observing Table 6, it can be observed that only 46 (approximately 28%) of the 

selected papers did a consistent statistical analysis (ANOVA) to validate the existence 

of considerable differences among the resulting zones to justify this division. An even 

smaller number (8) of studies analyzes the economic impact of adopting the use of 

MZs. 

Kyaw et al. (2008) worked with five areas with chlorosis-prone soybeans and 

corn to delineate MZs for its control, concluding that the control of chlorosis using MZs 

did not increase yield but reduced Fe application considerably. In one case, the 

application was reduced to just 43% of the total area, in another, to 41%, lowering the 

average cost per hectare. Robertson et al. (2008) conducted a study on wheat with 199 

properties, ranging from 10 to 172 ha, and found out an economic benefit between US$ 

5.00/ha and US$ 40.00/ha when they adopted MZs. This benefit represents a 

significant differential for producers in Western Australia since the region has a margin 

of around US$ 100.00 ha-1. 

Velandia et al. (2008) analyzed the economic impact of four approaches of N 

application in cotton: (1) uniform N rate application based on an agronomic optimum 

(URA), (2) uniform N rate application based on an economic optimum (URE), (3) 

variable-rate N application based on the economic optimum for each of the 

management zones established by our spatial procedure above (VRN, developed at 

this work), and (4) variable-rate N application based on landscape position (VRL). Their 

results demonstrated that VRN application could result in net returns over US$5.28ha-1, 

US$ 6.17 ha-1, and US$ 7.28 ha-1, when compared to VRL, URE, and URA, 

respectively. 

In a study involving six producers, whose fields were cultivated with corn, 

Roberts et al. (2012) developed MZs to control Nitrogen. Two areas showed no 

correlation between yield and N, while in the other four, they found out that the 

variable-rate N application according to soil-based MZ showed a gain of –US$ 33 ha-1, 

US$ 145 ha-1, US$ 0, and US$ 32 ha-1. Hörbe et al. (2013) assessed the efficiency of 

variable-rate seeding of corn with delineated MZs, split into low, medium, and high crop 

performance zones. They reduced the recommended plant population by 31 % in the 

low management zone resulted in a yield increase of 1.5 Mg ha-1 and induced an 

increase of US$ 342 ha-1 in partial net economic return. Increasing the recommended 

plant population by 13% in the high management zone resulted in an increase of 0.91 

Mg ha-1 in grain yield and induced an increase of US$ 113 ha-1 in partial net economic 
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return. Also, working with corn, Bernardi et al. (2018) registered three as the ideal 

number of classes. The class with the highest profitability recorded 12% profit higher 

than the class with the lowest profitability. 

Whetton et al. (2018) evaluated the economic viability and environmental 

benefit of adopting a variable-rate fungicide application (VRSA) and selective harvest 

(SH) in winter wheat. Results showed that in this study, VRFA allowed for fungicide 

reductions from 22 to 26% when compared to homogeneous rate fungicide application 

(HRFA). The net saving after considering sensing costs was £67 ha−1, which is roughly 

equivalent to €80 or $90 ha−1 per year. This study was restricted to a single field but 

demonstrates the potential of fungicide reductions and economic viability of MZ 

concept. 

Schwalbert et al. (2018) compared four different wheat fertilization strategies 

from two producers’ fields: (1) traditional N fertilization management (constant rate, 

CR), (2) variable-rate N application based on crop remote sensing (CS), (3) VNR 

based on MZs (MZs), (4) integrated approach combining MZs and crop sensing 

(MZ+CS). They concluded that the integrated version (MZ+CS) presented an average 

economic return of US$ 42 ha-1 (field 1) and US$ 32 ha-1 (field 2) higher than the CR. 

However, when considering only the highest yield MZ, the values change to 

US$ 80 ha-1 and US$ 40.00  ha-1 for fields 1 and 2, respectively. Despite the small 

number of studies validating the economic return of using MZs, the advantages of their 

adoption in all cases were verified. 

 

 

Software used to delineate management zones (Question 5) 

 

Three main questions must be addressed for an efficient delineation of MZs: 

(1) what data set should be used?; (2) what algorithm should be used to delineate the 

MZs?; and (3) what is the optimal number of MZ classes? (Fridgen et al., 2004). 

Although they seem to be simple questions, each unfolds in virtually dozens of options, 

with specific advantages and disadvantages. For a correct understanding and analysis, 

they often require the knowledge of several areas, and create great difficulty to adopt 

MZs in agriculture. 

Some of these difficulties can be reduced by using specialized software. 

Despite many software for PA, few are directed to delineate MZs (Table 8). Golden 

Software Surfer, ESRI ArcGIS, and R software package are commonly used. Despite 

allowing MZs  delineation, they do not have all the desired functionality since this is not 

the focus of these products. So, it is required to go to other computer programs to 
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perform the entire process. Furthermore, when they have all the necessary 

functionalities, they are not user-friendly. Another determining factor to hinder access 

to software is because most of them present only paid commercial licenses, and this 

discourage their adoption by non-specialized people since they may not realize the 

advantages of their use at first. 

Among the specific software to delineate MZs, the following are well-known 

(organized by release date): (1) FuzME (Minasny and McBratney, 2002), Management 

Zone Analyst (MZA) (Fridgen et al., 2004), (2) Software for Management Zones 

Definition (SDUM) (Bazzi et al., 2013; Bazzi et al. 2019), (3) ZoneMAP (Zhang et al., 

2010), and (4) automatic software to delineate MZs proposed by Albornoz et al. 

(Albornoz et al, 2018). 

 

Table 8 Software used for management zones delineation by the papers included in 

this review 

Names N* 
main functions 

used 
License OS* Developer Site 

ArcGis/ 
ArcMap 

41 
Maps, 

classification  
Commercia

l (paid)  
Window
s Web 

ESRI 
https://www.arcgis.c

om/ 

MZA 31 
Delineation of 

MZ  
free 

Window
s 

Cropping 
Systems 

and Water 
Quality 

Research 

https://www.ars.usd
a.gov/research/soft
ware/download/?sof
twareid=24&modeco

de=50-70-10-00 

SAS 20 
Statistical 
analysis, 

classification 

Commercia
l (paid) 

Window
s Linux 

z/OS 

SAS 
https://www.sas.co

m 

SPSS 18 
Statistical 
analysis 

Commercia
l (paid) 

Window
s 

Linux 
Mac 

IBM 
https://www.ibm.co

m/spss 

R 14 

Statistical 
analysis, 

classification 
Selection of 

variables 

free (Open 
Source) 

Window
s 

Linux 

Mac 

r-Project 
(Open 

Source) 

https://www.r-
project. org/ 

FuzMe 13 
Delineation of 

MZ 
free 

Window
s 

Precision 
Agricultur

e 
Laborator

y, 
University 

https://sydney.edu.a
u/ agriculture/pal/ 
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of Sydney 

GS+ 9 
Geostatistical 

analysis, 
interpolation 

Commercia
l (paid) 

Window
s 

Gamma-
design 

https://geostatistics.
com 

ISATIS 8 
Geostatistical 

analysis 
Commercia

l (paid) 
Window
s Linux 

Geovarian
-ces 

https://www.geovari
ances.com 

Surfer 6 Maps 
Commercia

l (paid) 
Window

s 
Golden 

Software 
https://www.goldens

oftware.com 

MatLab 5 
Mathematical 

analysis, 
modeling 

Commercia
l (paid) 

Window
s 

Linux 

Mac 

MathWork
s 

https://www.mathwo
rks.com/ 

Statistic
a 

5 
Statistical 
analysis 

Commercia
l (paid) 

Window
s 

StatSoft 
http://www.statsoft.c

om 

Vesper 5 Interpolation Share-ware 
Window

s 

Precision 
Agricultur

e 
Laborator

y, 
University 
of Sydney 

https://sydney.edu.a
u/ agriculture/pal/ 

SDUM 5 

Statistical 
analysis, 

Statistical and 
geostatistical 

analysis, 
maps 

free 
Window

s 

Grupo 
Agricultur

a de 
Precisão 

da Região 
Oeste do 
Paraná 

http://ppat.md.utfpr.
edu.br/ 

ERDAS 
Imagine 

4 
Maps, image 

Analysis 
Commercia

l (paid) 
Window

s 

Hexagon 
Geospatia

l 

https://www.hexago
ngeospatial.com 

Unscra
mbler 

3 
Statistical 
analysis, 
modeling  

Commercia
l (paid) 

Window
s 

Camo 
Analytics 

https://www.camo.c
om 

Krig-ME 3 
 

3 
Delineation of 

MZ 
***    

Not 
specified 

7      

Others 38      

* N: number of papers using software. ** OS: operating system. *** Download 
not available to collect information. Only software that has been used in at 
least 3 papers is mentioned. A paper can use more than one software. 

https://www.camo.com/
https://www.camo.com/
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FuzME is a software provided by the Precision Agriculture Laboratory (PA 

Lab) of the Australian Centre for Precision Agriculture (ACPA), from University of 

Sydney, in Australia. It is available for Microsoft Windows 95/NT or superior, and its 

most current version is 3.5c. The used algorithm is FCM (with a few variants), and 

outputs are all in text files. The software features are a simplified graphical interface, 

and consist essentially of three toolbars. The first toolbar presents the options to select 

the input files with the respective variables, output files, internal control files, and 

analysis title. The second one presents the options to create clusters, such as distance 

metrics and fuzzy exponents, among others. The third one presents the options to 

allow resampling by using the bootstrap and Jackknife methods. Among the possible 

options to adjust the clustering algorithm, there are: (1) choice of distance metric 

(Euclidean, diagonal, and Mahalanobis); (2) choice of fuzzy exponent; (3) definition of 

minimum and maximum number of classes (from 1 to 100); (4) fuzzy discriminants 

analysis; (5) configuration of the initial random values of the members’ definition and 

the number of attempts, stopping criterion, maximum number of iterations, and (6) 

choice of algorithm (classic FCM, extra-grade FCM, equal-area FCM, and FCM with 

covariance matrix). 

Although the simplified interface is a positive point for its use, as well as the 

definition of some standardized parameters, it is impossible to: (1) visualize delineated 

MZs, (2) perform interpolations, (3) adjust sample size, (4) visualize the behavior of 

input variables, (5) calculate statistics of MZ quality; and (6) export the results. Another 

limiting factor is the need to run on computers using a specific operating system (PC 

Windows environment), considering the dissemination of ubiquitous computing 

nowadays. 

MZA is the most used one among the specific software for MZs delineation 

(Table 8). It is available by the Agricultural Research Service (ARS) of the United 

States Department of Agriculture (USDA), USA. It is available for Microsoft Windows 

95/NT or superior, and its most current version is 1.0.1. MZA and FuzME also used 

FCM algorithm. 

It also presents a simplified graphical interface and, to perform classification, 

the instructions must be followed in a sequence of four menus that present the 

definition of parameters step by step. Initially (start window), you must provide the input 

file in CSV text format (comma-separated values), containing variables and their 

values. In the same window, one or more variables must be chosen to be used. The 

following window, Explore Data, allows descriptive data statistics to be computed and 

saved in a text file: the mean, standard deviation, coefficient of variation, minimum and 

maximum, sums of squares, and variance and covariance matrices. The third window, 



 
 

76 
 

Delineate Zones, presents the options to perform the classification with FCM: fuzzy 

exponent; measure of similarity (Euclidean, diagonal, or Mahalanobis); maximum 

number of iterations; convergence criterion; minimum and maximum number of MZs; 

and location and name of output data file.  

The last window, Post Classification Analysis, presents two graphs of 

performance indices (NCE and FPI) as a function of the number of zones. The authors 

consider this last window to be one of the most critical differentials of MZA because it 

helps to choose the ideal number of zones, and avoids subjectivity. It is worth 

remembering that the ideal number of these measures may still not be following the 

restrictions of field mechanization, considered purely mathematical analyses of the 

generated clusters. As in FuzME, the user-friendly interface and the definition of a 

precise sequence of steps to delineate MZs are positive points. Another coincident 

factor of both software is the lack of data processing tools, such as interpolation and 

data size adjustment for a common grid. It is also important that, depending on the 

characteristics of the input data, the resulting MZs can contain much-fragmented 

information, which will require the use of external software to smooth and visualize 

MZs. A third problematic element concerns one of its main advantages: choosing the 

ideal number of clusters. NCE and FPI measures cannot necessarily agree on the ideal 

number of clusters, thus, the analyst returns to subjectivity since the software does not 

indicate which is preferred over the other. A final limitation is the need to run on 

computers using a specific operating system (PC Windows environment). 

SDUM (Bazzi et al., 2019) is software available by the Paraná Precision 

Agriculture Team, from the Western region of Paraná, Brazil. It is available for 

Microsoft Windows XP platform or superior, and the current version is 1.0. The 

execution outputs can be given in text, images, PDF, and KLM (Google Earth) formats. 

The software allows the insertion of one or more layers of georeferenced sample data. 

Entries are in the text file and have a user-friendly data importer. It also allows data 

interpolation by inverse distance weighting, moving average, and nearest neighbor. 

Thematic maps can be generated with the interpolated data. To do this, we 

define the type of geometry that can be continuous surfaces or points; interpolator 

parameter; and radius parameter, consisting of the distance that samples will be 

selected for interpolation. There are also tools for descriptive statistical analysis and 

statistical analysis of spatial correlation. 

MZs can be delineated by empirical methods (data normalization by means 

and standard deviation) and clustering (k-means and FCM). The number of classes 

and the number of iterations must be defined when using the k-means method. When 

using FCM, the number of classes, fuzzy exponent, and maximum error are defined. 
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SDUM also calculated performance indices (FPI, VR, and MPE), ANOVA, and Tukey 

test. 

The user-friendly interface and the definition of a clear sequence of steps to 

delineate MZs, just like the previous software, are important positive points in SDUM. 

In addition, important features when compared to previous programs: data interpolation 

tools, spatial correlation analysis, more evaluation measures of MZs quality (FPI, VR, 

MPE, ANOVA, and Tukey test), generation of thematic maps, and MZs maps, 

organization as projects, and data storage in a database. Finally and most importantly, 

SDUM can present the delineated MZs, while FuzME and MZA must use a GIS or 

desktop mapping software. The presence of these elements in a simple interface 

increases considerably the user's independence regarding the use of complementary 

software and in knowledge domain from other areas. 

As for disadvantages, we can highlight that, as in the previous software, 

depending on the characteristics of the input data, the resulting MZs can contain much-

fragmented information, requiring the use of external software to smooth MZs. A final 

limitation is the need to run on computers using a specific operating system. ZoneMap 

was unavailable when this paper was under development, due to financial reasons, 

according to its developers. Thence, it could not be evaluated. 

The automatic software to delineate MZs proposed by Albornoz et al. (2018) is 

a software available (in test version) by the Faculty of Engineering and Water Sciences 

(Facultad de Ingeniería y Ciencias Hídricas) of the National University of the Coast 

(Universidad Nacional del Litoral), Argentina. According to the authors, there are 

desktop and web versions of such software. The delineation algorithm is FCM, and 

outputs are in ESRI shapefile. The web version has a straightforward interface, 

following only a sequence of steps. The first step is to upload the file containing the 

variables for analysis. Vector data (such as yield or apparent soil conductivity) must be 

in text files (CSV, dat, or txt), and raster data in GeoTiff format. 

All input variables are interpolated in the next step (screen) to the same user-

defined grid by the Sibson (without using squares), Sibson (with squares), Farin, or 

Quadratic methods. This defined the map boundaries by the largest coincident area for 

all variables. The third screen defines the parameters of FCM algorithm: minimum and 

maximum number of zones, fuzzy exponent, and convergence value. 

On the next screen, the MZs maps are presented for each number of zones. 

Also, on this screen, there is a table with the three evaluation measures of MZs quality 

(NCE, FPI, and Xie and Beni (XB)), as well as a graph of the Euclidean distance of 

these measures (EcD=√𝐹𝑃𝐼2 +𝑁𝐶𝐸2 + 𝑋𝐵2) as a function of the number of MZs. This 

distance was implemented to avoid the subjectivity of individual measures if they 
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disagreed on a minimum value of MZs. This screen also presents the option for how 

many classes someone wishes to continue the process. On the next screen, there are 

the options to filter (rectification) the map: mask size (3x3, 5x5, and 7x7 pixels), the 

type of filter (medium or mode), minimum size of the area in m2, and the number of 

running times of erosion and dilation. 

The final screen presents the results of the original map image and the filtered 

map image and the option to download the resulting ESRI shapefile. The graphical 

interface of this software is highly minimalist and user-friendly, showed a precise 

sequence of steps to delineate MZs and, therefore, considered decisive positive points. 

There are two notable highlights of this software to FuzME and MZA: (1) the availability 

of data interpolation and conversion tools for a common size sample grid, in a fully 

automated form, (2) more comprehensive evaluation measures of MZs quality (NCE, 

FPI, XB, EcD). Another substantial differential is the possibility to smooth the maps 

generated using algorithms from digital image processing, which aimed at creating 

smoother transition edges and eliminating small MZs that, in practice, cannot be 

worked on in the field. 

Another positive point to be highlighted is the existence of the desktop version 

and a web platform version. This gives independence to the user platform, working on 

virtually any operating system. Another element is the transference of the processing 

load, usually high in this kind of procedure, from the user's machine to a web server. 

The counterpart is the requirement of a stable connection to Internet, server’s 

availability , and additional issues of data security/confidentiality . 

As for disadvantages, we can highlight the lack of tools to conduct statistical 

and geostatistical analyses. However, interpolation tools, for example, are already 

advantageous when compared to FuzME and MZA. Table 9 compares the main 

features of the specific software for MZs delineation. 

 

Table 8 Features of specific software for management zones (MZs) delineation 

Software / Feature 
FuzME MZA SDUM 

Albornoz et 
al. (2018) 

Multiplataform 
   

x (Web) 

Input data visualization / data 
description tools 

 
x x 

 
Pre-processing tools 

  
x x 

Results export type 
Text Text 

Text, 
image, 
PDF, 

Shape file 
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KLM 

MZ evaluation 
 

x x x 

Map Generation 
  

x x 

Intuitive interface x x x x 

 

Including new papers  

After selecting papers according to the systematic literature and snowballing, 

four papers about a new web platform AgDataBox (ADB) were obtained (Bazzi et al., 

2019; Michelon et al., 2019; Dall'Agnol et al., 2020; Borges et al., 2020). This platform 

aims at integrating data, software, procedures, and methodologies for Digital 

Agriculture. It is a joint project coordinated by the Western Paraná State University 

(Unioeste) and the Federal University of Technology - Paraná (UTFPR) with the 

cooperation of the Colorado State University (CSU), the United States Agricultural 

Research Service (USDA) in Columbia, the University of California Davis (UC Davis), 

the University of São Paulo (ESALQ/USP), and the Brazilian Agricultural Research 

Corporation (Embrapa). This platform is a continuation of the project for SDUM 

software (Bazzi et al., 2013). This web Platform has an Application Programming 

Interface (API), which consists of a set of resources accessible by the Hypertext 

Transfer Protocol (HTTP) to transfer both request and response messages expressed 

in JavaScript Object Notation (JSON) format. ADB-API, where data and processing 

routines are centered, enables interoperability of several applications. Four applications 

are under development: (1) ADB-Mobile, (2) ADB-Map, (3) ADB-Admin, and (4) ADB-

IoT. The application ADB-Map works with spatial data aiming at creating thematic 

maps and management zones. Among ADB-Map functionalities, there are: (1) data 

importing/exporting, (2) data analysis and filtering, (3) data normalization, (4) data 

interpolation and generation of thematic maps, (5) delineation and evaluation of 

management zones, encompassing variable selection methods, empirical and data 

clustering methods, and evaluation statistics, (6) management zone rectification 

methods, (7) application map generation and exporting, and (8) optimal placement of 

proximal sensors for PA. Since this platform is not already available on web, it was 

impossible a detailed discussion of its performance.  
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3.3.2. Examples of management zones 

 

Several examples of ZMs will be presented, associated to a brief discussion of 

data that originated them, to demonstrate several situations in which ZMs can be used. 

 

3.3.2.1. Target values of the management zones 

 

Yield (productivity) management zones 

 

Usually, on MZs delineation, yield is used as target values. Kitchen et al. 

(2005) researched two Missouri claypan soil fields to answer the question of whether 

ECa and elevation could be used to delineate productivity zones (SPZ) that would 

agree with productivity zones delineated from yield map data (YPZ). Figure 21 presents 

the results for Field 2 that showed the best performing combinations of ECa and 

elevation variables, which gave a 60-70% agreement (overall accuracy) between YPZ 

and SPZ. 

 

Figure 21. Reference yield zone maps (left) compared to the best performing 

productivity zone map derived from unsupervised clustering of ECa and elevation 

(right) 

Source: Kitchen et al. (2005). 

 

Kweon (2012) developed a delineation procedure for site-specific productivity 

zones with a fuzzy logic system using soil properties obtained from on-the-go electrical 

conductivity (ECa) and organic matter (OM) sensors and topographic attributes in two 

typical central Kansas upland fields (Field 1, 57 ha, and Field 2, 18 ha). EC, OM, slope, 
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and curvature were used as input variables, and yield was set as an output variable. 

Using the quantile classification, the authors divided all thematic maps into three 

classes (low, medium, and high) (each class has the same number of data points). 

Figure 22 shows continuous EC and OM maps, and Figure 23, the maps of terrain 

slope and curvature. They constructed three types of MZs: 1) 5-year mean normalized 

yield map (Figure 24a); 2) Productivity map, generated by a producer’s decision-

making knowledge and the fuzzy logic system (Figure 24b); and 3) FCM map using 

EC, OM, slope, and curvature (Figure 24c). The spatial agreement among productivity 

and the 5-year-mean yield maps showed an overall accuracy and kappa coefficients of 

0.57 and 0.35. The productivity map presented a better agreement with the normalized 

yield map than FCM map. All the presented figures are for Field 2. 

 

 

                               a)                                                                b) 

Figure 22. EC and OM maps generated by the on-the-go sensor for Field 2 

Source: Kweon (2012). 

 

 

                               a)                                                                b) 

 

Figure 23. Terrain slope and curvature maps for Field 2 

Source: Kweon (2012). 
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a) normalized yield 

map 

b) productivity MZs c) FCM map. 

Figure 24. Five-year mean normalized yield map (a). Productivity map generated by 

the developed fuzzy logic system (b). FCM map (c) (all figures are for Field 2) 

Source: Kweon (2012). 

 

 

3.3.2.2. Chlorosis management zones 

 

Kyaw et al. (2008) evaluated delineating chlorosis MZs using VI derived from 

aerial imagery, on-the-go measurement of soil pH, and ECa. The study was conducted 

at six sites in 2004 and 2005, and generally, the yield was best predicted with the 

combination of NDVI and deep ECa. The delineation of chlorosis MZs from aerial 

imagery combined with soil ECa seems to be a useful tool for the site-specific 

management of iron chlorosis. Figure 25 illustrates the relationship of chlorosis zones 

to grain yield, and, in general, the northern part of this field can be considered 

chlorosis-prone. This area generally coincides with Gibbon loam (Gg) and Gayville-

Caruso (Gc) soil series, fairly poorly drained, with salt accumulation in Gayville series 

occasionally causing dispersion of soil colloids (classified as Leptic Natrustolls). 
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   (a)       (b)  

Figure 25. Chlorosis-prone area (a) (zone 1, gray shading) delineated from the 

combination of ECa and NDVI; soybean yield (b) (2005); and aerial photograph (2005), 

with soil series boundaries superimposed. All figures from site 1  

Source: adapted from Kyaw et al. (2008). 

 

 

3.3.2.3. Apparent electrical conductivity management zones 

 

Yan et al. (2007a) studied a 10.5-ha site and measured ECa. Measurements 

were performed thrice in situ on topsoil (0-20 cm) across the field to identify MZs. The 

results indicated high coefficients of variation for topsoil salinity over all three 

samplings. However, the spatial structure of salinity variability remained relatively 

stable with time. Kriged choropleth maps, drawn based on spatial variance structure of 

data, showed the spatial trend of salinity distribution and revealed areas of consistently 

high or consistently low salinity (Figure 26); a temporal stability map indicated some 

stable and unstable regions (Figure 27). Cluster analysis divided the site into three 

potential MZs (Fig. 28a) based on the spatiotemporal characteristics, each one with 

different characteristics that could impact the way the field was managed. Visually, the 

pattern of cotton yield appeared to correspond quite well with the trend of management 

classes (Fig. 28b). Generally, the highest yields occurred in class 1, and the lowest 

ones in class 3. 
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Figure 26. Smoothed choropleth maps produced by ordinary kriging for apparent 

electrical conductivity (ECa) at three different sampling dates 

Source: Yan et al. (2007a). 

 

 

            (a)                                                                (b) 

Figure 27. Spatial trend map composed of the mean apparent electrical conductivity 

(ECa) (a) and temporal stability map produced for ECa based on the CVi (coefficient of 

variation at the ith sampling point) (b) 

Source: Yan et al. (2007a). 

 

  (a)       (b) 

Fig. 28. Spatial distribution of the three classes of practical management zones across 

the field using cluster analysis (a) and the spatial distribution of cotton yield interpolated 

by kriging (b). 

Source: Yan et al. (2007a). 

 

3.3.2.4. Soil available water content management zones 

 

De Lara et al. (2018) studied the characterization of spatial distribution of soil 

water content (SWC) at a field scale by ECa. They found out that the delineated soil 

ECa MZs (Figure 29) can effectively characterize macro-scale in-field SWC variability 
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among zones throughout the crop season. Furthermore, the inclusion of OM and salt 

content data significantly improved SWC assessment according to the ANOVA test. 

 

Figure 29. Comparison of management zones delineated with soil ECa measured up 

to 1.5-m depth and management zones delineated using soil ECa measured up to 1.5-

m depth in addition to organic matter and soil salinity for ARDEC. Differences in both 

techniques are presented as gray, referred to as “disagree” in the legend. 

Source: De Lara et al. (2018). 

 

3.3.2.5. Quality-based management zones 

 

Tagarakis et al. (2013) delineated MZs using fuzzy clustering techniques in a 

1.0-ha commercial vineyard in Central Greece during 2009 and 2010. They used ECa, 

NDVI at different stages (NDVI 1, NDVI 2, NDVI 3, NDVI 4, and NDVI 5) during the 

vine growth cycle, yield, and grape quality index (sugar/acidity ratio of grape). Soil 

properties, yield, and grape composition parameters showed high spatial variability. 

Maps of two MZs were produced using MZA software.Figure 30 shows the yield-based 

MZs using soil depth, NDVI 1, NDVI 2, NDVI 3, and NDVI 4 (Figure 30a), and quality-

based MZs using ECa, NDVI1, NDVI 2, NDVI3, and NDVI 4 (b). They concluded that 

these maps presented a high degree of agreement, from 79.2 to 89.6%. 
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Figure 30. Yield-based management zones (soil depth, NDVI 1, NDVI 2, NDVI 3, NDVI 

4) and quality-based management zones (ECa, NDVI 1, NDVI 2, NDVI 3, NDVI 4) 

using fuzzy clustering from a commercial vineyard in Central Greece. Data from the 

2009 agricultural year 

Source: Tagarakis et al. (2013). 

 

3.3.2.6. Weed Management Zones 

 

Regarding MZs for agrochemicals applications, the purpose is to use them 

immediately and just once.Figure 31 andFig. 32 present the delineated MZs using 

small, and large leaves weed plants, respectively (Rodrigues, 2009). 

 

Figure 31. Management zones of small leaves weed plants in a 1.24-ha pear orchard 

Source: Rodrigues, 2009. 
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Fig. 32 Management zones of large leaves weed plants in a 1.24-ha pear orchard 

Source: Rodrigues, 2009. 

 

3.3.2.7. Vegetation Indices Management Zones 

 

Regarding MZs for VI classification, like MZs for agrochemicals applications, 

the purpose of the research conducted by Costa et al. (2019) was to use them 

immediately and just once. Using geostatistics and multivariate analysis, they delimited 

homogeneous zones (HZs) of different VIs to identify vegetation patterns in Cabernet 

Franc and Cabernet Sauvignon vineyards. Using Crop Circle ACS-430 active sensor 

and simultaneously measuring crop spectral reflectance at 670 nm (ρR, red), 30 nm 

(ρRE, red edge), and 780 nm (ρNIR, near-infrared). Despite the variations of VIs 

spatial distribution patterns, multivariate analysis resulted in a representative 

categorization of grapevine vegetative vigor and HZs delimitation for this characteristic. 

 

 

Figure 33. Homogenous zones resulting from clustering analysis of VIs, calculated 

based on ρ, for two studied areas. Reflectance was measured at canopy height using 

an ACS-430 active sensor. The studied areas were cropped with Cabernet Franc and 

Cabernet Sauvignon vines 

Source: Costa et al. (2019). 
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3.3.2.8. Used variables to delineate Management Zones 

 

Satellite imagery data 

 

Zhang et al. (2010) developed a web-based decision support tool to 

automatically determine the optimal number of MZs and delineate them using satellite 

imagery and field data. In this tool, currently discontinued, application rates, such as 

fertilizer, could be prescribed for each zone and downloaded in several formats to 

ensure compatibility with GNSS-enabled farming equipment. Figure shows results from 

a 45.3-ha field in Potter County, South Dakota, where the rotation of crops from 2003 

to 2005 was with corn, sunflowers, and spring wheat. The farmer delineated four 

subfield zones (Figurec) using a 2003-yield map (Figurea) and a 25-August-2004-

Landsat NDVI map (Figureb) to determine urea application rates for the next year. As a 

result of this variable-rate application, the spring wheat planted in 2005 delivered a 

much more uniform yield (Figured). While the mean yields of each crop were about the 

same, 7.33 t ha-1 for corn and 7.17 t ha-1 for spring wheat, standard deviation was 

reduced from 1.93 t ha-1 for corn in 2003 to 1.23 t ha-1 for spring wheat in 2005. 

 

(a) (b) 

 

(c) 
(d) 

 

Figure 34. Using the 2003 yield map of corn (a) and 2004 NDVI map by Landsat of 

August 25, 2004 (b), the farmer delineated the management zones (c) as a basis to 

determine variable rate fertilizer application resulting in a more uniform yield for 2005 

spring wheat (d) 

Source: adapted from Zhang et al. (2010). 

 

Active canopy sensor data 

 

Chang et al. (2014) analyzed NDVI data at five growth stages of tobacco 

growth cycle measured by using a GreenSeeker handheld crop sensor at the location 
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of each sample point. Three soil properties (OM, AP, and Fe) and two stages of NDVI 

measured (NDVI_40 and NDVI_60) were the critical factors for the tobacco yield. They 

compared delineation of two MZ methods of : (1) using soil properties (Figure 34a); and 

(2) using tobacco RS data (Figure 34b). They concluded that it is feasible to use an 

active canopy sensor to delineate MZs for tobacco-planting fields. 

 

Figure 34. Map of management zones based on soil properties (A) and NDVI 

measurements (B) 

Source: adapted from Chang et al. (2014). 

 

 

Yield data 

 

Arnó et al. (2005) used normalized yield maps from three years (2002, 2003, 

and 2004) to delineate a reclassified yield map (zones, Figure 35) in a parcel at Raimat 

(Lleida, Spain). 

 

Figure 35. Yield management zones delineated using grape normalized yields 

Source: adapted from Arnó et al. (2005). 
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Topography, electrical conductivity, and soil properties 

 

Molin and Castro (2008) delineated MZs using ECa and eleven other soil 

properties (P, OM, pH, K, Ca, Mg, SB (sum of bases), CEC (cation exchange capacity), 

V% (base saturation), Clay, and Sand) in a 35.8-ha area, in Southen Brazil. PCA was 

used to group variables, and FCM was used to delineate MZs (Figure 36). Results had 

confirmed ECa utility of to define MZs and feasibility of the proposed method. 

 

  

Figure 36. Shallow (0 – 0.3 m) and deep-reading (0 – 0.9 m) soil EC maps, soil clay 

and sand content maps, and Management zones 

Source: adapted from Molin and Castro (2008). 

 

Jaynes et al. (2005) applied cluster analysis of five-year soybean (Glycine 

max [L.] Merr.) yield to partition a field into a few groups or clusters with similar 

temporal yield patterns and investigated the relationships among these yield clusters 

and the easily measured and derived properties (elevation, E; slope, SL; plan 

curvature, PL; aspect, AS; and depression depth, DD) and ECa (Figure 37). The terrain 

attributes SL, PL, AS, DD, and ECa effectively identified yield cluster membership for 

80% of the 224 transect plots. 

 

 

Figure 37. Soybean-yield cluster classification for the 224 transect plots overlaid on 

elevation contours (a) and the predicted yield zones (b). Transect plots are shown 3× 

actual width for better visibility. 

Source: adapted from Jaynes et al. (2005). 
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3.3.2.9. Methods to select the variables used in the clustering process 

 

Spatial correlation analysis 

 

Bazzi et al. (2013) used physical and chemical properties of soil and yield from 

a 19.8-ha commercial farming area in Brazil to delineate MZs by FCM algorithm (Figure 

38). The division of the area into two MZs was considered appropriate since it provided 

distinct averages of most soil properties and yields. 

 

 

Figure 38. Division of the area into management zones using the Fuzzy C-means 

algorithm with variables selected with the spatial correlation matrix approach 

Source: Bazzi et al. (2013). 

 

Principal component analysis 

  

Molin and Castro (2008) sampled ECa and eleven other soil properties in a 

35.8-ha area in Southen Brazil, aiming to delineate MZs with these variables. PCA was 

used to group variables, and FCM classification was used to cluster the transformed 

variables (Figure 39). The results confirmed ECa utility to define MZs and feasibility of 

the proposed method. 
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Figure 39. Spatial distribution of participation function values for each individual in the 

three classes generated after classification by the fuzzy-k-means algorithm of two 

principal components selected and a corresponding map showing the resulting 

management zones 

Source: Molin and Castro (2008). 

 

Multivariate spatial analysis based on Moran’s index PCA (MULTISPATI-PCA) 

 

Córdoba et al. (2016) delineated MZs with ECa, elevation, and soil depth as 

input variables. MZs were validated using yield, OM, and clay. The field was a rain-fed 

wheat crop (60 ha) from the Argentine Pampas. They used MULTISPATI-PCA to group 

variables and FCM clusterization technique and concluded that the best classification 

was with two zones (Figure 40). 

 

Figure 40. Map with two (left), three (center), and four (right) within-field management 

classes 

Source: Córdoba et al. (2016). 

 

Comparing methods to select the variables 

 

Gavioli et al. (2016) compared the efficiency of six techniques variable 

selection techniques: (1) All-Attributes: no disposal of stable variables; (2) Spatial-

Matrix (Spatial correlation analysis); (3) PCA-All (traditional PCA); (4) MPCA-All 
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(traditional MULTISPATI-PCA); (5) PCA-SC (PCA applied only on the stable variables 

that showed significant spatial correlation with the yield); and (6) MPCA-SC (MPCA 

applied only on the stable variables that showed significant spatial correlation with the 

yield). The methods were used in conjunction with FCM clustering method using data 

collected from 2010 to 2014 from three agricultural areas in Southern Brazil. The 

delineated MZs are presented in Figure 41. They founded out that MPCA-SC provided 

the best performance to define MZs, with greater internal homogeneity, making them 

more viable for field management.  

 

Figure 41. Managements zones generated by the six approaches: (1) All-Attrib; (2) 

Spatial-Matrix; (3) PCA-All; (4) MPCA-All; (5) PCA-SC; (6) MPCA-SC 

Source: Gavioli et al. (2016). 

 

 

3.3.2.10. Methods to delineate Management Zones 

 

Gavioli et al. (2018), with data, obtained from 2010 to 2015 in three 

commercial agricultural fields cultivated with soybean and corn in Brazil, evaluated the 

use of 20 clustering algorithms presented to delineate these subareas: Average 

Linkage, Bagged Clustering, Centroid Linkage, Clara, Complete Linkage, Diana, 

Fanny, FCM, Fuzzy C-shells, Hard Competitive Learning, Hybrid Hierarchical 

Clustering, K-means, McQuitty’s Method, Median Linkage, Neural Gas, Partitioning 

Around Medoids, Single Linkage, Spherical K-means, Unsupervised Fuzzy Competitive 

Learning and Ward’s Method. Figure 36 presents the MZs Maps of MZs delineated with 

the application of 17 (three were discarded, Table 10) clustering algorithms for the 

three fields. McQuitty’s Method and Fanny were considered the best algorithm because 
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they produced the most significant reductions in the variance of yield in the three fields. 

In addition, these methods generated classes with high internal homogeneity and 

delimited MZs without spatial fragmentation (suitable for field operations). The classic 

FCM and K-means developed significantly different subareas in only two fields, in 

which the obtained results were similar to the results of McQuitty’s Method and Fanny 

(Figure 42). 

 

 

 

 

Table 9 Clustering methods implemented and compared to define MZs 

 

Source: Gavioli et al. (2018). 
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Figure 42. Maps of management zones delineated with the application of 17 clustering 

algorithms for the three fields 

Source: Gavioli et al. (2018). 

 

3.3.2.11. Management Zones Rectification 

 

Albornoz et al. (2018) developed a user-friendly automatic software that 

integrated all steps to delineate MZs and make prescription files. A careful combination 

of options in the automatic post-processing methods was selected to reduce 

fragmentation, including a mode filter with a 7 x 7 mask, erosion and dilation filter, and 
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the fusion of areas smaller than a minimum size of 0.5 hectare. These procedures 

allow removing all the isolated small areas and improving the border definition and 

compactness of the delineated zones (Figure 43). 

 

 

(a) 

 

(b) 

Figure 43. Zones fragmentation for the delineated management zones (Site 1) before 

(a) and after (b) the automatic filtering post-processing techniques 

Source: adapted from Albornoz et al. (2018). 

 

 

3.3.2.12. Evaluation of Management Zones Quality 

 

Analysis of Variance, Variance Reduction, Fuzziness Performance Index, 

Modified Partition Entropy, Smoothness Index, and Improved Cluster Validation 

Index  

 

As reported before, Gavioli et al. (2016) compared the efficiency of six 

techniques variable selection techniques (All-Attrib, Spatial-Matrix, PCA-All, MPCA-All, 

PCA-SC, and MPCA-SC) using these indices: VR, FPI, MPE, SI, ICVI and ANOVA 

(Table 10). The first analysis to be made is Tukey range test to discard ZMs whose 

target variable means (in this case yield) are not all statistically distinct. As a result, for 

field A, it must be considered that it is only advisable to divide it into two ZMs, and the 

approach all-Attributes is not advised. Regarding the indices, the higher RV and SI, 

and the lower FPI, MPE, and ICVI, the better MZs; this implies that for area A, the best 

approach was the Spatial-Matrix.  
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Table 10 Results for ANOVA (Tukey range test), VR, FPI, MPE, SI, and ICVI, for field 

A significant at 0.05 confident level 

 

Source: Gavioli et al. (2016). 

 

 

Average silhouette coefficient (ASC) 

 

The indices FPI, MPE, SI, and ICVI cannot be used to evaluate MZs that were 

not delineated by the clustering process. In this case, a good choice is the coefficient 

ASC. As reported before, Gavioli et al. (2018) evaluated 20 clustering algorithms, and 

Table 12 presents the results of 17 methods (three were discarded) in the generation of 

two, three, and four classes for field A. The clustering process quality was performed 

by ANOVA (Tukey range test), VR index, and ASC coefficient. The Tukey range test 

(0.05 level) showed that it was possible to divide the field only with two classes. 

McQuitty yielded both the highest values for ASC and VR but FCM and K-means also 

had similar performance.  
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Table 11 Results of the clustering methods evaluation to generate two, three and four 

classes by ANOVA (Tukey range test), VR index and ASC coefficient, for field A 

C1 C2 VR% ASC C1 C2 C3 VR% ASC C1 C2 C3 C4 VR% ASC

Average Linkage a b 15.9 0.55 a b b 18.4 0.45 a ab bc c 20.6 0.46

Bagged Clustering a b 16.7 0.58 a b b 36.3 0.45 a b ab b 21.3 0.55

Centroid Linkage a b 18.2 0.57 a ab b 20.4 0.45 a a a a 0 0.41

Clustering Large Applications a b 21 0.59 a b b 25.3 0.47 a ab b b 19.5 0.55

Complete Linkage a a 9.5 0.55 a ab b 15 0.46 a ab b b 22.2 0.38

Fuzzy Analysis Clustering (Fanny) a b 21.2 0.59 a b b 30.2 0.46 a ab c bc 29.6 0.39

Fuzzy C-means (FCM) a b 34.1 0.59 a b b 35.5 0.46 a a b b 35.6 0.54

Hard Competitive Learning a b 21.6 0.59 a a b 26.2 0.46 a b ab b 19.9 0.54

Hybrid Hierarchical Clustering a b 21.6 0.59 a a b 21.4 0.48 a ab b b 21.5 0.38

K-means a b 33.8 0.59 a b a 23.8 0.46 a a b b 35.8 0.39

McQuitty's Method (McQuitty) a b 39.2 0.59 a b b 38.3 0.43 a ab c bc 37.4 0.35

Median Linkage a b 16.2 0.56 a b b 14.4 0.42 a ab bc c 13.2 0.33

Neural Gas a b 21.4 0.59 a b a 25.8 0.46 ac b c ab 29.7 0.38

Partitioning Around Medoids a b 20.9 0.59 a b b 29.3 0.46 a ab b b 23.5 0.54

Spherical K-means a b 22.4 0.59 a b a 41.6 0.47 a b b a 46.9 0.49

Unsupervised Fuzzy Competitive 

Learning
a b 21.7 0.59 a b b 25.8 0.46 a ab bc c 30.7 0.39

Ward's Method a b 19.8 0.58 a a b 21.3 0.47 a ab c bc 29.3 0.54

Method

2 classes 3 classes 4 classes

 

Ci: class i; VR: variance reduction index; ASC: average silhouette coefficient. 

Source: Gavioli et al. (2018) 

 

Kappa coefficient 

 

Kappa coefficient (K) is applied to measure the degree of agreement among 

MZ maps generated by the clustering algorithms. As reported before, Kitchen et al. 

(2005) compared the productivity zones (SPZ) delineated using ECa and elevation with 

the ones delineated from yield map data (YPZ, Figure 21). Using K, they found out a 

60–70% agreement between YPZ and SPZ. They considered this level of agreement 

promising, especially considering many other yield-limiting factors unrelated to ECa 

and elevation. 

 

 

Coefficient of relative deviation and mean absolute difference  

 

Souza et al. (2016) studied the influence of three interpolation methods (i.e., 

the inverse of distance, inverse of square distance, and the ordinary kriging) commonly 

used in developing yield maps. They found out that mean absolute difference (MAD) 

varied from 0.04 to 0.32 t ha-1 and corresponded to a relative deviation (CRD) from 

1.20 to 7.53%, meaning that the management decisions can differ in some cases on 

each kind of interpolation implemented. 
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4 PAPER 1 - AGDATABOX-MAP-FAST TRACK: WEB APPLICATION FOR 

AUTOMATIC CREATION OF THEMATIC MAPS AND MANAGEMENT ZONES 

 
 
ABSTRACT: Precision agriculture consists of inputs application in the right amounts at 
the right time in order to maximize productivity. Two important tasks of this process are 
the generation of thematic maps (TM) and management zones (MZs). Although 
extremely important, TMs and MZs delineation depend on great technical knowledge 
for their construction, which ends up making their use difficult, due to the need for a 
specialized multidisciplinary team. Thus, this work presents a computational module 
with a modern interface able to delineate MZs and TMs automatically. The 
computational module uses state-of-the-art protocols, algorithms and parameters to 
perform both tasks and the results demonstrate its feasibility and ease of use even by 
inexperienced users 
 
KEYWORDS: Software, AgDataBox-Map, Automatic protocol 
 
 
4.1 INTRODUCTION 

 

It is a challenge of nowadays agriculture to make the most optimized use of 

the land and its inputs  as well as to face the pressure to supply the world with much 

food, fiber, and fuel, as the global population is projected to increase by 3 billion people 

from now to 2050 (ONU, 2020). According to these data, producers are motivated for 

both environment preservation and better rational use of all elements from the food 

production chain (Baudron and Giller, 2014). So, one possibility of a management 

system that aims at optimizing the use of agricultural inputs, meeting this need for 

greater profitability with less environmental damage, is precision agriculture (PA). 

Climatic, topographic, and biological variations, in both spatial and temporal domains, 

are factors that have induced yield variations in the field. Thus, the premise of PA is to 

know these variations and provide support for punctual and localized crop 

management. To achieve that, PA makes use of several tools and techniques. These 

include thematic maps (TMs) and management zones (MZs).  

Thematic maps represent the land and a topic associated with them, and they 

aim to inform based on graphic symbols where a specific geographical phenomenon 

occurs. TMs development is linked to data collection, analysis, interpretation, and 

representation of the information on a map, consequently, similarities are easily 

identified and spatial correlations visualization can be enabled (Souza et al., 2018). 

Contour maps are among the most used TMs related to agriculture. One specific case 

of TMs is contour maps built by connecting points of the same value and applying them 

to geographical phenomena that show continuity in the geographic space. While 

choropleth maps use color to show ranges of a specific variable within a defined 
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geographic area. Contour and choropleth maps can be built from categorical data 

(elevation, temperature, precipitation, humidity, and atmospheric pressure) or relative 

data (density, percentages, and indexes). 

Several questions must be considered when building contour/choropleth 

maps: 

1. Data pre-processing: 

a. Selection of the correct coordinate system,  

b. Conduction of an exploratory data analysis (EDA) to (i) remove 

outliers, which, in many cases, do not reflect the true nature of 

data and can have a significant impact up to data-driven 

decisions (Amidan et al., 2005) and (ii) remove inliers, data that 

differ significantly from their neighborhood, but lie within the 

variation range of  data set (Córdoba et al., 2016); 

2. Data normalization to scale all variables to have the same range; 

3. Data interpolation, to provide a dense and regular grid and provide 

values in places where data were not originally sampled. Choosing the 

best interpolator for each situation is usually among ordinary kriging, 

cokriging, and inverse distance weighting (IDW), the most common 

interpolation methods for agricultural data (Betzek et al., 2019). The 

decision about the best approach and its parameters depend on the 

characteristics of data; and 

4. Group similar observations and split apart considerably different 

observations 

a. Choose the best method to break data into ranges, usually 

manual interval, equal interval, quantile or standard deviation, 

b. Define the number of data classes, usually from five to seven, 

c. Choose the color scheme to show, which depends on the 

information to be explained. Common options are 

nominal/qualitative (unorderable data), sequential (orderable 

data), and diverging (Souza et al., 2018). 

Management zones, which can graphicaly be seen as a particular kind of TM, 

is a subregion of a field that have similar soil and topographic characteristics, 

consequently, they require equal amounts of inputs, and allow for an optimized uniform 

management in this sub-area (Doerge, 2000; Moral et al., 2010; Bobryk et al., 2016). 

As a result, MZs is economically and productively viable in several situations, showing 

results of cost reduction, increase in yield, and improvement of product quality 

parameters (Kyaw et al., 2008; Robertson et al., 2008; Velandia et al., 2008; Vitharana 
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et al., 2008; Roberts et al., 2012; Li et al., 2013; Bernardi et al., 2018; Schwalbert et al., 

2018; Whetton et al., 2018). Even though several outstanding issues remain, such as: 

(i) what is the ideal protocol for MZs delineation?, (ii) what is the best algorithm 

delineation?, (iii) which software allows you to handle all the stages in the process? 

Each one of these issues unfolds in several others. So, the task of defining ideal MZs is 

still a challenge (Aikes Junior et al., 2021). 

In a previous work (Aikes Junior et al., 2021), we present an extensive study 

of protocols, both dealing with the complete process of MZs delineation and protocols 

that deal with only part of the process, main techniques and algorithms used as well as 

several software used in delineation for a vast amount of papers. Among all, the MZ 

protocol, proposed by Souza et al. (2018), was considered the most complete, and it 

divided the process into eight main stages: 

1. Acquisition of variables: According to (Nawar et al., 2017), there are seven 

common properties that are used as an input variable for delineation: (i) 

farmer knowledge, based on production history (Fleming et al., 2000; 

Khosla et al., 2002; Hörbe et al., 2013; Schenatto et al., 2017b), (ii) 

geomorphology, like elevation, slope, plan curvature, aspect, and 

depression (Jaynes et al., 2005) or the topographic position index (Mieza 

et al., 2016), (iii) soil chemical and physical analyses (Doerge, 2000; 

Buttafuoco et al., 2010), (iv) soil class (Khosla and Alley, 1999; Franzen et 

al., 2002; Brock et al., 2005), (v) yield maps (Blackmore, 2000; Molin, 

2002), and (vi) crop coverage, such vegetation indices and leaf area 

(Chang et al., 2014; Yang et al., 2017), (vii) proximal soil sensors 

(Adamchuk et al., 2004; Kuang et al,. 2012; Nawar et al., 2017). 

2. Remotion of outliers and inliers: Similar to construct TMs, the presence of 

this kind of data may not reflect the true nature of data and, hence, should 

not be included in the analyses (Amidan et al., 2005). According to 

(Córdoba et al., 2016; Vega et al., 2019), the values outside the mean 

± three standard deviations (SD) are identified as outliers and should be 

removed. It is also necessary to remove inliers, data that differ significantly 

from their neighborhood but lie within the data set variation range 

(Córdoba et al., 2016). An additional care should be taken for yield data 

obtained with yield monitor, as well as to eliminate errors associated with 

unknown header width, to combine filling/emptying times, the time lag of 

grain by the combine, positional errors, rapid velocity changes, and others 

(Blackmore and Moore, 1999; Sudduth and Drummond, 2007; Vega et al., 

2019). 
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3. Data normalization: some clustering techniques such as FCM algorithm 

with Euclidean are sensitive to the input variables' characteristics. Fridgen 

et al. (2004) reported that Euclidean distance should be used only for 

statistically independent variables demonstrating equal variances. In this 

sense, when the Euclidean distance is used to clusteri, data normalization 

can be crucial before creating MZs (Schenatto et al., 2017a).  

4. Selection of input variables: The selection of variables, most related to the 

target variable, usually crop yield, can be done before (Bazzi et al., 2013; 

Schenatto et al., 2016; Sobjak et al., 2016) or after (Kitchen et al., 2005; 

Gozdowski et al., 2014a; Bottega et al., 2017; Miao et al., 2018) MZs 

delineation. The first approach is the most common, and it seems to 

reduce the variables' number and/or dimensionality. Furthermore, 

redundant variables decrease the clustering's performance and increase 

computational time (Bazzi et al., 2013; Schenatto et al., 2016; Sobjak et 

al., 2016). According to Gnanadesikan et al. (1995), weighting and 

selection of variables are the most challenging cluster analyses issue 

since the variable choice (as well as their weights) can and often will 

influence the clustering (MZs delineation) (Gozdowski et al., 2014b; Sobjak 

et al., 2016). On the other hand, good results were obtained with 

multivariate techniques to reduce variables' dimensionality and promote 

orthogonality among them (Hotelling, 1933; Dray et al., 2008; Gavioli et al., 

2016). The three most used variable selection techniques (Aikes Junior et 

al., 2021) are spatial correlation analysis (Bazzi et al., 2013), principal 

component analysis (PCA) (Hotelling, 1933), and multivariate spatial 

analysis based on Moran's index PCA (MULTISPATI-PCA) (Dray et al., 

2008; Córdoba et al., 2013; Gavioli et al., 2016). 

5. Data interpolation: usually, data used to delineate MZs are interpolated to 

do the same on continuous and smooth MZs. Although there are several 

interpolation methods, in most cases, this task is performed with IDW or 

kriging interpolation methods. According to Betzek et al. (2019), kriging is 

the best interpolator when a minimum spatial dependence is confirmed; 

otherwise, IDW should be used. 

6. MZs Delineation - Two approaches are commonly used to delineate MZs 

(Aikes Junior et al., 2021): (i) empirical method, which uses frequency 

distribution of target variable (usually yield) to divide the field (Blackmore, 

2000), and (ii) cluster analysis such as K-means and FCM (Taylor et al., 

2003; Li et al., 2007; Taylor et al., 2007). The second one intended to 
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divide data points of an agricultural area into classes by employing a 

similarity evaluation function for this division. In practice, these classes are 

applied to delineate MZs, subsequently delimited in the field (Boydell and 

McBratney, 2002; Córdoba et al., 2016). 

7. MZs Rectification: After their delineation, MZs often present isolated pixels, 

small regions, or even a transition border among irregular zones, making 

them difficult or even impossible to operate in the field. Thus, a smoothing 

process called rectification can be applied to optimize the zones, usually 

based on the application of filters mode and median with 3 × 3 and 5 × 5 

pixel mask (Betzek et al., 2018) or dilatation filters (Gonzales and Woods, 

2008; Córdoba et al., 2016; Albornoz et al., 2018). 

8. Evaluation of delineated MZs: the performance of delineation process can 

be assessed using indices and analysis of variance (ANOVA). These 

measures aim to quantify how heterogeneous the zones are across the 

studied field. The most used statistics are (Aikes Junior et al., 2021): (i) 

variance reduction (VR) (Dobermann et al., 2003), (ii) the fuzziness 

performance index (FPI) (Fridgen et al., 2004), (iii) modified partition 

entropy (MPE) (McBratney and Moore, 1985), (iv) normalized classification 

entropy (NCE) (Bezdek, 1981), (v) improved cluster validation index (ICVI) 

(Gavioli et al., 2016), (vi) smoothness index (SI) (Gavioli et al., 2016), (vii) 

average silhouette coefficient (ASC) (Rousseeuw, 1987), (viii) Kappa 

coefficient (K) (Cohen, 1960), and (ix) coefficient of relative deviation 

(CRD) (Coelho et al., 2009). In Sobjak (2021) are still listed the Global 

Quality Index (GQI) and Modified Global Quality Index (MGQI). Some of 

these indices (FPI, MPE, NCE, and ICVI) can only be used with clustering 

algorithms that employ fuzzy logic.  

Although the adoption of a protocol helps MZs delineation, each of the stages 

of the protocol unfolds in several options, which have specific advantages and 

disadvantages, and which, for a correct understanding and analysis, often require the 

knowledge of several areas, creating difficulty to adopt MZs in agriculture. Some of 

these difficulties can be reduced by using specialized software. Despite the existence 

of many software for PA, few are directed to delineate MZs. Golden Software Surfer, 

ESRI ArcGIS, and R software package are commonly used to delineate MZs, but they 

do not have all the desired functionality (Aikes Junior et al., 2021). When they have all 

the necessary functionalities, they are not user-friendly (Albornoz et al., 2018). Another 

determining factor to hinder access to software is because most present only paid 
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commercial licenses, discouraging its adoption by non-specialized people since they 

may not realize the advantages of its use at first. 

Among the specific software to delineate MZs, the following were well-known 

(organized by release date): (i) FuzME (Minasny and McBratney, 2002), (ii) 

Management Zone Analyst (MZA) (Fridgen et al., 2004), (iii) Software for the Definition 

of Management Zones (SDUM) (Bazzi et al., 2013; Bazzi et al., 2019), (iv) ZoneMAP 

(Zhang et al., 2010), (v) automatic software to delineate MZs proposed by Albornoz et 

al. (Albornoz et al., 2018), and (vi) FastMapping (Paccioretti et al., 2020). There are 

features in the last two ones that allow MZs delineation in a semi-automatic way, to 

make easy MZs adoption in situations where the operator does not have complete 

technical knowledge of all the processes and optimal parameters for each step of the 

process. 

The cited computer programs are limited without offering correct coordinate 

systems, so, they removed outliers (except FastMapping), and rectified the delineated 

MZs. To address this, AgDataBox (ADB) (Michelon et al., 2019; Borges et al., 2020; 

Dall’Agnol et al., 2020) aims at integrating data, software, procedures, and 

methodologies for Digital Agriculture. It is a joint project coordinated by the Western 

Paraná State University (Unioeste) and the Federal University of Technology - Paraná 

(UTFPR) with the cooperation of the Colorado State University (CSU), the United 

States Agricultural Research Service (USDA) in Columbia, the University of California 

Davis (UC Davis), the University of São Paulo (ESALQ/USP), and the Brazilian 

Agricultural Research Corporation (Embrapa). This platform is a continuation of 

software SDUM (Bazzi et al., 2013; Bazzi et al., 2019) and offers a plataform of 

microservices, accessible by its Application Programming Interface (API), which 

consists of a set of resources accessible by the Hypertext Transfer Protocol (HTTP) to 

transfer request and answer messages expressed in JavaScript Object Notation 

(JSON) format. The ADB-API, in which the data and processing routines are centered, 

enables several applications' interoperability. Five applications are under development: 

(i) ADB-Mobile, (ii) ADB-Map, (iii) ADB-Admin, (iv) ADB-IoT, and (v) ADB-RS (Remote 

Sensing). The ADB-Map application works with spatial data aiming at creating TMs and 

MZs and has the following functionalities: (i) data importing/exporting, (ii) data analysis 

and filtering, (iii) data normalization, (iv) data interpolation and creation of TMs, (v) 

delineation and evaluation of MZs, encompassing variable selection methods, empirical 

and data clustering methods, and evaluation statistics, (vi) management zone 

rectification methods, (vii) application map creation and exporting, and (viii) optimal 

placement of proximal sensors for PA. 
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Thus, this work presents a new module for ADB, called ADB-Map-Fast Track 

(ADB-MAP-FT), which allows creating TMs and delineating MZs automatically using a 

web-friendly interface platform, ideal for users who do not have all the technical 

knowledge necessary to delineate MZs. 

 

 

4.2 MATERIAL AND METHODS 

 

ADB-MAP-FT functionalities are divided into different layers, composed of a 

back-end, which contains business's algorithms and rules of operation, and the front-

end, interface of interaction with the user. The back-end is composed of R language 

and R packages (https://www.r-project.org), specialized in statistics and the analyses of 

spatial data, Node.JS (https://nodejs.org) to build Representational State Transfer 

(REST) resources and organize the flow of requests and responses in ADB-API and 

Apache Tomcat (https://tomcat.apache.org) as an application server. The Angular 

framework version 9 (https://angular.io), TypeScript programming language 

(https://www.typescriptlang.org), and NPM package manager (https://www.npmjs.com) 

were used to write the front-end. In addition, there is a central system using 

PostgreSQL (https://www.postgresql.org) Database Manager System (DBMS), with 

PostGIS extension (https://postgis.net), to store data managed by ADB-API. Moreover, 

each microservice can still use NoSQL database MongoDB 

(https://www.mongodb.com/), which acts out on storing documents as JavaScript 

objects. An Internet connection and a web browser are enough to access ADB-MAP-

FT by the link https://adb.md.utfpr.edu.br/map, where it can be created a completely 

free account; there is no need to download or install any program. The application is 

compatible with different platforms (e.g., Windows, Linux, macOS, Android, and iOS). 

 

 

4.2.1 Data 

 

The study was conducted within a 15.5-ha area in Céu Azul, Paraná, Southern 

Brazil (Fig. 1), with the geometric center at coordinates (WGS84) 25º06'32'S and 

53º49'55''W. The field has an average altitude of 662 m, and a 1.21º-average slope, 

using a no-tillage system. At this particular site, a succession of different crops was 

cultivated for more than ten years. Soybeans and corn were grown during summer 
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harvest or off-season period, and wheat or oats were used as cover crops during the 

winter. The soil of the area was classified as Rhodic Ferralsol. Forty points (2.67 points 

ha-1) in an irregular sampling grid were located on the imaginary centreline among the 

contour lines of each field. As the area has a certain degree of declivity and has 

contour lines, it was decided to use an irregular sampling grid, defining the points in 

places that did not coincide with the curves. This is due to the possibility of their 

influence on productivity. Sampling density was greater than 2.5 points ha-1, following 

the recommendation of Doerge (2000) and Nanni et al. (2011) to enable the detection 

of spatial dependence among samples. 

Only stable attributes, that is, those recommended for studying MZs 

delineation (Doerge, 2000), were collected and analyzed (Table 1). Locations of the 

sampling points were obtained by Global Navigation Satellite System (GNSS) receiver 

(Juno SB, Trimble Navigation Limited, Sunnyvale, CA, USA), and the elevations were 

obtained using a total station (GPT-7505, Topcon Corporation, Tokyo, Japan). Soil 

penetration resistance (SPR) measurements were taken around each point delineated 

on the sampling grid, using an electronic penetrometer (PenetroLOG, Falker, Porto 

Alegre, Brazil). The means of measurements were subsequently calculated to 

represent the sampling value average at depths of 0–0.1, 0.1–0.2, and 0.2–0.3 m. At 

the same locations, eight subsamples of soil were collected at a 0–0.2m depth within a 

3-m radius from the point determined on the grid (adapted from Wollenhaupt et al., 

1994). Subsequently, the samples were taken to be analyzed at the laboratory and to 

obtain data on soil texture (clay, silt, and sand). Soybean and corn yields were 

determined at the same points in which the soil samples were taken, the harvest and 

threshing of which occurred manually in a 0.9-m2 area. Subsequently, yield values 

were calculated and converted to a 13%-moisture content.  
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Figure 1. Location of the experimental area in Paraná state, Southern Brazil 

 

Table 1 Attributes collected at each sample point 

Attribute / year 2012 2013 2015 2016 2018 

Soybean yield (t ha-1) X X X X X 

SPR 0.0-0.1 m (kPa)  X X   

SPR 0.1-0.2 m (kPa)  X X   

SPR 0.2-0.3 m (kPa)  X X   

Altitude (m)  X    

SPR: soil penetration resistance 

4.3. SOFTWARE DESCRIPTION 

 

Once authenticated in the system, the user must select which operation he 

wants to perform: a TM or an MZ (Figure 2). Different procedures and purposes of use, 

the information requested, and the automatic operations to be carried out will vary 

according to the applicable option. 
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Figure 2. Overview of ADB-Map-Fast Track (ADB-MAP-FT) operation 

 

4.3.1 Thematic map 

 

The user must inform the input variables and boundary file (or create a 

boundary inside of ADB-Map) to develop a TM, and this information must have been 

previously imported. ADB-Map allows importing data in text file formats (txt), Comma-

Separated Values (CSV), and GeoJSON (JSON), enabling broad compatibility with the 

file formats most used by geographic information software (GIS). If the user chooses 

more than one input variable, a TM is generated for each one. 

Once the input variables and boundary are informed, the module software will 

proceed in the following sequence: 

1. Data cleaning: All layers' coordinate systems (input variables and field 

boundaries) are validated for a start since ADB allows importing data in 

different coordinate systems. If the layers are in other coordinate 

systems, ADB-MAP-FT performs automatic conversion of the 

coordinate system of all layers to the coordinate system of the open 

project. Then, duplicate data, zeros, outliers (values outside the mean 

± 3 SD), and inliers (using Moran's local index) (Córdoba et al., 2016; 

Vega et al., 2019) are removed; 

2. Data interpolation: after data normalization, data are interpolated. For 

this, IDW interpolator is used (default grid is 1/100 of the largest 

dimension in North-South and East-West directions), which data are 
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weighted such that the influence of each sampled point is inversely 

proportional to the distance raised to the power of the point to be 

estimated (Isaaks and Srivastava, 1989; Kerry et al., 2010; Betzek et 

al., 2019). Some parameters must be defined for its use, such as the 

exponent and the number of neighbors. The greater the exponent is, 

the lower the influences of points with greater distances. The main 

difficulty in IDW is choosing the correct exponent to be used in the 

interpolation (Betzek et al., 2019). Thus, ADB-MAP-FT employs the 

method proposed by Betzek et al. (2019) to choose the best exponent 

and number of neighbors. It consists of performing interpolation using 

a combinator of the exponent from 1 to 6, with jumps of interval 0.5 

and with a minimum number of 6 and a maximum of 12 neighbors. The 

result of these interpolations is measured by the interpolation selection 

index (ISI) (Bier and de Souza, 2017), which is used to choose the 

result with better parameters; 

3. The number of classes: finally, the user selects the number of classes 

he wants to divide TM, and the map is then presented to the user, and 

saved in the database, to be available to the user on any device he 

uses to connect to ADB in a persistent manner, until the moment he 

decides to delete it. With the map displayed, the user can choose how 

to classify the observations using manual interval, equal interval, 

quantile or standard deviation, legend captions, and the color scheme 

(Souza et al., 2018). 

 

4.3.2 Management zones 

 

The user must inform the input variables to develop MZs, the target variable 

(to be used in Tukey test to evaluate whether MZS are statistically different), and the 

field boundaries. This information must have been previously imported with the same 

file formats supported, similar to TM procedure. Next, the module software will proceed 

in the following sequence: 

1. Data cleaning: likewise the first phase of TM creation, we need to 

select the coordinate system and remove outliers and inliers (all is 

marked as default); 
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2. Data normalization: the resulting data after cleaning is then passed on 

to the normalization stage. The default is a ranged method (as 

indicated by Schenatto et al., 2017b), but the user can change to the 

other three methods: average, Z-score, and MinMax; 

3. Variable selection: as mentioned before, the use of redundant 

variables decreases clustering performance and increases 

computational time (Bazzi et al., 2013; Schenatto et al., 2016; Sobjak 

et al., 2016). ADB-MAP-FT adopts the spatial correlation analysis 

(Bazzi et al., 2013), using Moran's bivariate spatial autocorrelation 

statistic to build a spatial correlation matrix. Although PCA appears in 

Aikes Junior et al. (2021) as the most used attribute selection 

technique, this is essentially a dimensionality reduction technique. 

Thus, the second most popular technique was chosen (spatial 

correlation analysis). The procedure consists of (1.) eliminating 

variables with no significant spatial autocorrelation at 5% significance; 

(2.) removing variables that were not correlated with the target 

variable; (3.) decreasing ordination of the remaining variables, 

considering the correlation degree with the target variable; and (4.) 

eliminating variables which are correlated with each other, with 

preference to remove those variables with lower correlation with the 

target variable; 

4. Interpolation: the remaining variables are then interpolated by IDW (the 

default grid is 1/100 of the largest dimension in the North-South and 

East-West directions). The best exponent and number of neighbors are 

selected by employing the method proposed by Betzek et al. (2019), 

similar to TMs module; 

5. MZs Delineation  MZs delineation uses FCM algorithm (Bezdek, 1981). 

FCM was selected because it is the most popular algorithm for MZs 

delineation (Aikes Junior et al., 2021). 2 to 5 MZs (most of the works 

recorded in Aikes Junior et al. (2021) present these limits for practical 

reasons in the field and software configurations) are created in the 

standard configuration, with 500 interactions (Minasny and McBratney, 

2002; Fridgen et al., 2004) and 1.3-fuzzy exponents (Aikes Junior et 

al., 2021). The resulting MZs are then sent to the rectification step; 

6. MZs rectification: here, rectification is performed, by default, employing 

the best method indicated by Betzek et al. (2018), which consists of 
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the median filter, with a square mask format with a kernel size of 5 x 5 

pixels and five interactions; 

7. Automatic selection of number of MZs: it is logical to divide the entire 

field into MZs with a statistically distinct target variable (Souza et al., 

2018). Then, the following procedure was taken: (i) Tukey test was 

applied to identify whether the generated classes showed significant 

differences in terms of normalized average target variable; (ii) for the 

selected classes, it was chosen as the best combination of the one 

with the lowest ICVI (Gavioli et al., 2016).  

Finally, MZs are then presented to the user, who can handle the data, change 

color schemes, caption titles, and so on forth. Thus, as in TMs, the resulting MZs are 

automatically saved in ADB database, allowing users to consult and manipulate them 

on their various devices. 

It is important to notice that the standard behavior of each stage, that is, 

algorithms and their parameters, both to create TMs and MZs delineation, was defined 

based on research results that point them as more appropriate for most cases or, in 

their absence, the most popular were chosen according to previous research (Aikes 

Junior et al., 2021). This was done to facilitate users with little technical knowledge, to 

delineate MZs with real parameters without extensive research. However, let’s suppose 

the user has the necessary technical knowledge (or wants to test different parameters) 

and intends to use the facilities of ADB-MAP-Fast Track with its integrated steps. In 

that case, this is still possible since most of the parameters of each step can be 

customized for the user. For example, if the user wants to change the size of 

interpolation grid, or fuzzy exponent for FCM algorithm, this is possible by adjusting 

ADB-MAP-FT settings (more details in the results section). ADB-MAP-FT, due to 

technical limitations of not implementing all possible algorithms/parameters, on each 

step, cannot guarantee that the best possible MZ will be created. However, for 

advanced users, ADB-MAP allows manual execution of each step with significantly 

more algorithms/parameters. 
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4.4 RESULTS AND DISCUSSIONS 

 

4.4.1 Descriptive Statistics 

The descriptive statistics of values of variables (Table 2) indicate that all 

variables, except Soybean Yield of 2013 and Slope (2013), were normally distributed. 

Since the field was almost flat, altitude was the most homogeneous variable, with a 

coefficient of variation (CV) that is considered low (CV < 10%), followed by Soybeand 

Yield of 2015 and SPR 0.1-0.2 m of 2013. The SPR 0.0–0.1 m (2013), SPR 0.2–0.3 m 

(2013), SPR 0.1–0.2 m (2015), SPR 0.2–0.3 m (2015) and Soybean Yield (2016) were 

considered as having medium CV (10% ≤ CV ≤ 20%). The remaining variables were 

considered as having a high CV (CV > 20%) (Pimentel-Gomes, 2009). 

 

Table 2 Descriptive statistics of values of variables 

Variables Years Minimum Mean Median Maximum CV (%) 

Soybean Yield (t ha-1) 2012 0.69 2.31 2.00 3.82 40 (h) 

Soybean Yield* (t ha-1) 2013 2.30 4.05 3.95 8.33 23 (h) 

Altitude (m) 2013 651 663 662 676 1 (l) 

SPR 0.0–0.1 m (kPa) 2013 1587 2238 2212 3321 17 (m) 

SPR 0.1–0.2 m (kPa) 2013 1689 2262 2246 2724 10 (l) 

SPR 0.2–0.3 m (kPa) 2013 1337 1919 1900 2294 12 (m) 

Soybean Yield (t ha-1) 2015 4.14 4.61 4.62 5.14 5 (l) 

SPR 0.0–0.1 m (kPa) 2015 657 1480 1458 2387 27 (h) 

SPR 0.1–0.2 m (kPa) 2015 1963 2868 2874 3561 11 (m) 

SPR 0.2–0.3 m (kPa) 2015 2197 2981 2940 4478 12 (m) 

Soybean Yield (t ha-1) 2016 2.20 3.67 3.71 4.69 16 (m)  

Soybean Yield (t ha-1) 2018 1.21 3.10 2.92 8.04 34 (h) 

CV, coefficient of variation; h, high; l, low; m, medium; SPR, soil penetration resistance. 

* No normality at 5% significance level (Pimentel-Gomes, 2009). 

 

4.4.2 Thematic Maps 

 

After the user has logged in with his credentials, ADB initial screen will be 

displayed (Figure 3), where the user's projects are listed on the left side. If it is decided, 

the user can create a new project using the “+ New project” button and enter the 



 
 

130 
 

registration information such as a name, description, area, and Datum (Figure 4). Once 

the project is created and/or if you want to open a project, just click on its name in the 

user's list of projects. After opening the project, as mentioned before, the first step to 

generate a TM is to import data into ADB platform. Each dataset is created as a layer 

in the platform. You can click on the “+ New Layer” button to import a layer (Fig. 5), and 

among the options presented, click on the “Sampling grid” option. 

 

 

Figure 3 AgDataBox projects screen 

 

 

Figure 4 Creation of a new project 

 

Then, it must be chosen whether to import a disk file on the user's device or 

import data previously saved in the internal ADB API. For this example, the file option 

will be used, and then the screen to open files of the device operating system is 
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displayed, which can be used to find the desired file. Once the file is chosen, ADB will 

upload it and present the data import screen for the new layer (Fig. 6). At the top of this 

screen, the file’s name is displayed for confirmation and then the option to inform 

whether the imported file (in this case, a CSV) has a header that informs the column's 

name in the file. This option will consider the first line as a data line instead of the 

column name if unchecked. Below, you can choose the character used as a separator 

(tab, semicolon, comma, dot, or space), Datum (several options), column containing X 

coordinate, column containing Y coordinate, and lastly, a list of all other columns in the 

file. In this list, you can enable the import of a column or do not use the checkbox 

immediately to the left of its name and provide a name and description for each 

column. By default, the column name of the file is shown, but here you can change the 

name to any most convenient string. Once the desired options are configured, you can 

click on the “Create the layers (import the selected variables)” button, and the new 

layer must be created and displayed in the sampling list (Fig. 7). Then, if necessary, 

the same procedure is done to import all the desired data. 

 

 

Figure 5 New Layer creation menu 
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Figure 6 Import data (create layer) options 

 

 

Figure 7 Imported data visualization 

 

There are several controls besides the layer name, such as the possibility to 

display or not the layer overlaying the map (Fig. 7 - panel on the right), changing the 

color of the overlaying data, and the ellipsis button, with several options such as 

normalization, discretization, interpolation, calculation of statistics, edits of data set.  

As previously described, for the automatic TMs creation, ADB-MAP-FT can 

perform data interpolation. For that, field boundaries are necessary. You can similarly 
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import the field boundaries data as importing data layers by clicking on the option “+ 

New Layer - Boundaries” (Fig. 5), choose the option to import by files or by ADB API, 

or still perform the delimitation manually using the help map and the option “Delemit 

new contour”. Once the contour has been imported or delimited, it appears in the 

“Boundaries” section on the left side of the screen and can be viewed similarly to any 

layer (Fig. 8).  

 

 

Figure 8 Boundaries (contours) visualization 

 

The option “+ New layer - Fast track for thematic map” can be used to create 

TM (Fig. 5). The screen of Figure 9 will then be displayed, in which the user will choose 

one or more layers of samples to create TM(s), the contour to be used as a limiting 

factor, and the number of classes. In this way, ADB-MAP-FT will generate a TM with 

the mentioned default settings. 
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Figure 9 AgDataBox-Map-Fast Track for thematic maps main screen 

 

It is also possible to define some additional settings, if they are intended. So, 

to do that, the gear button on the upper right side of the window can be used, and the 

optional settings will be displayed (Fig. 10). 

 

Figure 10 AgDataBox-Map-Fast Track for thematic maps optional configurations 

 

TMs are created by default without data normalization. However, the main 

screen of ADB-MAP-FT allows choosing data normalization method (Range, Average, 

MinMax, Z-score), as well as (i) editing the interpolation pixel sizes (X and Y) and (ii) 

data cleaning options. After clicking the “Execute” button, TMs are created without the 

user’s intervention. Depending on data amount and settings chosen, the process may 
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take a few minutes. The process evolution can be followed by messages about the 

steps progress at the bottom of the main window (Fig. 11). 

 

 

Figure 11 AgDataBox-Map-Fast Track for thematic maps executing message status 

 

When the process is complete, the main window of ADB-MAP-FT for TMs will 

be automatically closed, and the user will be notified of the new layer created for each 

TM by the notifications icon located in the upper right corner of the main ADB screen 

(Fig. 12). 

 

 

Figure 12 Notifications of concluded operations  

 

The created TMs are stored in the interpolations section on the left side menu 

of the main screen. Thus, the user should proceed similarly to visualize any layer as 

well as the generated map (Fig. 13). Then, a new ADB layer is created, and with it, any 

natively possible layer operation can be performed. For example, the edit layer style 

allows changing the type of interval classification, the number of classes, color palette, 

labels to the legend, icon shape, and size (Fig. 14). It can also be displayed the 

descriptive statistics, data normality tests, discretization and many others, as well as 
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the properties of the resulting dataset, such as its name, the description that informs all 

the procedures used to generate TM and, in dataset tab, the possibility to visualize and 

edit each value in each coordinate (Fig. 15). The generated TMs can also be exported 

in CSV, TXT, and image formats.  

 

 

Figure 13 Example of thematic map generated 

 

 

Figure 14 Layer style options 
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Figure 15 Layer properties of the resulting thematic map 

 

 4.4.3 Management Zones 

 

Importing data takes place in a similar way to that performed to create TMs in 

order to delineate MZs. After data have been imported, the option “+ New layer - Fast 

track for management zone” (Fig. 5) can be used to access the main screen of the 

ADB-MAP-FT for MZs (Fig. 16). 

 

 

Figure 16 AgDataBox-Map-Fast Track for management zones main screen 

 

In this screen, the user will choose one or more candidate layers to delineate 

MZs, one layer to be used as target variable, and the boundaries to be used as a 



 
 

138 
 

limiting factor. In this way, MZs will be generated with the mentioned default settings. 

However, it is also possible to define several additional settings. To do that, the user 

can click on the gear button on the upper right side of the window, and the optional 

settings will be displayed (Fig. 17). 

 

 

Figure 17 AgDataBox-Map-Fast Track for management zones optional configurations 

 

The possible configurations are presented step-by-step, similar to a tutorial to 

avoid overloading the user with many options displayed at once,. The settings are 

divided into: 

1. Outliers/inliers | Normalization: in this step, the user can define the 

level of significance to select variables, the normalization method 

(Range, Average, MinMax, Z-score), and for data cleaning, the 

possibility to remove or not duplicate points, negative values and nulls, 

outliers and inliers; 

2. Interpolation: here, the user can define the pixel sizes (X and Y) to 

interpolate algorithms; 

3. Management zone delineation: for now, only the Fuzzy C-means 

method is available to delineate MZ. It is available to define the 

number of interactions, the degree fuzzy and the number of 

management classes (2 to 10); 

4. Management zone rectification: here, the user can choose the 

rectification method (Median, Opening, Closure, Opening, and 
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Closure), mask format (Square, Circle, Cross), kernel size (3, 5, 7, 9, 

11) and number of interactions (1 to 10). The default is median 

(rectification method), square (mask format), kernel size of 5, and five 

interactions; 

5. Method to select the number of classes: ANOVA, using Tukey test, or 

ANOVA + ICVI. 

Once all the desired settings have been defined, the “Execute Fast Track” 

button can be clicked, and ADB-MAP-FT for MZs will perform all operations without 

user’s intervention. Depending on the amount of data and chosen settings, the process 

may take several minutes. Then, so that the user can follow the evolution of the 

process, at the bottom of the main window, messages about the steps' progress 

appear (Fig. 18). 

Thus, in order to exemplify ADB-MAP-FT functionalities for MZs, Altitude 

(2013), Slope (2013), SPR 0.0-0.1 m (2013), SPR 0.1-0.2 m (2013), SPR 0.2-0.3 m 

(2013), SPR 0.0-0.1 m (2015), SPR 0.1-0.2 m (2015) and SPR 0.2-0.3 m (2015) 

variables were selected as possible input layers. The target layer was the normalized 

average soybean yield of 2012, 2013, 2015, 2016, and 2018. All configurations were 

kept as default (Section 4.3.2). 

Once the process is concluded, the resulting MZs are stored in the 

Management Zones section on the left side menu of the main screen. The user can 

proceed similarly to visualize any layer as well as the delineated MZs, (Fig. 19). A new 

ADB layer is created for each validated MZ, and with it, any natively possible layer 

operation can be performed. For example, the edit layer style allows (i) changing the 

type of interval classification, (ii) the number of classes, (iii) color palette, (iv) icon 

shape, (v) label to legend, and (vi) size, as well as the properties of the resulting 

dataset (its name, the description that informs all the procedures used to generate MZs 

and, in the dataset tab, the possibility to visualize and edit each value in each 

coordinate (Fig. 20). Some quality measures on delineated MZs can be observed in the 

Delineated MZs Quality table (Fig. 21).  
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Figure 18 AgDataBox-Map-Fast Track for management zones executing message 

status 

 

 

Figure 19 Example of delineated management zone  
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Figure 20 Layer properties of the resulting management zone 

 

 

 

Figure 21 Management zone layer properties: delineated management zones quality 

 

As a result of the provided data, ADB-MAP-FT for MZs defined the subdivision 

into two management classes, with one MZ in each class. Figure 19 presents the result 

using a blue color palette (default), where the darker is the class, the higher is the 

mean target variable, as seen in the legend. In Figure 20, it is possible to observe in 

the field description some details of the procedures chosen to delineate MZs. Data 

cleaning was applied to remove duplicates, empty data, outliers, and inliers for the 

resulting layer. The normalization method applied was range, with interpolation by IDW, 

with pixel size X and Y of 7, exponent 1 and 12 neighbors. The MZ was delineated 
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using the Fuzzy C-Means algorithm, with 500 interactions and 1.3-Weighting Exponent, 

using only the Altitude (2013) layer. The ANOVA + ICVI procedure to define the quality 

of MZs determined that the ideal number of management classes is two, so only this 

division was sent to the rectification procedure. Rectification was applied using a 

median with a five-sized kernel, five interactions and rectangular shape.  

The user can access the menu beside the layer name and choose the option 

Statistics for a complete view of the statistics. A screen (Fig. 22) will then be displayed 

that allows calculating several measures on the delineated MZs, being Smoothness 

Index (SI), Average Silhouette Coefficient (ASC), Fuzziness Performance Index (FPI), 

Modified Partition Entropy (MPE), Partition Coefficient (PC), Partition Entropy 

Coefficient (PE), Xie and Beni Index (XB), Variance Reduction (VR) and Relative 

Efficiency (RE). It is also possible to visualize the results and statistics for each MZ to 

the target variable, displaying the Class, with its sample point count (Count), average 

(Avg), Tukey test result (Tk), Standard Deviation (SD), Variance (VAR), Coefficient of 

Variation (CV), minimum value (Min), 1st quarter (Q1), Median (Me), 3rd quarter (Q3), 

Maximum value (Max), Skew and Kurtosis. The generated MZs can also be exported in 

CSV, TXT, and image formats. 

 

 

Figure 22 General and per management zone statistics 

 

The metrics presented in Figure 22 validate the choices made by ADB-MAP-

FT for MZs. For example, the division into two management classes supported by 

Tukey test, and FPI and MPE (measures commonly adopted in conjunction with Fuzzy 
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C-means) indicate good quality in delineated MZs and their feasibility in-field 

application. 

We highlight that the entire process was performed without any user’s 

intervention, except by selecting data layers and contour. This proves that it is an easy 

process to be used with very little technical knowledge about the MZ delineation 

procedure. Furthermore, the possibility of configuring parameters and algorithms in 

each of the steps also allows more advanced users to perform fine tunings, taking 

advantage of the integrated procedure although it is not an obligation to perform each 

step individually, also streamlining the workflow for this audience. 

 

 

4.5 CONCLUSIONS 

 

This work presented the AgDataBox-Map-Fast Track (ADB-MAP-FT), a web 

application to automatically create thematic maps and management zones. This is an 

integral module of the AgDataBox platform that aims to facilitate the required process 

to carry out each task. 

The choice of the algorithms sequence and their parameters in each process 

were based on a literature research, where the best algorithms/parameters were 

identified for most cases, or, in their absence, the most popular algorithms/parameters. 

Both generation of TMs and MZs can be performed by people with little knowledge of 

the area since, after properly selecting data, ADB-MAP-FT is in charge of carrying out 

all the procedures without user’s intervention. 

For people with advanced knowledge, or for those who simply want to test 

other configurations or algorithms besides those ones defined in the standard protocol, 

this is still possible since ADB-MAP-FT, both allows a series of configuration 

definitions, presented sequentially following the process steps in order to facilitate the 

user's understanding to generate TMs and delineate MZs. Once the new settings are 

selected, ADB-MAP-FT can carry out the entire procedure sequentially without the 

user’s intervention. 

As the resulting TM or MZ is an AgDataBox-Map layer, they can be readjusted 

entirely according to the user's interest, such as changing color schemes, subtitle texts, 

subtitle ranges, and can also be exported in CSV, TXT and image formats. The 

platform is free to use, it stores all project information in the cloud, allowing for later 

demands and, as it is a web platform, it removes the processing cost on the client-side, 

since the procedure is performed on the server-side, having as access restriction only 

a device with a web browser and an internet connection. 
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5 PAPER 2 – SOFTWARES TO DELINEATE MANAGEMENT ZONES: A 

COMPARATIVE CASE STUDY 

 

ABSTRACT: Management zones (MZ) delineation is not a trivial task although it has 
been very important for precision agriculture. It involves several steps and knowledge 
of several areas. One way to mitigate the difficulty in its construction is specialized 
software. However, several software are listed in literature, each one presents different 
characteristics and resources, but they often perform only part of the process, so the 
user has to choose multiple software and the best workflow for its use. This work 
compares the most used software as well as the state-of-the-art software for MZs 
delineation. In addition, the softwares are compared for their technical characteristics 
and MZs delineation results based on a case study using two commercial areas. 
 
KEYWORDS: AgDataBox-Map-FT, MZA, FuzME, FastMapping, Comparison. 
 

5.1 INTRODUCTION 

 

A management zone (MZ) is a subregion of a field with similar soil and 

topographic characteristics, consequently, it requires the same amounts of inputs, thus, 

it allows an optimized uniform management in this sub-area (Bobryk et al., 2016; Moral 

et al., 2010; Moshia et al., 2014; Zeraatpisheh et al., 2022). MZs can be used in 

several situations such as smart sampling, where one composite sampling is obtained 

per zone to evaluate the field variability. This approach will likely reduce laboratory 

costs while maintains reliability level (Ferguson and Hergert, 2009; Mallarino and 

Wittry, 2004). In addition, smart sampling has improved nutrient efficiency use while 

has kept or increased yield and potentially reduced the nutrient overloading into the 

environment (Moshia et al., 2014; Khosla et al., 2002). This approach can enable 

precision agriculture (PA) for more producers because the homogeneous rate in each 

sub-area allows some conventional agricultural machines. It has already presented 

cost decrease, yield increase, and improvement of product quality parameters 

(Bernardi et al., 2018; Cid-Garcia; Ibarra-Rojas, 2019; Kyaw et al., 2008; Li et al. 2013; 

Roberts et al., 2012; Robertson et al., 2008; Schwalbert et al., 2018; Velandia et al., 

2008; Vitharana et al., 2008; Whetton et al., 2018). 

However, it is not an usual task to develop MZs quality since it is a process 

that involves several tasks from different knowledge areas. Also, a given task can 

present different results since several algorithms and different parameters 

combinations can be used. 

Some of the presented difficulties can be reduced by using specialized 

software. There are many software for PA, but few are focused on MZs delineation. 

Golden Software Surfer, ESRI ArcGIS, and R software package are commonly used for 
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MZs delineation, but they do not have all desired functionalities (Aikes Junior et al., 

2021). When they have all the required functionalities, they are not user-friendly 

(Albornoz et al., 2018). Sometimes, it delineates zones that cannot be validated since it 

does not explicitly indicate the data analytics behind the resulting variability maps 

(Paccioretti et al., 2020). Another determining factor to hinder access to software is 

because most of them have only paid commercial licenses, which discourages its 

adoption by non-specialized people since they may not realize the advantages of its 

use at first. 

Among the specific software for MZs delineation, the following were well-

known (organized by release date): (i) FuzME (Minasny; McBratney, 2002), (ii) 

Management Zone Analyst (MZA) (Fridgen et al., 2004), (iii) ZoneMAP (Zhang et al., 

2010), (iv) Software for Management Zones Definition (SDUM) (Bazzi et al., 2013; 

Bazzi et al., 2019), (v) automatic software to delineate MZs proposed by Albornoz et al. 

(Albornoz et al., 2018), (vi) FastMapping (Paccioretti et al., 2020) and (vii) AgDataBox 

(ADB) (Bazzi et al., 2019; Borges et al., 2020; Dall’Agnol et al., 2020; Michelon et al., 

2019), which have a specific module for automatic delineation of management zones 

AgDataBox-Map-Fast-Track (ADB-FT) (Paper 2 - is not published yet).  

Each mentioned software has different functionalities, and brings specific 

advantages/disadvantages. Thus, it is essential to choose the appropriate MZs 

delineation protocol and suitable software. So, this trial aimed at carrying out, based on 

a case study, a comparative analysis of some software used to  delineate MZs. 

 

 

5.2 MATERIAL AND METHODS 

 

5.2.1 Data 

 

The study was carried out from data collected in two agricultural fields (Fig. 1). 

Field A is a 15.5-ha area in Céu Azul, Paraná, Southern Brazil, in latitude -25.1092, 

longitude -53.8319 (WGS84). The soil of the area was classified as Rhodic Ferralsol. 

The field has a 662-m average altitude and the slope varies from 0.0 to 10.1%, with a 

mean of 1.2%, using no-till farming, and a succession of different cultures have been 

cropped for more than ten years. Soybeans and corn were grown during the summer 

harvest or off-season period, and wheat or oats were used as a cover crop during the 

winter. Forty points (2.67 points ha-1) in an irregular sampling grid were located on an 

imaginary centerline among the contour lines of each field. As the field A has a certain 

degree of declivity and has contour lines, it was decided to use an irregular sampling 
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grid to define the points in places that did not coincide with the curves. This is due to 

the possibility of their influence on productivity. Field B is 13.0-ha area in Centralia, 

Missouri, The United States of America, in latitude 39.2346, longitude -92.1469 

(WGS84). The soil of the area was classified as a claypan. The field has a 262-m 

average altitude, a field slope of 1.8% and it was managed with no-tillage system, 

mostly cropped in a corn-soybean rotation. The exception was two years of continuous 

soybean (1998 and 1999). The soil showed a clay content higher than 500 g kg-1 in the 

argillic horizon that comprises smectitic (high shrink-swell) clay minerals. Hydrolocally, 

water flow is but preferential through cracks after profile drying (i.e., late summer and 

early fall) (Jamison et al., 1968, Kitchen et al. 2005).  

The sampling density was greater than 2.5 points ha-1, following the 

recommendation of Nanni et al. (2011) to enable the detection of spatial dependence 

among samples. Only stable attributes (Doerge, 2000) were used on MZs delineation 

(Table 1).  

 

 

Figure 1 Location of the experimental fields 
 
 

5.2.2 Softwares 

 

• FuzME: software provided by the Precision Agriculture Laboratory (PA 

Lab) of the Australian Centre for Precision Agriculture (ACPA), 

University of Sydney, Australia. It is available for Microsoft Windows 

95/NT or superior, and its most current version is 3.5c. The used 
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algorithms are the fuzzy c-means (FCM) (with a few variants), and the 

outputs are all in text files. The software presents a simple tab-

organized user interface. 

 
Table 1 Variables collected in each experimental field to delineate management zones. 
 

EM38: vertical apparent profile soil electrical conductivity (ECa) using EM38 or EM38-MK2 

(Geonics Limited, Mississauga, ON, Canada); VSH: "shallow" ECa using Veris 3100 (Veris 

Technologies, Salina, KS, USA ); VDP: "deep" ECa using Veris 3100; DualA: "deep" ECa using 

Dualem 2S (Dualem, Milton, ON, Canada); DualC: "shallow ECa using Dualem 2S; SPR 0-10: 

Soil penetration resistance from 0 to 10 cm using Electronic penetrometer PenetroLOG (Falker, 

Porto Alegre, Brazil); SPR 10-20: SPR from 10 to 20 cm; SPR 20-30: SPR from 20 to 30 cm; 

GNSS receiver Juno SB (Trimble Navigation Limited, Westminster, CO, USA), total station 

Topcon GPT-7505 (Topcon Corporation, Tokyo, Japan), 6-row Case combine harvester model 

Case IH 1660 (Case Corporation, Racine, WI, USA) equipped with an AgLeader (AgLeader 

Technology, Ames, IA, USA) yield-monitoring system. 

 

• MZA: it is the most used among the specific software to delineate MZs 

(Aikes Junior et al., 2021). It is made available by the Agricultural 

Research Service (ARS) of the United States Department of 

Agriculture (USDA), USA. It is available for Microsoft Windows 95/NT 

or superior, and its most current version is 1.0.1. It implements FCM 

algorithm. It also presents a simplified graphical interface and, to 

perform data clustering, you must follow the instructions in a sequence 

Variables 
(Attribute) 

Field A Field B 

Year 
Methodology/Instrum

ent 
Year 

Methodology/Instrum
ent 

Elevation 2013 Topcon GPT-7505 Not available  Ashtech Z-12 RTK 

EM38   

Not available  
 
 

Geonics EM38 

VSH   
Veris 3100 

VDP   

DualA   
Dualem 2S 

DualC   

SPR 0-10  

2013, 2015 
Electronic 

penetrometer 
PenetroLOG 

 
SPR 10-

20  

SPR 20-
30  

Corn 
Yield 

  
1997, 2000, 

2002 
Gleaner R42 

combine harvester 
with AgLeader yield 

monitor Soybean 
Yield 

2012, 2013, 
2015, 2016, 

2018 

 Locations obtained 
with GNSS receiver 
Juno SB 

1996, 1998 
1999, 2001, 
2003, 2004 
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of four menus that present the definition of the parameters step by 

step. 

• ZoneMap: it was unavailable when developing this paper, due to 

financial reasons, according to its developers. Consequently, it could 

not be evaluated. 

• SDUM: software provided by the Paraná Precision Agriculture Team, 

from the western region of Paraná, Brazil. It is available for Microsoft 

Windows XP platform or superior, and the current version is 1.0. 

Entries are in the text file and have a user-friendly data importer. The 

outputs can be given in the text, images, PDF, and KLM (Google 

Earth) formats. It offers descriptive statistical analysis, spatial 

correlation analysis, and interpolation tools. MZs can be delineated by 

empirical methods (data normalization by means and standard 

deviation) and clustering (k-means and FCM). SDUM will not be used 

in the comparison as AgDataBox has replaced it. 

• The Albornoz’s automatic software to delineate MZs (Albornoz et al., 

2018): software provided (in test version) by the Faculty of Engineering 

and Water Sciences (Facultad de Ingeniería y Ciencias Hídricas) of the 

National University of the Coast (Universidad Nacional del Litoral), 

Argentina. According to the authors, there are desktop and web 

versions of the software, but only web version is available for public 

tests. The delineation algorithm is FCM, and outputs are in the ESRI 

shapefile with a user friendly interface.  

• FastMapping: it is a web application, provided by a partnership 

between the Faculty of Agricultural Sciences (Facultad de Ciencias 

Agropecuarias) of the National University of Córdoba (Universidad 

Nacional de Córdoba) and the Unit of Phytopathology and Agricultural 

Modeling (Unidad de Fitopatología y Modelización Agrícola), 

Argentina. It offers tools for cleaning, interpolation, statistical analysis 

of spatial data, MZs delineation, MZs evaluation and data exportation 

with a user-friendly graphical interface. Entries are in the text file and 

have a user-friendly data importer. The delineation algorithm is FCM 

and outputs are in text and HTML formats. 

• AgDataBox (ADB): is a joint project coordinated by the Western 

Paraná State University (Unioeste) and the Federal University of 

Technology - Paraná (UTFPR) with the cooperation of the Colorado 

State University (CSU), The United States Agricultural Research 
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Service (USDA) in Columbia, the University of California Davis (UC 

Davis), the University of São Paulo (ESALQ/USP), and the Brazilian 

Agricultural Research Corporation (Embrapa). It is a web Platform with 

an open Application Programming Interface (API) that enables the 

interoperability of several applications. Five applications are under 

development: (1) ADB-Mobile, (2) ADB-Map, (3) ADB-Admin, and (4) 

ADB-IoT. ADB-Map application works with spatial data aiming to 

create thematic maps and management zones, offering data 

importing/exporting, data analysis, filtering data normalization, data 

interpolation and creation of thematic maps, delineation and evaluation 

of MZs, encompassing variable selection methods, empirical and data 

clustering methods, and evaluation statistics, management zone 

rectification methods and application map creation and exporting. 

ADB-MAP application offers a module called ADB-Map Fast-Track 

(ADB-MAP-FT), which allows TMs creation and MZs delineation 

automatically by a web-friendly interface platform. Entries are in the 

text file and have a user-friendly data importer and outputs are in 

image text formats. The default settings of all evaluated software were 

used. 

 

5.2.3 Protocol to Delineate MZ  

 

The search for an ideal protocol for MZs delineation has been still ongoing. 

So, there is no well-defined delineation protocol. In Aikes Junior et al. (2021), several 

protocols were presented, which despite having similar tasks in general, there are  

divergences or gaps among them. Among them all, the MZ protocol proposed by 

Souza et al. (2018) (Fig. 2) was considered more complete, and it divided the process 

into (1) variables acquisition of, (2) outliers and inliers remotion, (3) data normalization, 

(4) input variables selection, (5) data interpolation, (6) MZs delineation (7) MZs 

rectification, and (8) evaluation of delineated MZs. 
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ANOVA: analysis of variance, SD: standard deviation, MZ: Management Zone, SD: standard 
deviation, FPI: Fuzziness Performance Index), MPE: Modified Partition Entropy, VR: variance 
reduction, ICVI: improved cluster validation index, ASC: average silhouette coefficient. 

Figure 2 The protocol of management zones delineation, according to Souza et al. (2018).  

 

The data entry in all software has been performed by importing files in text 

format, using a graphical interface. ADB-MAP-FT, MZA, and FastMapping have 
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assistants selecting which attributes will be imported, while for FuzME, the file must be 

previously treated only with the data to be used. 

Only ADB-MAP-FT performs variable selection. SCM was used from the three 

available methods (Spatial correlation matrix – SCM, Principal component analysis – 

PCA, and MULTISPATI-PCA) (Gavioli et al., 2016). It uses Moran's bivariate spatial 

autocorrelation statistic to build a spatial correlation matrix. The procedure consists of 

(1) eliminating variables with no significant spatial autocorrelation at 5% significance, 

(2) removing variables that were not correlated with the target variable, (3) decreasing 

ordination of the remaining variables, considering the degree of correlation with the 

target variable, and (4) eliminating variables that are correlated with each other, with 

preference to remove those variables with lower correlation with the target variable. 

FuzME and FastMapping present the possibility of applying PCA to reduce 

dimensionality of the input variables, but not their use to select variables. Thus, the 

variables selected by ADB-MAP-FT will be used for all software as an input variable, 

for field A the Elevation variable and for field B the VSH variable. 

MZA and FuzME also do not perform outliers and inliers removal or data 

normalization and interpolation. Thus, a file with these tasks performed in ADB-MAP-

FT was offered as input to these software. The default values of ADB-MAP-FT 

parameters were used as following: (1) the values outside the mean ± three standard 

deviations (SD) were considered outliers (Córdoba et al., 2016; Vega et al., 2019) and 

removed, (2) to remove inliers, the Local Moran’s index of spatial autocorrelation (LI) 

(Anselin, 1995) was used (Córdoba et al., 2016; Vega et al., 2019), (3) normalization 

was performed by the range method (Schenatto et al., 2017), (4) interpolation was 

performed with the inverse distance weighted (IDW) interpolator (Betzek et al., 2019; 

Isaaks; Srivastava, 1989; Kerry et al., 2010), and (5) the default grid is 1/100 of the 

largest dimension in the North-South and East-West directions. IDW parameters were 

defined using the method proposed by Betzek et al. (2019). ADB-MAP-FT performs all 

these procedures automatically, without user intervention. 

FastMapping adopts, when selected univariate data, the possibility of the user 

to define upper and lower threshold limits to eliminate observations that fall outside the 

general distribution of data set and automatically removes values below or equal to 

zero by default. Data points are also removed for a distance of 20 meters from field 

edges to eliminate edge effects. Outliers are removed when outside the mean ± 3 SD. 

Inliers are identified using LI and Moran scatterplot. The interpolation is performed by 

Kriging (Webster; Oliver, 2007), and the root mean square error (RMSE, obtained by a 

k-fold cross-validation process with k = 10) is used to select the best data variogram 
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automatically. The neighborhood number is defined as a minimum of 7 and a maximum 

of 25 of the nearest data to the target. 

All software employs as default FCM algorithm, fuzzy exponent to 1.3, and the 

Euclidean distance. MZA and FuzME determine the interaction parameter at 300, while 

ADB-MAP-FT at 500 and FastMapping at 1000. ADB-MAP-FT and FuzME delineate 

considering from 2 to 5 clusters and MZA and FastMapping from 2 to 6 clusters. 

The best option was considered the management zones that: 1) significant 

difference in productivity, among management zones, verified by means of ANOVA; 2) 

showed greater reduction in the coefficient of variation (VR%); 3) lower FPI and MPE. 

 

 

5.2.4 Evaluation of the management zones quality  

 

The delineated MZs were evaluated using quality indices described in the 

Appendix A. MZA, FuzME, and FastMapping have always presented all the MZs 

grouping, allowing the user to choose the most appropriate subdivision. So, in order to 

help the user, MZA offers Normalized Classification Entropy (NCE) and Fuzziness 

Performance Index (FPI) as indices, FuzME presents FPI and Modified Partition 

Entropy (MPE), FastMapping presents Partition Coefficient (PC), FPI, NCE, Xie Beni 

index (XB) and ANOVA, in addition to the graphical display. ADB-MAP-FT, unlike the 

others, does not display all the subdivisions delineated, but only those ones that 

showed significant statistical differences among the management classes, that is, it 

uses a combination of ANOVA and Improved Cluster Validation Index (ICVI) to present 

to the user only the subdivisions that are statistically viable. Results can be evaluated 

graphically or by FPI, MPE, XB, ICVI, Variance Reduction (VR), Smoothness Index 

(SI), Average Silhouette Coefficient (ASC), Partition Entropy (PC), Partition Entropy 

Coefficient (PE), Relative efficiency (RE) and ANOVA (Tukey range test). 

Another characteristic restricted to ADB-MAP-FT, considering the tested 

software, is the fact that it automatically applies MZs rectification to remove isolated 

pixels, small regions, or even a transition border among very irregular zones, that make 

difficult or even impossible to operate in the field. The rectification methods available 

are median, opening, closure, opening/closure. In addition, it is possible to choose the 

kernel format (square, circle, or cross) and the kernel size (from 3x3 to 11x11) (Sobjak, 

2021). Rectification is performed, by default, employing the best method indicated by 

Betzek et al. (2018), which consists of the median filter, with a square mask format with 

a kernel size of 5 x 5 pixels and five interactions. 
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5.3 RESULTS AND DISCUSSIONS  

  

Although all software programs have the same objective, there are significant 

similarities and differences (Table 2). MZA tries to make easier MZ delineation by 

presenting a graphical interface in steps. Initially (start window), the user must provide 

the input file in text format. In the same window, one or more variables must be chosen 

to be used. The following window, Explore Data, allows descriptive data statistics to be 

computed and saved in a text file. The third window, Delineate Zones, presents the 

options to performe the classification with FCM, location and name of the output data 

file. The last window, Post Classification Analysis, presents two graphs of the 

performance indices (NCE and FPI) as a function of the number of zones. The authors 

consider this last window to be one of the most critical differentials of MZA because it 

helps to choose the ideal number of zones, avoiding subjectivity.  

 

Table 2 Features of specific software for management zones delineation (MZs) with 
default parameters. 
Software / Feature FuzME MZA FastMapping ADB-MAP-FT 

Input data graphical visualization  

   

x 

Input data description tools  x x x 

Data selection for MZ    automatic 

Cleaning data (outlier, inliers, 
null) 

  

automatic automatic 

Data normalization   automatic automatic 

Data interpolation   automatic automatic 

MZ delineation x x x x 

MZ evaluation x x x automatic 

MZ rectification    automatic 

Map creation   automatic automatic 

Save project    x 

Results export type 
Text Text 

Text/HTML with 
images Text/Image 

License Free Free Free Free 

Operational system Windows Windows Web Web 

Intuitive interface Simple Simple Modern Modern 

HyperText Markup Language (HTML); Management Zone (MZ). 
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FuzME features a simplified graphical interface consisting of three toolbars in 

a precise sequence of steps to delineate MZs. The first one presents the options to 

select the input file with the respective variables, output files, internal control files, and 

analysis title. The second presents the options to create clusters, such as distance 

metrics and fuzzy exponents. Finally, the third one presents the options to allow 

resampling using the bootstrap and Jackknife methods. It is interesting to observe that 

FuzME requires that the input file contains a sample identification column and that the 

file contains only variables that will be used in the delineation process. All other 

software allows the choice of which variables from the input file will be used to 

delineate. 

Despite the attractive graphical interface of FuzME and MZA, as well as the 

definition of some standardized parameters, it is impossible to: (1) visualize the 

delineated MZs, (2) perform interpolations, (3) adjust the sample size, (4) visualize the 

behavior of the input variables, (5) calculate statistics of MZ quality, (6) export the 

results graphically, (7) Perform data pre-processing such as cleaning (removal of 

outliers, inliers, null values) and normalization, (8) choice of the best (or set of best) 

input variables for MZs delineation concerning the target variable, and (9) the 

smoothing of fragmented information. All these tasks must be performed in external 

software. Another limiting factor is the requirement to run on computers using a specific 

operating system (Microsoft Windows environment), considering the dissemination of 

ubiquitous computing nowadays.  

Another problematic element concerns choosing the ideal number of clusters. 

Measures such as NCE and FPI, on MZA, and FPI e MPE, on FuzME cannot 

necessarily agree on the ideal number of clusters, returning subjectivity to the analyst 

since the software does not indicate which is preferred over the other. It is worth 

remembering that the ideal number of these measures may still not be following the 

restrictions of field mechanization, considered purely mathematical analyses of the 

generated clusters. 

FastMapping presents a modern and intuitive graphical interface, and 

organizes the MZ delineation process in stages. The first one (after Home), Dataset, 

allows uploading the file containing the input data and optionally the file with edges of 

the field. This tab allows choosing variables to be used and a tabular view of data. The 

remaining steps vary with the chosen variables. If the input data is multivariate, the 

multivariate analysis tab appears, which is subdivided into (1) Parameters for KM-sPC 

classification, to define the parameters of PCA and FCM, (2) Classification results, to 

present the results, (3) Cluster Plot to visualize the maps and (4) Validation to verify the 

statistical tests. When univariate (like it was used in this work) it subdivided into (1) 
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Depuration for data cleaning, (2) Prediction to select the parameters to choose the best 

interpolator by kriging, (3) Results with several subdivisions to visualize the kriging 

models and the result of data cleaning, (4) Cluster with several subdivisions to visualize 

and validate the clusters data, with their indexes and download the results, as well as 

statistical validation. Finally, regardless of whether it is univariate or multivariate, the 

Report tab allows downloading the results of all stages in HTML (HyperText Markup 

Language) format. 

Despite the good graphical interface, FastMapping performs the processing 

(or at least the data request) on the server one step at a time, that is, each time a step 

is selected (viewing the map with two clusters, for example), the processing of the 

respective step takes place. This leads to a constant delay each time you navigate 

among tabs. This is not a major issue, but when combined with the fact that (during 

testing on several different days for this work) the user is constantly disconnected from 

the server and has to start the procedure all over again, as there are no options to save 

the project to continue later, ends up negatively impacting the user’s experience. 

Furthermore, the lack of integrated tools to rectify MZs and select variables (according 

to the website still under development) requires external software for a complete 

process. Since it is a web platform, any device can access it with a web browser and 

internet. In addition, the processing is performed on the server, taking the load off the 

user's device. This can be considered positive because MZ delineation tasks usually 

depend on high processing loads. Unfortunately, despite more indices than MZA and 

FuzME, it is still up to the user to interpret the results and choose the best subdivision 

of the field. 

ADB-MAP-FT is an ADB-MAP module for the automatic MZ delineation. Just 

like FastMapping is a web application with a modern and intuitive graphical interface. 

The user must create a project for its use and then use the data import wizard. He can 

perform visualizations and pre-processing with the imported data if desired. For MZ 

delineation, the user chooses the option of a new management zone, and among the 

options, he will choose Fast Track. A single window is presented, in which the user will 

select all the input variables, the area boundaries, and the target variable (usually 

yield). All the process of all the steps of the protocol chosen in this work is then carried 

out automatically, without user’s intervention. In the end, new layers are added with 

MZs that meet the statistical criteria. 

A point to highlight is that the parameters default values, used in ADB-MAP-

FT, are a result from previous research to choose the best value or, in the absence of 

this, the most used value in the literature (Paper 2 - not published yet). This favors the 

use by inexperienced users or those who do not know all the areas necessary for a 
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good MZ delineation, offering, at least, a good starting point for fine tunings. Another 

characteristic that makes it different from the others is that the user can delineate MZs 

within the context of projects, and the user can have several projects if desired. 

Projects and all their data and performed processing are saved in the cloud. This 

allows the user to revisit all their data, start the procedure and continue where they left 

off, or even be able to compare directly in the software, both graphically and using the 

indices offered, MZs delineated with different combinations of parameters/algorithms. 

As it is a web application, like FastMapping, it can be accessed from any device with a 

browser and internet, and data processing is performed on the server, to remove the 

processing load from the user's machine. ADB-MAP-FT was the only one that 

presented all the necessary tools for the complete execution of the protocol without any 

requirement for an external software. 

Table 3 presents the delineated MZs using software MZA, FuzME, 

FastMapping, and ADB-MAP-FT for 2 to 4 classes for each field. Since ADB-Map-FT 

selects automatically the best number of classes, this functionality was disabled to 

permit it to show all MZs. A remarkable similarity can be visually perceived in MZs 

delineated by MZA, FuzME, and ADB-MAP-FT for both fields, confirmed by Kappa and 

Global Accuracy (GA) index (MZA is always used as a reference since it is the most 

used software). Despite being very similar, in MZA and FuzME, we can see isolated 

pixels in MZ 2 and MZ 4 and irregular transitions among zones in all cases of field A, 

making it difficult for the operational implementation. Such problems were solved by the 

rectification step in the ADB-MAP-FT, making its use more feasible, especially by 

machinery without an automated variable rate. In the case of FastMapping, its 

functionality to remove pixels 20 meters from the edges and, in the default 

configuration, making an interpolation with a lower resolution than ADB-MAP-FT made 

its result visually different (there is a option to upload a contour file to delimit the area 

limits, however, despite the successful upload and visualization of the area limits data, 

whenever this option was used, FastMapping presented errors when performing the 

clustering task). Still, the division of zones in all cases is smooth. The results are also 

very similar for field B, with a slight decrease in K and GA indices of ADB-MAP-FT to 

MZA. This small decrease in agreement is due to MZs rectification routines of ADB-

MAP-FT, which smoothed the transitions of zones. 
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Table 3 Management zones delineated using software MZA, FuzMe, FastMapping, and ADB-Map.* 1 

Area 
Nº of 

classes 
Software 

A 

 MZA FuzME FastMapping ADB-MAP-FT 

2 

 

  
 

 

K/GA -/- 1.00 / 1.00 -/- 0.99 / 1.00 

3 

  
 

 

K/GA -/- 1.00 / 1.00 -/- 0.98 / 0.99 

4 

  
 

 

K/GA -/- 1.00 / 1.00 -/- 0.97 / 0.98 
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B 

 MZA FuzME FastMapping ADB-MAP-FT 

2 

 
    

K/GA -/- 1.00 / 1.00 -/- 0.99 / 0.99 

3 
    

K/GA -/- 1.00 / 1.00 -/- 0.97 / 0.98 

4 
    

K/GA -/- 1.00 / 1.00 -/- 0.98 / 0.98 

* the ADB-Map was used instead of ADB-FT because the last one only presents the best delineated management zones. Kappa index (K), Global accuracy 2 

(GA). 3 

 4 
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Table 4 presents MZ statistics by class and software in each field. Despite this table 

presents MZs with two, three, and four classes for all software, ADB-MAP-FT selected two 

classes for both fields as the best, then presenting to the user only this option. In this work, 

zones with three and four classes were also generated in ADB-MAP just to be compared with 

the other softwares. 

 

Table 4 Management zone statistics per software 

Field Software 
Tukey's test (ha-1) VR FPI MPE NCE XB ICVI* SI 

C1  C2 C3 C4 % 
  

   % 

A 

MZA 

0.92a 1.11b   48.59 0.035  0.012   98.12 

0.92a 1.01ab 1.11b  30.53 0.039  0.018   96.38 

0.91a 0.93a 1.10b 1.11b 45.93 0.034  0.018   94.43 

FuzME 

0.92a 1.11b   48.59 0.298 0.362   0.67 98.12 

0.92a 1.01ab 1.11b  30.53 0.304 0.337   0.77 96.38 

0.92a 0.92a 1.10b 1.11b 45.66 0.301 0.313   0.64 94.43 

 0.91a 1.10b   51.15    5.2 E-5   

FastMapping 0.92a 0.99a 1.10b  26.50    5.7 E-5   

 0.91a 0.94a 1.07b 1.12b 43.66    6.3 E-5   

 0.91a 1.11b   54.85 0.074 0.089  1.9 E-5 0.64 98.21 

ADB-MAP-FT 0.93a 1.00a 1.11b  27.46 0.077 0.076  2.0 E-5 0.80 96.60 

 0.90a 0.93a 1.09b 1.12b 53.64 0.069 0.063  1.9 E-5 0.52 95.24 

B 

 0.94a 1.01b   4.42 0.011  0.004   98.60 

MZA 0.91a 1.00b 1.04b  10.03 0.015  0.008   96.85 

 0.91a 0.99b 1.00b 1.06b 9.16 0.017  0.009   95.81 

 0.94a 1.01b   4.42 0.188 0.235   0.78 98.60 

FuzME 0.91a 1.00b 1.04b  10.03 0.197 0.228   0.60 96.85 

 0.91a 0.99b 1.00b 1.06b 9.16 0.232 0.247   0.70 95.82 

 0.92a 1.01b   8.15    1.5 E-5   

FastMapping 0.91a 1.00b 1.01b    7.05    1.9 E-5   

 0.85a 1.00b 1.00b 1.06b 17.03    3.0 E-5   

 0.94a 1.01b   4.42 0.038 0.049  1.3 E-5 0.84 98.63 

ADB-MAP-FT 0.91a 1.00b 1.04b  10.03 0.038 0.039  1.4 E-5 0.58 97.14 

 0.91a 0.99b 1.00b 1.06b 9.16 0.040 0.037  2.3 E-5 0.61 95.93 

variance reduction (VR); fuzziness performance index (FPI); modified partition entropy index (MPE); 

normalized classification entropy (NCE); Xie e Beni (XB); Improved Cluster Validation Index (ICVI); 

smoothness index (SI). * The ICVI calculation was performed for each area, and for each software. Ex. 

ICVI for FuzME of area A is calculated from the VR, FPI and MPE of classes 2, 3 and 4 (using the 3 

data sets) of FuzME. 

  

All software showed a statistically significant difference in Tukey test for the two 

classes in both fields, indicating that the ideal division is statistically into two classes in both 

cases. Unfortunately, only FastMapping and ADB-MAP-FT present the statistical test (among 
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other metrics) for this finding, so the user will be faced with the need to analyze one or 

several metrics to decide which division is ideal. Only ADB-MAP-FT presents VR, SI, and 

ICVI indices. For the other software, these indices, when present, were calculated using 

ADB-MAP. 

For field A, using MZA, FPI indices indicate that the best division consists of four 

classes but by only one-cent the division into two classes. NCE indicates two classes. As 

MZA presents only these two indices, the user would be in doubt which division is the ideal 

one. SI and VR indices also agree with the division into two classes. FuzME presents FPI 

that indicates two classes and MPE indices, which indicates the division into four classes, 

and again the user would be in doubt which division is the ideal one. ICVI, heavily influenced 

by the MPE and FPI, also agrees with the division into four classes, but with a very close 

value to the division with two classes. VR and SI indices indicate the division into two 

classes. For FastMapping, considering XB and VR, the ideal division is into two classes. 

While for ADB-MAP-FT, FPI, MPE and ICVI indices indicate the division into four classes. XB 

index presents the same values for two and four classes, while SI and VR indices indicate 

two classes. As ICVI depends on MPE and FPI results, not presented by MZA and 

FastMapping, it was impossible to calculate this index for the respective software. If Tukey 

test shows no statistical difference among the classes, there is no meaning in dividing the 

field into more classes; so, the ideal division is in two classes.  

For field B, considering MZA, FPI and NCE indices offered to agree on the division 

into two classes. The same occurs for SI index, while for VR, the ideal division would be in 

three classes. For FuzME, FPI and MPE indices differ in the number of ideal classes, two for 

the first one and three for the second, this leaves to the user the decision of the ideal 

division. SI index indicates the division into two classes, while ICVI and VR indices indicate 

the division into three classes. For FastMapping, XB indicates the division into two classes, 

while VR indicates four classes. For ADB-MAP-FT, the indices, FPI, XB, and SI, indicate two 

classes as the ideal division (with a draw of FPI to three classes), ICVI and VR three classes, 

and MPE four classes. It can be seen that the lack of MZA and FuzME on displaying a 

statistical validation hinders a final decision by the user and the need to offer several indices 

to help the user guide his choice. 

Very close values can be seen on average per class for all software. This 

demonstrates that all software presents similar results in direct comparison when considering 

two, three, and four classes.  

When considering VR, for field A, for two classes, ADB-MAP-FT has greater 

variability reduction, followed by FastMapping, while MZA and FuzME have the same value. 

When divided into three classes, MZA and FuzME show the greatest reductions, followed by 

ADB-MAP-FT and FastMapping. ADB-MAP-FT shows the greatest reduction for four classes, 

followed by MZA, FuzME, and FastMapping. For field B, FastMapping shows the greatest 
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reduction indicated by VR for two and four classes, with a tie for the other software. For three 

classes, the result is exactly the opposite. 

Considering SI index, for field A, two, three, and four classes, ADB-MAP-FT 

presents the highest values, followed by MZA and FuzME draws, indicating ADB-MAP-FT 

feasibility. The result is repeated for field B, except for the divergence of one-tenth between 

FuzME and MZA for four classes. Unfortunately, it was impossible to calculate SI of 

FastMapping, since this index depends on pixels being aligned in their vertical/horizontal 

coordinates, and FastMapping allows the interpolation result to insert pixels in diagonal 

coordinates making the calculation unfeasible.  

Comparing ICVI of ADB-MAP-FT and FuzME, in field A, considering two and four 

classes, the former presents the lowest values. As for the division into three classes, FuzME 

presents the lowest values. In Field B, for the division into two classes, FuzME presents the 

lowest values, while for three and four classes, ADB-MAP-FT presents the lowest values. 

Considering ADB-MAP-FT and FastMapping, the advantages of both platforms' web 

architecture, the greater integration of pre-and post-data processing tools, the viability of both 

platforms to MZA and FuzME, more traditional in literature, is demonstrated. ADB-MAP-FT 

still has the advantage of being only necessary to select the input, boundaries, and target 

variables for ZM delineation. The process, including statistical validation, is done without 

human intervention in the automatic protocol, without external tools; it also features the most 

export tools and comparative indexes for both maps and MZs, presenting itself as the most 

complete tool. 

 

 

5.4 CONCLUSIONS 

 

The process of MZs delineation is complex and involves many areas of knowledge. 

Thus, specific software is crucial to make the process viable. Although MZA and FuzME 

present themselves as the most used software in literature, considering the progress of 

research since their respective releases, they end up not presenting all the necessary tools 

to delineate MZs. Much modern software that provides more pre- and post-data processing 

tools and takes advantage of state-of-art architectures, such as the web, has advantages. 

Among them, FastMapping and ADB-MAP-FT have several interesting features, especially 

their easy way to be  used with modern, intuitive interfaces and automated processes. ADB-

MAP-FT presented itself as the most complete solution, as it was the only one that did not 

require any external software for the delineation process, following the chosen protocol, in 

addition to the fact that it is also the easiest program to be used since all the steps are 

performed automatically with parameters selected from research in the specific literature. 
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Appendix A 

Data normalization methods 

• Range (Anderberg, 1973; Milligan and Cooper, 1988 – Equation A1): 

ZiN =
Xi −Median

Max(X) − Min(X)
, (A1) 

where, ZiN – normalized observation i; Xi – original data value i; Min(X) – minimum 

value of data set; Max(X) – maximum value of data set. 

• Mean (Swindel, 1997 – Equation A2): 

ZiN =
Xi

X̅
, (A2) 

where, ZiN – normalized observation i; Xi – original data value i; X̅ – sample mean of 

data set. 

• Standard Score or Z-Score (Larscheid and Blackmore, 1996 – Equation A3): 

ZiN =
Xi − X̅

s
, (A3) 

where, ZiN – normalized observation i; Xi – original data value i; X̅ – sample mean of 

data set; s – standard deviation of data set. 

• Min-Max method (Milligan and Cooper, 1988 – Equation A4): 

ZiN =
Xi −Min(X)

Max(X) − Min(X)
, (A4) 

where, ZiN – normalized observation i; Xi – original data value i; Min(X) – minimum 

value of data set; Max(X) – maximum value of data set. 

 

The Bivariate Moran’s I (Reich, 2008; Schepers et al., 2004 – Equation A5):  

IYZ =
∑ ∑ wijyizj

n
j=1

n
i=1

W√mY
2mZ

2

, 
(A5) 

 

where IYZ: Degree of spatial association between Y and Z variables, ranging from -1 to 1, as 

it is followed: positive correlation IYZ > 0 and negative correlation IYZ < 0; wij: corresponds to 

the ij element of spatial association matrix, calculated by wij = (1/(1 + Dij)), so that Dij is the 

distance between i e j points; yi and zi: transformed y and z values, respectively, at point i 

(i = 1, 2,… , n), to get a zero average by the formulas yi = (yi − Y̅) and zj = (zj − Z̅), where Y̅ 

and Z̅ are the sample means of Y and Z variables; W: it is the sum of spatial association 

degrees obtained by wij matrix, for i ≠ j; mY
2 and mZ

2: sample variance of Y and Z variables, 

respectively. 
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The interpolator selection index (ISI – Bier and Souza, 2017 – Equation A6): 

ISI = {
abs(ME)

max |
j

i = 1
[abs(ME)]

+
[SDME −min |

j
i = 1

SDME]

max |
j

i = 1
[abs(SDME)]

}, (A6) 

where ME (Equation A7) is the mean error; SDME (Equation A8) is the standard deviation of 

mean error of crossed validation;n is the number of data; abs is the module value; min|i=1
j

 is 

the lowest value obtained among the compared j models; max|i=1
j

 is the highest value 

obtained among the compared j models. 

ME =
1

n
∑Z(si) − Ẑ(si)

n

i=1

, (A7) 

SDME = √
1

n
∑(Z(si) − Ẑ(si))

2
n

i=1

, (A8) 

where n is the number of data; Z(si) is the value observed at the point si; Ẑ(si) is the 

predicted value at the point si. 

Data interpolation - Inverse Distance Weighting (IDW – Equation A9): is calculated by: 

Ẑi =

∑ (
1

di
p ∗ Zi)

n
i=1

∑ (
1

di
p)

n
i=1

, (A9) 

where, Ẑi – interpolated value; Zi – sampled attribute value; di
p
 – Euclidean distance 

between the ith neighborhood point and the sampled point, elevated to the power of p > 0. 

 

Indices for evaluation of the management zones quality 

a) Variance reduction (VR% – Xiang et al., 2007; Schenatto et al., 2017 – Equation 

A10): is calculated for a variable, with the expectation that the sum of data variances for each 

MZ is smaller than the total variance of the field.  

VR% = (1 −
∑ Wi ∗ VMZi
c
i=1

Vfield
) ∗ 100, (A10) 

where c is the number of MZs;  is the field rate of i-th MZ to the total field; Vmzi is the data 

variance of i-th MZ; Vfield is the field data variance. 

iW
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b) Fuzziness Performance Index (FPI – McBratney and Moore, 1985; Fridgen et 

al., 2004 – Equation A11): measures the degree of separation between the fuzzy 

c groups generated from a data set. FPI varies between 0 and 1.  

FPI = 1 −
c

(c − 1)
[1 −∑∑(

(mij)
2

n

c

i=1

n

j=1

], (A11) 

where c is the number of groups; n is the number of elements in data set; mij is 

the element of the fuzzy belongs to matrix M. 

c) Modified Partition Entropy (MPE – McBratney and Moore, 1985; Fridgen et al., 

2004 – Equation A12): estimates the difficulty level to organize c groups.   

MPE =
−∑ ∑ mij log(mij)/n

c
i=1

n
j=1

log c
, (A12) 

where c is the number of groups; n is the number of elements in the data set; mij 

is the element of the fuzzy belongs to matrix M. 

d) Improved Cluster Validation Index (ICVI – Gavioli et al., 2016 – Equation A13):  

is a composition of FPI, MPE, and VR% indices. 

ICVIi =
1

3
∗ (

FPIi
Max{FPI}

+
MPEi

Max{MPE}
+ (1 −

VR%i

Max{VR%}
)), (A13) 

where FPIi is FPI value of the i-th variable selection method; MPEi is the MPE 

value of the i-th variable selection method; VR%i is the VR% value of the i-th 

variable selection method; Max{Index_X} represents the maximum value of the 

Index_X among the n variable selection methods. 

e) Analysis of Variance (ANOVA): Tukey test identified whether the sub-regions of 

design in MZs present significant differences on the average value of the target 

variable. 

f) Smoothness Index (SI% – Gavioli et al., 2016 – Equation A14): gives pixel-by-

pixel frequency of change of classes in a thematic map in horizontal and vertical 

directions and along the diagonal. It also characterizes the smoothness of MZs 

boundary curves. For example, if a map has an entirely homogeneous area, SI 

equals 100% due to the lack of class changes. On the other hand, if the map is 

entirely generated with random values, SI% would have a value close to 0. 

SI = 100 − (
∑ NMHi

k
i=1

4PH
+
∑ NMVj
k
j=1

4PV
+
∑ NMDDl

k
l=1

4PDD
+
∑ NMDEm
k
m=1

4PDE
) ∗ 100, (A14) 

where NMHi
 is the number of changes in row i (horizontal); NMVj is the number of 

changes in column j (vertical); NMDDl
 is the number of changes in diagonal l (right 

diagonal DD); NMDEm is the number of changes in diagonal m (left diagonal DE); k 

is the maximum number of pixels in a row, column, or diagonal; PH is the 

possibility of changes in horizontal pixels; PV is the possibility of changes in 
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vertical pixels; PDD is the possibility of changes in the right diagonal DD; PDE is the 

possibility of changes in the left diagonal DE. 

g) Average Silhouette Coefficient (ASC – Rousseeuw, 1987 – Equation A15): the 

ASC coefficient is obtained from the silhouette coefficient (SC), an evaluation 

index that measures both levels of satisfactory internal formation and external 

separation of groups. SC value for point p, which is denoted by scp, is calculated 

using the mean of intra-group distances ap and the mean of inter-group distances 

bp: 

scp =
bp − ap

Max(ap, bp)
, (A15) 

where ap is the mean of distances among point p and all other points in the same 

group; bp is the mean of distances among point p and all points in the closest 

group that contains p. 

h) Normalized Classification Entropy (NCE): this coeficiente models the amount of 

disorganization of a fuzzy c-partition of Y (Bezdek (1981); Odeh et al., 1992). The 

classification entropy (H) is defined by Equation A16: 

𝐻(𝑼; 𝑐) = −∑∑𝑢𝑖𝑘𝑙𝑜𝑔𝑎(𝑢𝑖𝑘)/𝑛

𝑐

𝑖=1

𝑛

𝑘=1

 
(A16) 

where U is the fuzzy membership matrix, c are the data entry partitions and the 

logarithmic base 𝑎 is any positive integer. Values of H will range from 0 to 

𝑙𝑜𝑔𝑎(𝑐). Bezdek (1981) reported that the endpoints of H range do not accurately 

represent the amount of disorganization present (i.e., at c = 1, H = 0; at c = n, H = 

0). To remedy this issue, Fridgen et al. (2004) suggested NCE variation in 

Equation A17: 

𝑁𝐶𝐸 = 
𝐻(𝑼; 𝒄)

1 − (𝑐/𝑛)
 

(A17) 

NCE values will be similar to those of H when c is relatively small compared with 

n [i.e., (c/n) ap proaching 0]. However, in situations where (c/n) is large (i.e., 

pproaching 1), NCE will produce substantially different results. 

i) Xie and Beni index (XB – Equation A18): this index is focus on separation and 

compactness. Separation is a measure of the distance between one cluster and 

another cluster and compactness is a measure of proximity between data points 

in a cluster. According to this method, the optimal c is the one with the smallest 

XB value (Xie e Beni, 1991). The function of this method is :  

𝑉𝑋𝐵 =
∑ ∑ 𝜇𝑖𝑗

2 ||𝑉𝑖 − 𝑋||2𝑛
𝑗=1

𝑐
𝑖=1

𝑛𝑚𝑖𝑛𝑖,𝑗||𝑉𝑖 − 𝑋𝑗||
2

 (A18) 
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 where 𝜇 is the degree of membership, V is the centroid and X is the data entry. 

 

Indices for comparison between thematic maps and between management zones 

a) Kappa coefficient (K) (Cohen, 1960): this index is not used to validate the 

clustering process but to compare the agreement of two MZ delineation approach. 

Landis and Koch (1977) proposed the following classification: 0 < K ≤ 0.2 

indicates no agreement, 0.2 < K ≤ 0.4 weak agreement, 0.4 < K ≤ 0.6 moderate 

agreement, 0.6 < K ≤ 0.8 strong agreement, and 0.8 < K ≤ 1 very strong 

agreement.  

b) Global accuracy (GA – Foody, 2002 – Equation A19): like K, GA measures the 

degree of agreement among maps (MZs) and corresponds to the simple percent 

agreement. 

GA =
∑ xii
c
i=1

n
, (A19) 

where, ∑ xii
c
i=1  is the sum of the main diagonal of the error matrix with c classes 

and a total of N samples collected (number of points interpolated). 
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6 FINAL CONSIDERATIONS 

 

The developed computational module correctly applies the protocols for 

automatically constructing thematic maps and the management zones delineation. The case 

study demonstrated its ease of use from a modern and user-friendly graphical interface and 

the advantages of data persistence and cloud processing. The comparison with other 

traditional and state-of-the-art software showed greater ease of use, greater completeness of 

integrated tasks, better time efficiency, better data persistence, and a greater amount of 

analysis tools in the module developed in this work. 

The developed computational module is already integrated with the free web 

platform AgDataBox (https://adb.md.utfpr.edu.br/map/auth/login) and can be used by 

technicians and researchers for commercial and educational activities or research. 

 

 

7 FUTURE WORKS 

 

As suggestions for future works that can be incorporated to the module, a 

researcher can add the option of choosing the best interpolator by the kriging algorithm in 

addition to IDW. It is also possible to add other algorithms besides FCM to MZs delineation in 

the configurations, since ADB-MAP has thirteen more delineation algorithms. 


