
Guilherme Luciano Donin Villaca

Strategies to mitigate anti-patterns in
microservices before migrating from a monolithic

system to microservices

Cascavel-PR

2022

Guilherme Luciano Donin Villaca

Strategies to mitigate anti-patterns in microservices before
migrating from a monolithic system to microservices

Dissertação apresentada como requisito par-
cial para a obtenção do grau de Mestre pelo
Programa de Pós-Graduação em Ciência da
Computação (PPGComp) da Universidade
Estadual do Oeste do Paraná – Unioeste, cam-
pus de Cascavel.

Universidade Estadual do Oeste do Paraná – Unioeste – Cascavel

Centro de Ciências Exatas e Tecnológicas – CCET

Programa de Pós-Graduação em Ciência da Computação – PPGComp

Supervisor: Prof. Dr. Ivonei Freitas da Silva

Cascavel-PR
2022

Guilherme Luciano Donin Villaca
Strategies to mitigate anti-patterns in microservices before migrating from a

monolithic system to microservices/ Guilherme Luciano Donin Villaca. – Cascavel-PR,
2022-

140p. : il. (algumas color.) ; 30 cm.

Supervisor: Prof. Dr. Ivonei Freitas da Silva

Dissertação (Mestrado)– Universidade Estadual do Oeste do Paraná – Unioeste –
Cascavel
Centro de Ciências Exatas e Tecnológicas – CCET
Programa de Pós-Graduação em Ciência da Computação – PPGComp, 2022.
1. monolithic. 2. migration. 3. microservices. 4. anti-patterns. 5. strategies I.

Orientador. II. Universidade xxx. III. Faculdade de xxx. IV. Título

Guilherme Luciano Donin Villaca

Strategies to mitigate anti-patterns in microservices before
migrating from a monolithic system to microservices

Dissertação apresentada como requisito par-
cial para a obtenção do grau de Mestre pelo
Programa de Pós-Graduação em Ciência da
Computação (PPGComp) da Universidade
Estadual do Oeste do Paraná – Unioeste, cam-
pus de Cascavel.

Trabalho aprovado. Cascavel-PR, 10 de maio de 2022:

Prof. Dr. Ivonei Freitas da Silva
Orientador(a)

Dr. Wesley Klewerton Guez Assunção
Johannes Kepler Universität Linz

Dr. Sidgley Camargo de Andrade
Universidade Tecnológica Federal do Paraná

Cascavel-PR
2022

Para meus filhos Luís Guilherme e Heloísa, minha inspiraçao todos os dias.

Acknowledgements

Agradeço aos colegas do NTI da Reitoria da Unioeste, onde trabalhei boa parte
deste mestrado, pela compreensão devido ao tempo que foi necessário para se dedicar a
esta pesquisa. Ao meu orientador pela paciência, ensinamentos e dedicação despendida
para que esta pesquisa fosse possível e por fim a minha família, meus pais Sidnei e Maria
Inês, pelos conselhos e suporte que foi me dado durante toda a vida, aos meus irmãos,
Rafael, Daniele e Maurício pelo apoio e torcida e aos meus amigos pelo apoio e distração
nos momentos mais dificeis.

“São quatro os homens
Aquele que não sabe, e não sabe que não sabe. É um tolo: evite-o;

Aquele que não sabe, e sabe que não sabe. É um simples: ensine-o;
Aquele que sabe, e não sabe que sabe. Está dormindo: acorde-o;

Aquele que sabe, e sabe que sabe. É um sábio: siga-o“
Provérbio Árabe

Abstract
DONIN VILLACA, Guilherme Luciano. Strategies to mitigate anti-patterns in
microservices before migrating from a monolithic system to microservices.
Supervisor: Prof. Dr. Ivonei Freitas da Silva. 2022. 140f. Dissertação (Mestrado em
Ciência da Computação) – Universidade Estadual do Oeste do Paraná, Cascavel – Paraná,
2022.

Microservice architectures are affected by the so-called anti-patterns, i.e., bad implementa-
tion habits that affect software quality. Considering that the vast majority of microservices-
based systems are migrated from monolithic legacy systems, these anti-patterns can be an
undesirable inheritance that must be avoided. Some of these microservice anti-patterns
should be mitigated in the early stages of the migration process, namely during pre-
migration. To assist practitioners and researchers in mitigating microservice anti-patterns
during pre-migration, this dissertation presents an exploratory study that examines existing
strategies. This study addresses the anti-patterns already catalogued in the literature
and defined which ones can be mitigated through better pre-migration planning when
moving from monolithic to microservice-based systems. This study relies on multi-methods
composed of a systematic literature mapping, a rapid review and interview with practi-
tioners. Then, results are analysed using thematic analysis. As a result, ten strategies were
identified, namely adopt the domain-driven design, use the strangler pattern, identify tight
coupling, use of backlog strategy, group entities, classify data in business subsystem, look
at data first, focus on clean architecture, adopt the twelve factor app, and adoption of the
evolvability assurance.

Keywords: monolithic, migration, microservices, anti-patterns, strategies.

Resumo
DONIN VILLACA, Guilherme Luciano. Estratégias para mitigar antipadrões em
microsserviços antes da migração de um sistema monolítico para microsserviços.
Supervisor: Prof. Dr. Ivonei Freitas da Silva. 2022. 140f. Dissertação (Mestrado em Ciência
da Computação) – Universidade Estadual do Oeste do Paraná, Cascavel – Paraná, 2022.

As arquiteturas de microsserviços são afetadas pelos chamados antipadrões, que são
maus hábitos de implementação que afetam a qualidade do software. Considerando que a
grande maioria dos sistemas baseados em microsserviços são migrados de sistemas legados
monolíticos, esses antipadrões podem ser uma herança indesejável que deve ser evitada
pois isto afeta negativamente a arquitetura de microsserviços, causando problemas de
manutenibilidade, gerenciamento e evolução do sistema. Alguns desses antipadrões de
microsserviços devem ser mitigados nas fases iniciais do processo de migração, ou seja,
durante a pré-migração. Para ajudar profissionais e pesquisadores a mitigar antipadrões de
microsserviços durante a pré-migração, esta dissertação apresenta um estudo exploratório
que examina as estratégias existentes. Este estudo aborda os antipadrões já catalogados
na literatura e define quais podem ser mitigados por meio de um melhor planejamento
na fase de pré-migração ao passar de sistemas monolíticos para sistemas baseados em
microsserviços. Este estudo se baseia em multi-métodos compostos por um mapeamento
sistemático da literatura, uma revisão rápida e entrevistas com profissionais. Em seguida,
os resultados são analisados por meio da análise temática. Como resultado, dez estratégias
foram identificadas, que são, adotar o domain-driven design, uso da strangler pattern,
identificar o alto acoplamento, usar uma estratégia de backlog, agrupamento de entidades,
classificar dados como subsistema de negócios, olhar primeiro para os dados, uso de clean
architecture, adotar twelve factor app e adotar uma estratégia de garantia de evolução do
sistema.

Palavras-chave: monolitico, migração, microsserviços, anti-padrões, estratégias

List of Figures

Figure 1 – Monolithic Architecture (source: (Vasylenko, 2018)) 19
Figure 2 – Microservice Architecture (source: (Richardson, 2018)) 22
Figure 3 – Methodology . 27
Figure 4 – Papers Selection . 32
Figure 5 – Rapid Review Papers Selection . 35
Figure 6 – When Microservices Fail - Representation of the Spreadsheet (source:

(Ibryam, 2021)) . 36
Figure 7 – Thematic Synteshis process (adapted from (Cruzes; Dyba, 2011)) . . . 44
Figure 8 – Categories . 45
Figure 9 – Thematic map of strategies to mitigate anti-patterns in microservices . 76

List of Tables

Table 1 – GQM for Rapid Review . 34
Table 2 – Metrics . 39
Table 3 – Interview Questionnaire . 41
Table 4 – Roles of interviewees . 43
Table 5 – SLM Analysis . 54
Table 6 – Responses of 1st question - Motivation to migrate 60
Table 7 – Responses of 2nd question . 60
Table 8 – Responses of 3rd question . 61
Table 9 – Responses of 4th question . 61
Table 10 – Responses of 7th question . 62
Table 11 – Responses of 8th question . 63
Table 12 – Responses of 10th question . 64
Table 13 – Responses of 11th question . 64
Table 14 – Responses of 12th question . 65
Table 15 – Responses of 17th question . 68
Table 16 – SLM Codes . 72
Table 17 – Rapid Review Codes . 73
Table 18 – Interview Codes . 74
Table 19 – Themes & Codes . 75

List of abbreviations and acronyms

MSA Microservice Architecture

TD Techinical Debt

DDD Domain-Drive Design

API Application Programming Interface

RQ Research Question

SRQ Subresearch Question

SLM Systematic Literature Mapping

RR Rapid Review

GQM Goal, Question and Metric

CD/CI Continuous integration and continuous deployment

Contents

1 INTRODUCTION . 16
1.1 Context . 16
1.2 Motivation . 17
1.3 Problem - Research Question . 17
1.4 Methodology . 18
1.5 Contribution . 18
1.6 Dissertation Structure . 18

2 BACKGROUND . 19
2.1 Monolithic Architecture . 19
2.2 Why does the monolithic degrade? 20
2.3 Microservices . 21
2.3.1 Modernization to Microservices . 22
2.3.2 Bad Smells/Antipatterns in Microservices 23
2.3.3 List Bad Smells/Antipatterns . 23
2.4 Phases for Migration to Microservices 25
2.5 Summary . 26

3 METHODOLOGY . 27
3.1 Systematic Literature Mapping . 27
3.1.1 Research question . 28
3.1.2 Search process . 29
3.1.3 Inclusion/exclusion criteria . 30
3.1.4 Primary study selection process . 31
3.1.5 Data collection . 31
3.1.6 Data analysis and synthesis . 31
3.2 Rapid review . 32
3.2.1 Rapid Review - Research Question . 33
3.2.2 Rapid Review - Criteria . 33
3.2.2.1 Inclusion Criteria . 33
3.2.2.2 Exclusion Criteria . 34
3.2.2.3 Stop Criteria . 34
3.2.3 Rapid Review - Search Process . 35
3.2.4 Rapid Review - Quality criteria . 35
3.2.5 Rapid Review - Data Analysis and Synthesis 36
3.3 Interview Based on Expert Opinion 36

3.3.1 Goal, Question and Metrics . 37
3.3.1.1 Goals . 37
3.3.1.2 Questions . 38
3.3.1.3 Metrics . 38
3.3.2 Motivation . 39
3.3.3 Research design . 39
3.3.3.1 Questions . 40
3.3.3.2 Expert selection . 40
3.3.3.3 Interview Procedures . 42
3.4 Thematic Analysis . 43
3.5 Summary . 44

4 SYSTEMATIC LITERATURE MAPPING 45
4.1 Technical Debt . 45
4.1.1 Antipatterns . 45
4.1.2 Architectural Smells . 46
4.1.2.1 Research Question Answers . 47
4.1.3 Refactoring . 48
4.1.3.1 Research Question Answers . 49
4.2 Modernization . 49
4.2.0.1 Research Question Answers . 49
4.3 Decomposition . 51
4.3.0.1 Research Question Answers . 52
4.4 Summary . 54

5 RAPID REVIEW . 55
5.1 General Approaches . 55
5.1.1 Log Aggregation . 55
5.1.2 Data First . 55
5.1.3 Coupling and Cohesiveness . 55
5.2 Strangler Pattern . 56
5.3 Modularity . 57
5.4 Summary . 58

6 INTERVIEW . 59
6.1 First Group of Questions . 59
6.1.1 Question 1 . 59
6.1.2 Question 2 . 60
6.1.3 Question 3 . 60
6.1.4 Question 4 . 60

6.1.5 Question 5 . 61
6.1.6 Question 6 . 61
6.1.7 Question 7 . 62
6.1.8 Question 8 . 62
6.1.9 Question 9 . 63
6.1.10 Question 10 . 63
6.2 Second Group of Questions . 64
6.2.1 Question 11 . 64
6.2.2 Question 12 . 65
6.2.3 Question 13 . 65
6.2.4 Question 14 . 66
6.2.5 Question 15 . 66
6.2.6 Question 16 . 67
6.2.7 Question 17 . 67
6.3 Data Analysis . 68
6.3.1 1st Group of questions . 68
6.3.2 2nd Group of Questions . 69
6.4 Summary . 70

7 ANALYSIS AND DISCUSSIONS . 71
7.0.1 Analysis procedure . 71
7.1 Systematic Literature Mapping Analysis 71
7.2 Rapid Review Analysis . 72
7.3 Interview Analysis . 73
7.4 Themes . 75
7.5 Discussion . 76
7.6 Limitations of the study . 77
7.7 Summary . 77

8 CONCLUSION & FUTURE WORK 78
8.1 Conclusion . 78
8.2 Future Work . 79

REFERENCES . 80

APPENDIX 88
.1 Systematic Literature Mapping . 89
.1.1 Protocol Mapping . 89
.1.2 SLM Paper Count . 104

.2 Rapid Review . 106

.2.1 Rapid Review Search Results . 113

.2.2 RR Paper Count . 125

.3 Interviews . 127

16

1 Introduction

1.1 Context
Monolithic software suffers degradation over time and, to maintain quality, the

best approach is to reduce software defects (bug fixes) and design problems (refactoring)
(Ahmed et al., 2015). These problems can also be called anomalies in the code and are key
factors for degradation, if not removed, the software can suffer from erosion, which occurs
when architectural violations are introduced and drift, when bad design decisions affect
the architecture (Macia et al., 2012). Degradation occurs due to constant changes and
implementations of new features, which is the way to meet the requirements that arise as
the system grows. Such changes end up in conflict with the way the software was originally
built, either with the design or with the initial implementation, and become expensive
to revert, in addition, the technology used to build the software may become outdated
after some years, becoming incompatible with current demands like the cloud. Cloud
computing is a paradigm shift from the practice of on-premise computing and resource
utilization to a pool of virtualized computing services. (Ogbole; Ogbole; Olagesin, 2021).
To contain degradation, there are several approaches, such as system complete rebuilding
using new design techniques and technologies. For Candela et al. (2016) modernization of
software is one of the paths to be taken, whether in the form of refactoring, remodeling or
migration to another approach such as software product lines or to a new architecture,
such as microservices.

The essence of microservices is to decompose the application’s components into
small functionalities logically grouped as services, each running in its own process and
communicating with lightweight mechanisms, usually an HTTP resource API (Jambu-
nathan; Y., 2016a). A constant idea in this universe of applications in the cloud is the reuse
of software, which brings efficiency to the application as a whole, making it possible to
consume services without the need to create functionality from scratch (Linthicum, 2016).
Migrating from monolithic systems to microservices has been an industry trend in recent
years, inspired by large companies like Amazon, Linkedin, Netflix and others, and gaining
popularity. However, if you are considering a new architecture such as microservices, you
should keep in mind that an architecture based on distributed systems also brings more
complexity than a monolithic system.

Chapter 1. Introduction 17

1.2 Motivation
In the literature there are researches that point out problems that occur in the

migration from monolithic to microservices and that after the migration is completed
these problems negatively affect the quality of the new architecture. According to Taibi
and Lenarduzzi (2018), Taibi, Lenarduzzi and Pahl (2019) these problems also called
bad smells or antipatterns are caused by bad practices that occur during development
and affect some quality attributes of the software such as understandability, testability,
extensibility, reusability and maintainability. It is also concluded that practitioners need
to carefully make the decision of migrating to MSA based on the return on investment,
since this architectural style additionally causes some pains in practice (Li et al., 2021b).
Based on this, it raised the question if the migration of monolithic systems that suffer
from degradation can cause these antipatterns, and whether an understanding, analysis,
refactoring or reengineering of the monolithic system can mitigate antipatterns, i.e, whether
antipatterns are inherited by the new architecture. Based on this gap, the aim of this
research is what strategies can be taken in monolithic system before the migration process
began so that antipatterns in microservices can be mitigated.

From the antipatterns cataloged (Taibi; Lenarduzzi, 2018; Taibi; Lenarduzzi; Pahl,
2019; Carrasco; Bladel; Demeyer, 2018), it was identified that some of them are unique for
microservices, that is, they are problems related to distributed systems, communication
between microservices, use or lack of use of tools or patterns etc. Other antipatterns
was considered that can be analyzed even with the monolithic system, and with a better
planning or study/analysis can be mitigated when the system with the architecture in
microservices is ready.

1.3 Problem - Research Question
This dissertation starts with the following research question: Before migrating from

a monolithic system to microservices, what strategies are used to mitigate the antipatterns
present in microservices?. The aim is to gain a deep understanding of the challenges
and solutions in this matter. There are many researches published with a catalog of bad
smells and antipatterns in microservices with proposed solutions of this antipatterns in
microservices systems (Taibi; Lenarduzzi, 2018; Taibi; Lenarduzzi; Pahl, 2019; Carrasco;
Bladel; Demeyer, 2018), several others showed catalogs of bad smells, architectural smells
in monolithic system, tools for correction and detection of smells in monolithic systems.
However, none of these studies focused on strategies to be taken for the monolithic
system before migrating to microservices. However, the aforementioned studies do propose
solutions for the microservices context.

Chapter 1. Introduction 18

1.4 Methodology
To achieve the purpose of this research, the adopted methodology used was initially

systematic literature mapping (Kitchenham; Charters, 2007), in the sequence, as it was
also an idea from the beginning, look at gray literature (Kamei et al., 2021) with a rapid
review (B. Pinto G., 2020) in order to analyze and confirm whether the SLM results would
be similar. In parallel, the GQM technique (Basili; Rombach, 1988) (goal, question, metric)
was used to define how to apply the interview (Marshall; Brereton; Kitchenham, 2015),
and at the end was used a thematic synthesis approach (Cruzes; Dyba, 2011) to assist in
the data analysis, which was the last part of this research. More details will be described
in the methodology chapter.

1.5 Contribution
With this research, the intention is to contribute so that researchers and professionals

can analyze the monolithic system regarding state of degradation, defects and architectural
design problems, as well as have a better planning in the pre-migration and migration
phase to microservices so that the antipatterns existing microservices are minimized or
even avoided.

1.6 Dissertation Structure
The remainder of this dissertation is organized as follows, in chapter 2 I discuss the

background that supports this research, chapter 3 has the Methodology to data collect and
analysis. In chapters 4 (SLM), 5 (RR) and 6 (Interview), I describe the data collected to
provide evidence of what strategies have been taken to avoid antipatterns in microservices.
In chapter 7, I describe the thematic analysis process on collected data to answer the
dissertation research question. And in chapter 8 the conclusion and future work.

19

2 Background

This chapter introduces basic information for the rest of the dissertation.

2.1 Monolithic Architecture
In the traditional application, all the business components are packaged together,

distributed and deployed as a unit, this development and deployment pattern is called
monolithic (Figure 1). When it comes to the monolithic architecture system, it cannot
replicate the component or extension module in question, and deploying the entire appli-
cation to multiple nodes results in wasted resources (Ren et al., 2018). Monolithic are
rigid and tightly coupled. Any small changes to be made in any component in this kind of
architecture will have challenges and large impact on productivity, time, cost and deploy-
ment. As business demands that these applications be distributed, scalable, and portable
across different technologies and platforms, it is more complicated for developers to make
changes, test, and deploy these applications in a short period of time (Jambunathan; Y.,
2016b).

Figure 1 – Monolithic Architecture (source: (Vasylenko, 2018))

Chapter 2. Background 20

The following benefits of monolithic architecture can be mentioned: fewer cross-
cutting concerns – it is simpler to hook up components to cross-cutting concerns when
everything is running through the same application, less operational overhead – only one
application needs to be set up, Less complex to deploy – only one application needs to be
deployed. Drawbacks of monolithic architecture are as follows: coupled – is very difficult to
make changes when monolith becomes very complex, continuous deployment – the entire
application should be deployed on each update, scalability – difficult to scale when different
modules have conflicting resource requirements, reliability – bug in any component can
potentially bring down the entire application. Usually, legacy applications are always
growing in size and complexity, therefore, it led to monstrous monolithic software after a
few years of development and disadvantages of monolithic architecture become outweigh its
advantages. Fixing bugs and adding new features to such application is a very complex and
time-consuming operation. Scalability usually is not possible or require a lot of work. Once
this happens, organizations start looking for a new architectural solution (Kazanavičius;
Mažeika, 2019).

2.2 Why does the monolithic degrade?
Monoliths suffer from degradation/erosion over time, which happens due to cons-

tant modifications in code, requirements changes, growing number of defects (bugs) and
design problems. In addition, it can decrease software performance, substantially increase
evolutionary costs, and degrade software quality. Moreover, in an eroded architecture, code
changes and refactorings may introduce new bugs and aggravate the brittleness of the
system (Li et al., 2021a).

In the development of software systems, some bad smells are identified and fixed to
maintain the systems. These smells can be classified into three categories according to their
granularity: architecture smells, design smells, and code smells. Code smells are design
issues that degrade understandability and changeability at the code level, which results in
poor maintainability and hinders evolution of a system. Design smells indicate violation of
design principles such as cyclic dependencies principle, and have a potential impact on a
set of classes in design structure. Architecture smells are a typical type of architectural
technical debt and can negatively affect system-wide maintainability of a software system
(Tian; Liang; Babar, 2019). The growing number of smells results in degradation, and
because of that the software demands a constant adaptation or enhancement within an
operational software system. In the software engineering, it is widely accepted that real
world software must be continually adapted or enhanced to remain operational (Khadka
et al., 2015).

Software evolution has three main activities: maintenance, modernization, and

Chapter 2. Background 21

replacement. Modernization is important to increase maintainability, increase flexibility
and reduce costs (Comella-Dorda et al., 2000). Yang et al. (2005) mention two options, one
is a complete redevelopment and the other is an evolutionary migration or reengineering
and emphasizes that the first one is high risk, high cost, with long development and
understanding business logic and documentation. While the second may take longer, and
have the ability to minimize risks. One of the forms for modernization or reengineering is
to migrate monolithic software to microservices due to the benefits that this architecture
brings (Levcovitz; Terra; Valente, 2016). A monolithic architecture better suits a simple,
lightweight application. The microservices architecture solution is the better choice for
complex, evolving applications. Monolith should be modernizing to microservices when:
(i) monolith became too big and complex to maintain or extend, (ii) Modularity and
decentralization are an important aspect and (iii) the preference for long-term benefits
over short-term (Kazanavičius; Mažeika, 2019).

2.3 Microservices
According to Fowler (2014) microservice (see Figure 2) consist of suites of indepen-

dently deployable services organized around business capability, automated deployment,
intelligence in the endpoints, and decentralized control of languages and data. Microservices
are built around business functions and are deployed independently. As the term "microser-
vice"implies, services are the building blocks and the primary means of modularization in
microservice architectures. Services run in separate process contexts and can be deployed,
replaced, and retired individually. Each microservice focuses on providing a single business
function and follows the principle of single responsibility (Knoche; Hasselbring, 2019).
Thereupon, each service can be developed in the programming language that best fits the
characteristics of the service, uses the most appropriate mechanism for data persistence,
runs in an appropriate hardware and software environment, and is developed by different
teams (Levcovitz; Terra; Valente, 2016).

Benefits of microservices architecture are as follows (Kazanavičius; Mažeika, 2019):

• Agility (Deployability) – microservices can be deployed independently and there is
no need to restart an entire application;

• Reliability – a microservice fault affects that microservice alone and its consumers;

• Scalability – each microservice can be scaled independently using pools, clusters,
grids;

• Cloudability – the deployment characteristics make microservices a great match for
the elasticity of the cloud;

Chapter 2. Background 22

Figure 2 – Microservice Architecture (source: (Richardson, 2018))

• Modifiability – each microservice is incapsulated therefore it is more flexibility to
use new frameworks, libraries, data sources, and other resources.

2.3.1 Modernization to Microservices

An approach to modernize monolithics to microservices comprising three major
phases (Knoche; Hasselbring, 2019):

1. New features are implemented only as microservices.

2. An interface layer is created through which the newly created microservices can
access the functions of the monolith. This interface layer serves as an anti-corruption
layer to clearly separate the old and new domain models.

3. Functionality is gradually removed from the monolith and re-implemented as micro-
services.

A closer look at this approach reveals several important challenges, and highlights
that such a modernization is far from trivial. The benefits of adopting a microservices
architecture come with the complexities of distributed systems (Carrasco; Bladel; Demeyer,

Chapter 2. Background 23

2018). During the migration process, practitioners often face common problems, which are
due mainly to their lack of knowledge regarding bad practices and patterns. The so called
bad smells are indicators of situations that negatively affect software quality attributes
such as understandability, testability, extensibility, reusability, and maintainability of the
system under development (Taibi; Lenarduzzi, 2018).

2.3.2 Bad Smells/Antipatterns in Microservices

To aid practitioners in identifying the potential pitfalls, Taibi and Lenarduzzi
(2018) defined 11 bad smells related to the microservices architecture. Later Carrasco,
Bladel and Demeyer (2018) present 5 new architecture and 4 new migration bad smells
found by digesting 58 different sources from the academia and grey literature. Taibi
continues his research and identified a taxonomy of 20 antipatterns, including organizational
(team oriented and technology/tool oriented) antipatterns and technical (internal and
communication) antipatterns (Taibi; Lenarduzzi; Pahl, 2019).

2.3.3 List Bad Smells/Antipatterns

First the 9 smells proposed by Carrasco, Bladel and Demeyer (2018):

• Single layer teams - if a team is divided by layers, simple changes can require
time and effort to approve between the teams.

• Greedy Service Container - not using containers adds a whole new level of
complexity to the management and orchestration of the application.

• Single DevOps toolchain - microservices architecture require DevOps toolchains,
such as continuous delivery, continuous integration, monitoring, and orchestration.

• Dismiss documentation - in microservices documenting the exposed API is
particularly important. With the increased number of independent services, the
overview of the system can be easily lost.

• Grinding dusty or coarse services - a monolith must be broken down into
services, for this the proper granularity must be determined. This depends on what
the application actually is doing and the wrong granularity can have profound
side-effects.

• Thinking microservices are a silver bullet - however promising microservices
seem to be, their advantages come with many inherent complexities and challenges
at possibly a high cost. Therefore, this architectural style might not be worthwhile
for many applications.

Chapter 2. Background 24

• Rewrite all services into microservices at once - many new faults can be
inadvertently introduced, leading to unnecessary risks.

• Learn as you go - put inexperienced developers in distributed systems is generally
not a good idea. Their inexperience may result in higher cost and development time.

• Forgetting about the CAP theorem - a distributed data store cannot simulta-
neously provide more than two of the following guarantees: consistency, availability,
and partition tolerance.

Following the antipatterns proposed by Taibi and Lenarduzzi (2018), Taibi, Lenar-
duzzi and Pahl (2019):

• Hardcoded endpoints - hardcoded IP addresses and ports of the services between
connected microservices.

• Wrong cuts - microservices should be split based on business capabilities, not on
technical layers (presentation, business, data layers).

• Cyclic dependency - a cyclic chain of calls between microservices

• API versioning - APIs are not semantically versioned (e.g., v1.1, 1.2, etc.) For
example, the returning data might be different or might need to be called differently.

• Shared persistence - different microservices access the same relational database.
In the worst case, different services access the same entities of the same relational
database.

• ESB usage - the microservices communicate via an Enterprise Service Bus (ESB).

• Legacy organization - the company still work without changing their processes
and policies. As example, with independent Dev and Ops teams, manual testing and
scheduling common releases.

• Local logging - logs are stored locally in each microservice, instead of using a
distributed logging system

• Megaservice - a service that does a lot of things.

• Inappropriate service intimacy - the microservice keeps on connecting to private
data from other services instead of dealing with its own data.

• Lack of Monitoring - Lack of usage of monitoring systems, including systems to
monitor if a service is alive or if it responds correctly.

Chapter 2. Background 25

• No API-Gateway - microservices communicate directly with each other. In the
worst case, the service consumers also communicate directly with each microservice,
increasing the complexity of the system and decreasing its ease of maintenance.

• Shared libraries - usage of shared libraries between different microservices.

• Too many technologies - usage of different technologies, including development
languages, protocols, frameworks.

• Lack of microservice skeleton - each team develop microservices from scratch,
without benefit of a shared skeleton that would speed-up the connection to the
shared infrastructure (e.g. connection to the API-Gateway)

• Microservice greedy - teams tend to create of new microservices for each feature,
even when they are not needed.

• Focus on latest technologies - the migration is focused on the adoption of the
newest and coolest technologies, instead of based on real. The decomposition is based
on the needs of the different technologies aimed to adopt.

• Common ownership - one team own all the microservices.

• No DevOps tools - the company does not employ CD/CI tools and developers
need to manually test and deploy the system.

• Non-homogeneous adoption - only few teams migrated to microservices, and the
decision if migrate or not is delegated to the teams.

There are antipatterns that can be closely linked to the monolithic system and,
then, they should be considered in pre-migration phase: Wrong Cuts, Cyclic Depen-
dency, Shared Persistence, Megaservice, Shared Libraries, Microservice Greedy,
Innappropriate Service Intimacy. However, there some of the bad smells/antipatterns
mentioned above can be exclusively for microservices and, then, for this research, cannot
be considered unless they are analyzed in a planning phase before migrating, with no code
of the monolithic involved, and that should be focus for more research.

2.4 Phases for Migration to Microservices
In migration process, there are suggested phases there need to be taken for the

transformation. In Wolfart et al. (2021), 4 phases were identified - Phase 1: Comprehension
the monolithic legacy system; Phase 2: Definition of the microservice architecture; Phase
3: Execution of the transformation; Phase 4: Monitoring after the migration. In this study,
based on these 4 identified phases, phases 1 and 2 are considered pre-migration because

Chapter 2. Background 26

they are actions taken prior to the migration of the monolithic system, phase 3 as migration
and phase 4 as post-migration. The last phase was not considered in this study.

2.5 Summary
This chapter provides the foundation for this dissertation with the current state

of the art in bad smells and antipatterns for microservices. Following the dissertation,
I discuss how to mitigate the antipatterns in monolithic software with strategies and
refactoring approaches before migrating to the microservices approach.

27

3 Methodology

In this chapter, I will present the methodology. Start with Figure 3 showing the
research methodology. The First Reading step took place at the beginning of this master
thesis and then the gap was found. This was followed by the Gap Found step with the
development of the research question below (see 3.1.1). A systematic literature mapping
was conducted. The implementation and results are presented in the next chapter. Next, I
started planning the survey/interviews and then used the GQM technique to elaborate
the questions. In parallel, a Rapid Review was conducted, searching the grey literature
for results that matched the SLM results. This process was important in formulating the
questions for the interview and later the analysis.

Figure 3 – Methodology

3.1 Systematic Literature Mapping
A systematic literature review is a means of identifying, evaluating and interpreting

all available research relevant to a particular research question, or topic area, or phenomenon
of interest (Kitchenham; Charters, 2007). Also accordingly with Kitchenham and Charters
(2007), if, during the initial examination of a specific subject in literature, it is discovered
that very little evidence is likely to exist or that the topic it is likely that a systematic
mapping study may be a more appropriate exercise than a systematic review.

Chapter 3. Methodology 28

3.1.1 Research question

The main question in this dissertation is What are the adopted strategies by
the researchers or practitioners to refactor the architecture of a monolithic
system before adopting a modernization process for Microservice?
Rationale: Understand whether they are preparing to avoid (or mitigate) future (and
possible) antipatterns after migrating. Strategies here can mean recommendations or
refactoring techniques to improve the design of an existing code (Fowler, 2018), the
use of design patterns (Gamma et al., 1995), design principles (Martin, 2000) or even
approaches of reactive manifesto (Bonér et al., 2014). Other meanings for strategy are:
criteria, processes, guidelines, tools, patterns, metrics.

Based on this question, the following subquestions emerged to guide this systematic
mapping1.

SQ1. Are the microservice antipatterns considered in those strategies?
Rationale: Antipatterns can be related to monolith or microservice architecture. Tools,
techniques, and so on, can exist to mitigate these microservice antipatterns. It is important
to understand whether microservice antipatterns can be observed in monolithic systems
before migrating to microservice architecture. For example, megaservice (a microservice
antipatterns) can be observed as a big module in monolithic architecture.

SQ2. Which strategy is used to determine the extent of monolithic
software degradation?
Rationale: If the software is very degraded with, for example, outdated technology, having
many defects (bugs), and design problems, what strategies in this scenario have been
adopted for modernization and mitigate that this degradation be inherited in microservices.

SQ3. Which strategy is used to identify whether upgrading to microser-
vices is possible?
Rationale: Knowing any strategy that considers a feasibility analysis before migrating to
microservices can provide evidence about whether or not the team should migrate, as well
as why.

SQ4. What was the context (scenario) of the monolithic system?
Rationale: Context characterized by architecture, business goals, organizational, and
restrictions.

SQ5. What were the challenges and recommendations?
Rationale: Migration to microservices is still on the rise in the industry and is important
to identify challenges and good practices to assist new practitioners who wish to migrate
to microservices.
1 The protocol for this SLM can be found in the appendix .1.

Chapter 3. Methodology 29

The research question and the subquestions are discussed from the following
viewpoints of the PICO structure that is according to its guidelines, articulating a question
in terms of its four anatomic parts—Problem/Population, Intervention, Comparison, and
Outcome (PICO)—facilitates searching for a precise answer (Huang; Lin; Demner-Fushman,
2006):

• Study Population: practitioners/projects that refactor monolithic software before
migrating to microservices, researchers/projects that study refactoring of monolithic
software before migrating to microservices.

• Study Intervention: use of some software engineering strategy such as activities,
practices, tools, standards, guidelines, patterns, metrics, criteria, evidence during
the refactoring of the monolithic before migrating to microservices.

• Study Comparisons: -

• Study Outcomes: (i) what are the adopted strategies; (ii) how was the adoption of
the strategy. (iii) What the problems, lessons learned, or challenges they have found
during the refactoring. (iv) What are adopted criteria and evidence when selecting
and adopting refactoring strategies.

• Study design: all empirical studies designs such as case studies, technical reports
on feasibility study, controlled experiments (and quasi-experiments), experience
reports, the survey with the practitioners, and action research that show adoption of
refactoring of monolithic software before migrating to microservices.

3.1.2 Search process

The primary studies should be searched by following keywords: monolith, micro-
service; smell, antipattern, bad practice, pitfall, refactor, reengineer, violation, defect and
degradation. Search strings construction is based on research questions, PICO structure.
They are assembled by using boolean ANDs and ORs to merge keywords. Following the
search strings used in this review are listed:

((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR
refactor* OR reengineer* OR violation OR defect OR degradation) AND (microservice*
OR micro-service* OR "micro services"))

Based on Teixeira et al. (2019), the strategy for search engines was defined in a
similar way, by analysing their ability to use logic expressions, full text recovery, automated
searches of paper content and searches using specific fields (for example, title, abstract,
keywords). Primary studies search should be focused on important journals, conferences
proceedings, books, thesis and technical reports. The search process is manual and based

Chapter 3. Methodology 30

on web search engines, studies references and digital libraries of relevant publishers and
organizations in software engineering, such as:

• Scopus https://www.scopus.com/home.uri

• IEEEXplore (https://ieeexplore.ieee.org/Xplore/home.jsp)

• ScienceDirect (www.sciencedirect.com)

• Google Scholar (https://www.googlescholar.org/)

Specific researchers can also be contacted directly through their WebPages and
emails, if it is necessary to gather further information on any relevant research and the
paper (or set of papers) related to the work does not provide enough information on such
issues.

According to Kitchenham and Charters (2007), it is necessary to define inclusion
and exclusion criteria for the papers selection. These criteria should identify the primary
studies, i.e. the ones identified during the research, which provide evidence about the
research question. These criteria are presented in the following sections.

3.1.3 Inclusion/exclusion criteria

Inclusion criteria establish the inclusion reasons for each study found during the
search. Studies on the following topics will be included:

1. The study outlines strategies to refactor monolithic systems before migrating or
upgrading to microservice.

2. The study describes challenges or recommendations to refactor the monolithic system
before migrating or upgrading to microservices.

3. The study shows degradation conditions, failures or defects before migrating or
upgrading from monolithic to microservices.

4. The study presents tools or frameworks that assist or monitor defects in the design
of the monolithic system.

Exclusion criteria describe the following reasons to discard studies:

1. Duplicated studies. Whenever a certain study has been published in different publi-
cations, venues or search engines (or databases)

2. The study is not a scientific research article nor a conference article.

3. Study is not written in English

https://www.scopus.com/home.uri
https://ieeexplore.ieee.org/Xplore/home.jsp
www.sciencedirect.com
https://www.googlescholar.org/

Chapter 3. Methodology 31

3.1.4 Primary study selection process

The selection process for primary studies is performed by a joint effort of two
researchers.

As papers were read, exclusion/inclusion criteria must be obey and, if any are
achieved, it must be rejected but its details are kept in a reference repository system
(spreadsheets) containing information to further analysis and research, when necessary.

As showed in Figure 4, 513 studies were retrieved, 62 of them from a previous
study realized in this master course (Wolfart et al., 2020). After the first round of reading,
367 studies were left for the next round, which was the reading of the abstract where 87
studies were left for the final reading, where, finally, 59 studies were left.

3.1.5 Data collection

The data extraction forms must be designed to collect all the information needed to
address the review questions and the study quality criteria. The following were extracted
from each study:

The study’s title and authors. The source (conference, journal, and so on). The
year when the study was published. In case of study was published in different sources, the
most relevant was used in any analysis although both dates can be recorded. Classification
(related work or approach). Scope (Refactoring strategies, Modularization Techniques).
The answers for research questions addressed by the publication. Summary (a summary
with brief analysis, overview of its weaknesses and strengths).

The main data extraction effort was performed by two researchers.

3.1.6 Data analysis and synthesis

The primary studies were categorized since there are many techniques and methods
applicable to different scenarios. After analyzing the primary studies, they were grouped
in categories to facilitate the tabulation and further comparative analysis.

According to the comparisons and study analysis, the following criteria were raised:

• The strategies strengths and weaknesses;

• Limitations and trends in refactoring (remodularization) of monolithic systems before
migrating to microservice architecture;

• Challenges in the area to be addressed;

• Best practices (recommendations) of refactoring (remodularization) of monolithic
systems before migrating to microservice architecture.

Chapter 3. Methodology 32

Figure 4 – Papers Selection

3.2 Rapid review
Rapid Reviews are lightweight secondary studies focused on delivering evidence

to practitioners in a timely manner. RRs tend to be more connected to practice, when
compared to Systematic Reviews (SRs) The kick start of a RR is a practical problem
that exist in a software project. This particular problem must motivate researchers to
screen the literature looking for potential answers. As a consequence, researchers must
work closely to practitioners to guarantee that the RR is close tied to a practical context
(B. Pinto G., 2020).

Chapter 3. Methodology 33

This rapid review2 is intended to search the Grey Literature what has been published
by experts in the field (software engineers/architects, developers, analysts) during the
pre-migration and migration phase to understand the results of the mapping are similar
or if they bring another perspective. Over recent years, Grey Literature stands out as an
essential source of knowledge to be used alone or complementing research findings within
the traditional literature (Kamei et al., 2021). It has increased over the last few years,
mainly due to the widespread presence of GL media used by SE professionals, including
various types of social media and publication channels.

The intention with this rapid-review it is to understand whether antipatterns
are considered and mentioned and in what context and understand what techniques,
technologies, methods and solutions are adopted to face antipatterns before migrating
from monolithic systems to microservices.

I want to discover if are there experiences in Grey Literature of teams, projects or
organizations that describe the process/steps taken before migrating from the monolith
system to microservices. If Yes, Did they consider microservice antipatterns?, How were
the steps or strategies adopted? Did they consider refactoring catalogs or bad smells in
monoliths? and What are the challenges and benefits reported?. If not, What are the
challenges, benefits, lessons learned reported on the strategies adopted before migrating to
microservice architecture?

3.2.1 Rapid Review - Research Question

For this rapid review I develop the following research questions (Table 1) with the
purpose to understand and to discover what strategies was taken on monolithic systems
before migrating to microservice. This rapid review also differs from the systematic
literature mapping, because here what is important is the practitioners perspective.

3.2.2 Rapid Review - Criteria

3.2.2.1 Inclusion Criteria

Contribution type of gray literature:

• Blog posts, video, white paper;

• Practice experience in migration from monolithic system to microservices;

• Tips, suggestions, steps;

• Failures in microservices that are connected with antipatterns (that can be mitigated
in monolithic) identified in mapping.

2 The protocol for this RR can be found in the appendix .2.

Chapter 3. Methodology 34

Table 1 – GQM for Rapid Review

Goal

Purpose To Understand

Object Strategies taken on monolithic systems before migrating
to microservice systems

Issue With respect to the effectiveness in addressing
microservice antipatterns

Viewpoint from the practitioners perspective

RQ Q1
What strategies was taken on monolithic systems before
migrating to microservice systems from the viewpoint of the
practitioners?

Q2
How were applied the strategies on monolithic systems before
migrating to microservice systems from the viewpoint of
the practitioners?

Metrics

Q1 M1 List of Strategies

Q2

M1 Steps
M2 Tools
M3 Techniques
M4 Limitations

3.2.2.2 Exclusion Criteria

• Create microservices as a green development, which means not migrate from mono-
lithic.

• SOA, or any other service solution;

• Only theoretical opinion, without practical experience; Point out just differences
between microservices and monoliths, such as advantages and drawbacks;

• Product marketing information recommendation content only (if any articles are in-
cluded that have this product marketing information, mark them as “more likelihood
of bias” in the quality review.);

• No snowballing in links of articles, videos or blog posts;

• Tips, suggestions or experience in a brief or shallow manner;

• Video without transcription;

• Link unavailable / signature required;

• Copy of another white paper without credit.

3.2.2.3 Stop Criteria

• First 100(hundred) hits on Google;

• No snowballing in links of articles, videos, blog posts;

Chapter 3. Methodology 35

3.2.3 Rapid Review - Search Process

The same string of the SLM was used. Google was used in this case, because Google
Scholar was already used in SLM. Kamei et al. (2021) says that this are the two search
engines used for Grey Literature along with websites, for this reason another bases was
not considered as well as others search engines. With the SLM string most of the results
were similar to the mapping, but even so 8 grey articles were collected. After run the SLM
string I use a more direct approach using the following string: migration from monolithic
to microservice.

This string brought better results: 21 out of 100 analyzed links. 80 links to a
spreadsheet shared by software engineering researchers who collect and fill in / update the
spreadsheet regularly also served for this analysis (Figure 6). In total, 109 articles were
used for inclusion and exclusion criteria. After the first diagonal reading, 33 articles met
the inclusion criteria (Figure 5).

Figure 5 – Rapid Review Papers Selection

3.2.4 Rapid Review - Quality criteria

As stated in Table 4 of Garousi, Felderer and Mäntylä (2017) the responses that
was a motivation to do a Grey Literature Review were Yes for the following questions:

Chapter 3. Methodology 36

Figure 6 – When Microservices Fail - Representation of the Spreadsheet (source: (Ibryam,
2021))

• Is the subject “complex” and not solvable by considering only the formal literature?

• Is there a lack of volume or quality of evidence, or a lack of consensus of outcome
measurement in the formal literature?

• Is the contextual information important to the subject under study?

• Is it the goal to validate or corroborate scientific outcomes with practical experiences?

• Would a synthesis of insights and evidence from the industrial and academic com-
munity be useful to one or even both communities?

3.2.5 Rapid Review - Data Analysis and Synthesis

Following (Kamei et al., 2021) Qualitative Approach for this rapid review analysis
with the steps: Familiarizing ourselves with data, Initial coding, From codes to catego-
ries and Categories refinement. After this rapid review reading and analysis, codes and
categories refinement, the categories raised will be detailed in chapter 5.

3.3 Interview Based on Expert Opinion
The goal of the study is to explore the experiences and opinions of software

engineering/developer who migrate from monolithic to microservices, so it can be considered
primarily as being qualitative in nature. Semi-structured interviews are particularly suitable
for collecting qualitative data because, they provide the opportunity for discussion or
exploration of new topics that arise during data collection (Marshall; Brereton; Kitchenham,
2015).

Chapter 3. Methodology 37

The purpose of this semi-structured interview is to understand the state of practice
at the following points: (i) Validity of the research, context of what can be done to mitigate
antipatterns, and if there is something to be done, which techniques and strategies. (ii)
Organizational context of the pre-migration phase, if the necessary investments are made
in training, specialized staff, infrastructure, planning, etc.

3.3.1 Goal, Question and Metrics

To assist and guide this research to conduct a survey/interview with practitioners
in industry, the GQM technique was used. The goal/question/metric (GQM) paradigm
is intended as a mechanism for formalizing the characterization, planning, construction,
analysis, learning and feedback tasks. GQM represents a systematic approach for tailoring
and integrating goals to models of the software processes, products and quality perspectives
of interest, based upon the specific needs of the project and the organisation (Basili;
Rombach, 1988). GQM defines a certain goal, refines this goal into questions, and defines
metrics that should provide the information to answer these questions. By answering
the questions, the measured data defines the goals operationally, and can be analysed to
identify whether or not the goals are attained (Solingen; Berghout, 1999).

3.3.1.1 Goals

The GQM model starts top-down with the definition of an explicit measurement
goal. This goal is refined into several questions that break down the issue into its major
components. Each question is then refined into metrics that should provide information to
answer those questions (Solingen; Berghout, 1999).

The main goal of the interview is to gather initial evidence, through expert opinion,
about the effectiveness of practices (actions) of strategies and measures taken in monolithic
systems to address microservices antipatterns.

Accordingly to Basili and Rombach (1988) the basic template/guidelines for goal
definition is to set a purpose, perspective and environment. For this research the goal was
defined as:

(purpose) Understand reengineering practices in monolithic systems before mi-
grating to microservices architecture for the purpose of characterization with respect to
their effectiveness for addressing the microservices antipatterns (perspective) from the
point of view of experts in the area of migration from monolithic system to microservices
architecture (environment) in the context of the software engineering community.

Chapter 3. Methodology 38

3.3.1.2 Questions

Q1: Do you agree that the following association (Table 5) can mitigate bad smells
in microservices?
This question was intended to present the mapping results to interviewees.

Q2: Point out other possible solutions that you believe could be applied to address
known bad smells.
This question was optional and provided to allow the expert to suggest and evaluate other
possible solutions that was not collected in the mapping.

3.3.1.3 Metrics

Once goals are refined into a list of questions, metrics should be defined that
provide all the quantitative information to answer the questions in a satisfactory way.
Therefore, metrics are a refinement of questions into a quantitative process and/or product
measurements. After all these metrics have been measured, sufficient information should
be available to answer the questions (Solingen; Berghout, 1999). In the metric definitions
(Table 2) both quantitative metrics and qualitative metrics was used to take also a subject
opinion of the interviewees.

Chapter 3. Methodology 39

Table 2 – Metrics
Metric
M1 How many Years of experience

M2 Numbers of Motivations to Migrate from
monolithic to microservices

M3 What and how many were the forms of study
to learn about microservices complexity

M4 Members and quantity in the migration team
and their experiences

M5 How many microservices were planned in
pre-migration phase

M6 What and how many were the metrics to define
the size of each microservice

M7 What is the time of preparation, planning, study
for migration from monolithic to microservices

M8 What are the technologies of monolithic and
microservices

M9 What were the domains of the systems

M10 What antipatterns were known to respondents
before to the interview

M11 Which antipatterns were considered in pre-migration
to mitigate

M12 What approaches to separate the monolith or create
the microservice and database

3.3.2 Motivation

The interview on expert opinion can have high external validity, good potential for
theory generation, are straightforward to replicate, and are relatively cheap to organize.
The semi-structured interview based on expert opinion can be important to understand
what strategies are adopted to refactoring the monolithic systems before migrating to
microservice architecture, identifying the main challenges and recommendations.

The main goal of this interview is to confirm or refuse the insights and findings
from the systematic mapping study and rapid review, as well, as, to explore more evidence
from the experts.

3.3.3 Research design

The research approach is based on two other popular techniques to extract data
from people, survey (Kitchenham; Pfleeger, 2008) and expert opinion (Li; Smidts, 2003).
A survey is a system for collecting valid information from or about people to describe,
compare, or explain their knowledge, attitudes, and behavior. The system consists of
interrelated activities starting with defining precise survey objectives, choosing respondents,
preparing a reliable and valid survey instrument, testing the survey with respondents, and

Chapter 3. Methodology 40

conducting all activities in an ethical manner. The survey researcher is responsible for
implementing all survey activities and ensuring their quality (Fink, 2010). The approach
for the expert opinion is composed of the following steps:

1. Problem Statement. The background and problem need to be clearly systematized
and defined.

2. Selection of Experts. A number of experts need to be identified based on a set of
criteria such as credibility, knowledge ability, and dependability of experts.

3. Opinion Elicitation. This step poses the right question and ensures conditions
conductive to an elicitation process.

4. Opinion Aggregation. The idea is to reach an aggregated opinion or a consensus
based on each individual opinion.

5. Decision Making. This last step makes the decision based on aggregated opinion.

3.3.3.1 Questions

The questionnaire was composed of 17 questions (Table 3) which was defined around
the main research question What and How are the adopted strategies by the researchers
or practitioners to refactor the architecture of a monolithic system before adopting a
modernization process for microservice?. The questions was divided in 2 groups - the first
group has open questions about microservices, experience of the experts, knowledge about
antipatterns in microservices. The second group was specific of this research, to extract of
the respondents if they had knowledge about antipatterns before the interview, if they
have strategies to mitigate antipatterns and, if yes, what antipatterns was considered,
also what strategies to decompose the monolith, and if was intended do mitigate any
antipatterns. I select the insights from the systematic mapping to develop each question.
The questions were developed by 2 researchers. The first interview was conducted with
the participation of a third researcher who helped with criticism and suggestions for the
following interviews.

3.3.3.2 Expert selection

There is not a known standard or mathematical theory involving how the selection
of experts could be conducted (Li; Smidts, 2003). The authors from (Brooks et al., 1989)
recommend the selection of experts from industry and academia with different backgrounds
and affiliations and defined the following guidelines for the expert selection:

Chapter 3. Methodology 41

Table 3 – Interview Questionnaire

ID Group Question

1 1 What was the motivation for you to consider the migration from
monolith to microservices in what was the context of the monolith?

2 1 What were the steps to study/understand/research the complexities
of microservices? What training were done?

3 1 How many stakeholders participated in the pre-migration and migration
process?

4 1 How many microservices were planned in the pre-migration phase?

5 1 Was any metric used to define the size of each microservice?
Ex: lines of code, number of features, classes, models, etc.

6 1
What is the estimated time for each phase of the pre-migration and
migration process? Planning, Study, Decomposition, Refactoring,
Implementation, etc.

7 1 What roles are involved? Software engineer/architect, developer,
responsible for infrastructure etc.

8 1

What is the technology of the monolith? What technologies are
adopted for microservices? If it’s the same, why keep it? if it changed,
why did it change? If it changed how much time was considered/
spent for the learning curve of the new technology, was investment
made in hiring/training?

9 1
What is the level of knowledge and experience of the team in relation to
Object Orientation, design standards, microservices,
distributed systems, etc.

10 1 Which projects have already participated? What were the
areas/domains? How many?

11 2 Did you know about existing antipatterns in microservices before this
interview? If so, which ones did you know?

12 2
In the pre-migration phase, was any action taken to address
antipatterns? whether by studying what these antipatterns were in
detail or any other approach? If yes, which antipattern was considered?

13 2 What were the steps to separate the monolith into microservices?
Was an approach such as DDD used?

14 2 What was the approach to separating the database?

15 2
Has any refactoring technique or software been thought of to eliminate
other antipatterns, other than those related to microservices,
during pre-migration?

16 2
What are your considerations regarding the pre-migration and migration
phase, what are the difficulties/barriers envisioned and/or lessons learned
that could be useful for future migrations to microservices?

17 2

To conclude, in a possible new implementation, would you consider
developing a direct software in microservices or would you prefer to
develop in monolith and then migrate?
What are the reasons for your choice?

Chapter 3. Methodology 42

• Experts should have demonstrated experience by publications, hands-on experi-
ence, and consulting or managing research in the areas regarding the issues under
investigation;

• Each expert should be versatile enough to be able to address several issues and have
extensive experience to consider how these issues would be used;

• Experts should represent a wide variety of experiences as obtained in universities,
consulting firms or laboratories;

• Experts should represent a wide perspective of the issue as possible; and

• Experts should be willing to be elicited under the methodology to be used. In this
case, some basic orientations about the survey or interview should be provided to
the expert.

The primary requirement to select the researchers was the knowledge and experience in mi-
gration from monolithic to microservice. So of the above guidelines required mainly experts
hands-on experience and wide perspective of the issue of this research was considered.

3.3.3.3 Interview Procedures

The interviews for this research were carried out between November and December
2021. In all, 7 interviews were carried out, the first of which was carried out with 3
respondents simultaneously. Of the total 2 interviews were conducted using google forms,
where the questions were adapted in order to provide more dynamism and facilitate
answers, with multiple choice for example. This option to respond via google forms was
made available to those interested in participating in the survey, but who did not have
time on their agendas or who did not feel comfortable talking with this researchers.
Of the 10 people who participated in the interview, 1 of them stood out in terms of
length of experience, having more than 20 years of experience and having a management
position. The others ranged in roles, developer, software engineering, backend developer,
and architect software ranging from 2 to 8 years of experience (Table 4).

Chapter 3. Methodology 43

Table 4 – Roles of interviewees
Interview ID Role Years Experience
1 Developer +2
1 Software Engineering +5
1 Manager +20
2 Software Engineering +8
3 Software Engineering No reply
4 Software Architect +2
5 Software Engineering +7
6 Backend Developer +8
7 Software Engineering +8

3.4 Thematic Analysis
For the Analysis a thematic analysis approach was used. Thematic analysis is an

approach that is often used for identifying, analyzing, and reporting patterns (themes)
within data in primary qualitative research. It minimally organizes and describes the data
set in rich detail and frequently interprets various aspects of the research topic. Thematic
analysis can be used within different theoretical frameworks, and it can be an essentialist or
realist method that reports experience, meanings, and the reality of participants (Cruzes;
Dyba, 2011). The steps for this are Extract Data, Code data, Translate codes into themes,
Create a model of higher-order themes and Assess the trustworthiness of the synthesis
(Figure 7). Codes are descriptive labels that are applied to segments of text from each
study. Coding is the process of examining and organizing the data contained in each
study of the systematic review. A theme at a minimum describes and organizes possible
observations or at the maximum interprets aspects of the phenomenon.
The themes that emerged will be further explored and interpreted to create a model
consisting of higher-order themes and the relationships between them. The aim is to return
to the original research questions and the theoretical interests that support them, and to
approach them with arguments based on the themes that emerged in the exploration of
the texts.

Chapter 3. Methodology 44

Figure 7 – Thematic Synteshis process (adapted from (Cruzes; Dyba, 2011))

3.5 Summary
This chapter presented the methodology for this study, beginning with Systematic

Literature Mapping, Rapid Review, and Interview. Prior to the interview, the GQM was
used as a technique to support and define the questions for the interview. The results of
the study may be of interest to the software engineering community as well as researchers
interested in migrating from a monolithic to a microservice architecture or, in some cases,
some other form of modernization.

45

4 Systematic Literature Mapping

Based on the research questions1, I began to search for the strategies in the pre-
migration phase. The first step was to categorize the mapping based on the keywords
and summary of each paper. Based on the whole study, the following categories were
found: technical debt, modernization, and decomposition. The technical debt category was
divided into three subcategories: Antipatterns, Architectural Odors, and Refactoring.

The following chart pie (Figure 8) represent the categories.

Figure 8 – Categories

4.1 Technical Debt

4.1.1 Antipatterns

The category of antipatterns identified in the SLM refers to studies that have
focused on analysing problems in migrating from monolithic systems to microservices, and
highlights the lack of understanding of the concepts associated with these antipatterns.

The migration to microservices is not an easy task, mainly because of its novelty
and because microservice migration patterns are not clear yet (Pigazzini et al., 2020).
1 Research questions e sub research questions: RQ: What are the adopted strategies by the researchers

or practitioners to refactor the architecture of a monolithic system before adopting a modernization
process for Microservice?. SRQ1: Are the microservice bad smells considered in those strategies?.
SRQ2: Which strategy is used to determine the extent of monolithic software degradation?. SRQ3:
What was the context (scenario) of the monolithic system?. SRQ4: What were the challenges and
recommendations?. SRQ5: Which strategy is used to identify whether upgrading to microservices is
possible?

Chapter 4. Systematic Literature Mapping 46

Companies commonly start the migration without experience with microservices, only in
few cases hiring a consultant to support them during the migration. Therefore, companies
often face common problems, which are mainly due to their lack of knowledge regarding
bad practices and patterns (Taibi; Lenarduzzi; Pahl, 2019). The highly dynamic nature of
microservice based systems as well as the continuous integration and continuous delivery
of microservices can lead to design and implementation decisions, which might be applied
often and introduce poorly designed solutions, called antipatterns (Tighilt et al., 2020).
Code and architectural smells, which are patterns commonly considered symptoms of bad
design and indicators of situations that negatively affect software quality attributes such as
understandability, testability, extensibility, reusability, and maintainability of the system
under development and should be removed (Taibi; Lenarduzzi, 2018).

Not a single contribution provided answers to the question of how to refactor
monolithic software before migrating to microservices.

4.1.2 Architectural Smells

As mentioned earlier, architectural defects are a typical type of architectural
technical debt and can negatively impact the system-wide maintainability of a software
system (Tian; Liang; Babar, 2019). In this subsection, we present this subcategory of
mapping.

In Toledo, Martini and Sjøberg (2020) the authors investigate the use of shared
libraries in microservices, some of the issues they found are: coupling among teams, delays
on fixes due to overhead on libraries development teams, and need to maintain many
versions of the libraries. Two solutions are presented: creating additional microservices or
implementing the code in the microservices themselves. Afterwards Pigazzini, Fontana and
Maggioni (2019) introduce an approach involves static analysis of the system architecture,
architectural smell detection and topic detection, a text mining method used here to model
software domains starting from code analysis. Walker, Das and Černý (2020) introduce a
new approach to detect code smells in distributed applications based on microservices. The
research mentions that smells are patterns of poor programming practice and deteriorate
program quality and they can affect a wide range of quality attributes in a program
including reusability, testability, and maintainability. The authors proposes a tool called
MSANose to detect up to eleven different microservice specific code smells. As a result
the authors show that it is possible to detect code smells within microservice applications
using bytecode and/or source code analysis throughout the development process or even
before its deployment to production.

Carrasco, Bladel and Demeyer (2018) present 9 common pitfalls (already mentioned
in this research) in terms of bad smells with their potential solutions. Using these bad
smells, pitfalls can be identified and corrected in the migration process and provides a

Chapter 4. Systematic Literature Mapping 47

foundation for actionable information on the successful refactoring of monolithic application
towards microservices.

Lenarduzzi et al. (2020) monitored the technical debt of an small and medium
sized enterprise while it migrated from a legacy monolithic system to an ecosystem of
microservices. their goal was to analyze changes in the code technical debt before and
after the migration to microservices. The TD data was obtained by analyzing the system’s
commits using SonarQube. For the analysis, was used SonarQube’s standard quality profile
and analyzed each commit two years before the migration and after the start of the
migration. As a brief result considering the trend of TD analyzed by SonarQube, the
overall TD of the monolithic system before the migration was lower than the overall TD
right after the migration. When microservice became stable, the TD decreased significantly
and started growing with a lower trend compared to the growth of the monolithic system
before the migration.

Another author, de Toledo, Martini and Sjøberg (2021) aim to identify architectural
technical debts, theirs costs, and their most common solutions. As a result, the authors
found 16 ATD issues, negative impact and solutions to repay each debt together with
related costs.

4.1.2.1 Research Question Answers

In this section, a set of responses from the RQ and SRQ found in each study is
organized, separately by author.

Answers found in Pigazzini, Fontana and Maggioni (2019): RQ1: In addition to
being time consuming, this process (migration) requires specialized personnel on software
analysis with knowledge about the system to be refactored; Arcan tool in order to identify
possible architectural smells before or during the migration process. SRQ1: Yes, bad
smells are mentioned in the related works and what differs from this research is that
the tool is used to detect bad smells still in the monolith. SRQ2: Arcan is a software
analysis tool for architectural smell detection. SRQ4: Moreover the AS detection made
him aware of a problem regarding a specific entity named Deadline: the reation of a
Deadline requires the information present in Suspension and Proceedings and vice-versa,
part of the problem was solved by incorporating entity Deadline with Suspension, while
the Cyclic Dependency between Deadline and Suspension should be analyzed and possibly
removed during the migration process in order to decouple the services. SRQ5: In general
the migration process is not easy to carry out, since a deep knowledge of the project
subjected to the migration is needed in order to have significant results. Arcan can be very
useful: to retrieve knowledge about the project using the architectural smell detection and
the vertical functionality view.

Answers found in Carrasco, Bladel and Demeyer (2018): RQ1: Look at migration

Chapter 4. Systematic Literature Mapping 48

smells described, could help the planning phase before migration.

Answers found in Lenarduzzi et al. (2020): RQ1: The TD data was obtained by
analyzing the system’s commits using SonarQube9 (version 7.0). For the analysis, was
used SonarQube’s standard quality profile and analyzed each commit two years before the
migration and after the start of the migration. SRQ2: In this work, as required by the case
company, was adopted SonarQube, SonarQube is also open source, while the other well
known competitors have a commercial license. SonarQube calculates several metrics such
as number of lines of code and code complexity, and verifies the code’s compliance against
a specific set of “coding rules”. If the analyzed source code violates a coding rule or if a
metric is outside a predefined threshold (also called “quality gate”), SonarQube generates
an “issue”. Issues are problems that generate TD and therefore should be solved. SRQ4:
The company is migrating the bookkeeping document management system for Italian tax
accountants. The company needs to frequently update the system, as the annual tax rules
usually change every year. The Italian government normally updates the bookkeeping
process between December and January, which involves not only changing the tax rate but
also modifying the process of storing the invoices. However, tax declarations can be made
starting in March/April of each year. Therefore, in the best case, the company has two to
four months to adapt their software to the new rules in order to enable tax accountants to
work with the updated regulations from March/April.

4.1.3 Refactoring

One of the approaches for migrate to microservices is through refactoring, to pay the
technical debt. The authors Shimoda and Sunada (2018) mention that is difficult to apply
this architecture to a new business that is not well understood and to cut out an appropriate
service. For this reason, so called “Monolithic first”, in which a monolithic system is first
constructed and the microservices are gradually made, has attracted attention. The author
proposes method for clarifying the desirable order for converting the function constituting
the monolithic system into the microservices and confirm the feasibility by applying in a
fictitious e-commerce.

Brogi et al. (2019) review the white and grey literature on the topic, in order
to identify the most recognised architectural smells for microservices and to discuss the
architectural refactorings allowing to resolve them.

Furda et al. (2018) show how to identify challenges in legacy code and explain
refactoring and architectural pattern based migration techniques relevant to microservice
architectures. The authors explain how multitenancy enables microservices to be utilised
by different organisations with distinctive requirements, why statefulness affects both
availability and reliability of a microservice system and why data consistency challenges
are encountered when migrating legacy code that operates on a centralised data repository

Chapter 4. Systematic Literature Mapping 49

to microservices operating on decentralised data repositories.

4.1.3.1 Research Question Answers

Answers found in Linthicum (2016): RQ1: Pattern one decides quickly how the
application is to be broken into components that will be run inside of containers in a
distributed environment. This means breaking the application down to its functional
primitives, and building it back up as component pieces to minimize the amount of code
that needs to be changed.

Answers found in Shimoda and Sunada (2018): RQ1: evaluate the database tables
and classify them into business subsystems. Next, the business subsystem accesses the
source code and database model to mechanically identify candidates for microservices.

4.2 Modernization
In this section you will find studies in which modernization or evolution was

categorized as modernization. In Santos and Silva (2020), Bogner et al. (2019), Zirkelbach,
Krause and Hasselbring (2019a), Balalaie, Heydarnoori and Jamshidi (2016), Levcovitz,
Terra and Valente (2016), Knoche and Hasselbring (2019) the main motivation for seeking
migration is the evolution/modernization of the software and techniques are presented.
Other studies Zirkelbach, Krause and Hasselbring (2019b) it is analyzed how the sustainable
evolution of architecture was guaranteed after the migration while in Mahanta and Chouta
(2020), Balalaie, Heydarnoori and Jamshidi (2015), Escobar et al. (2016) modernization is
driven by modularization techniques and is used based on the microservice architecture.
In Kaplunovich (2019) DevOps practices are adopted and how this knowledge helped in
the migration process.

4.2.0.1 Research Question Answers

Answers found in Santos and Silva (2020): RQ1: Step 1 Collect information from
the monolith system. Most approaches rely on the source code, and usually use static
and dynamic code analysis. Other approaches do not use the source code, and rely on
interface information, or models of the system. Step 2 Grouping entities of the system into
candidate microservices. One common approach is to define similarity measures between
domain entities and use a clustering algorithm, which returns clusters of entities. Step 3 A
visualization of the decomposition as a graph, where some proposals support a modeling
tool where the architect can interact with the graph in order to modify the decomposition.

Answers found in Bogner et al. (2019): RQ1: To provide sufficient confidence that
such a system can be sustainably evolved, software professionals apply a set of numerous
activities that is refer to as evolvability assurance. Activities are usually either of an

Chapter 4. Systematic Literature Mapping 50

analytical nature to identify issues or of a constructive nature to remediate issues [4]. This
includes for example techniques like code review, refactoring, standardization, guidelines,
conscious technical debt management, and the usage of tools (e.g. for static code analysis),
metrics, or design patterns. For larger systems, these activities often form a communicated
assurance process and are an important part of the development workflow. SRQ5: There
are no useful tools to split up a monolith. It’s always a very difficult manual activity.
You can use something like Domain-Driven Design, but that’s just a methodology which
doesn’t give you a concrete solution; “In a monolith with 100.000 FindBugs warnings, you
are completely demotivated to even fix a single one of those. In a Microservice with 100
warnings, you just get to work and remove them.”

Answers found in Zirkelbach, Krause and Hasselbring (2019b): RQ1: The modulari-
zation planning phase was started with a requirement analysis for the modernized software
system and identified technical and development process related impediments in the project.
The focus was to provide a collaborative development process, which encourages developers
to participate in the research project; The modularization approach started by dividing
the old monolith into separated frontend and backend projects. SRQ1: ExplorViz Legacy
was also covered by this survey and categorized by the “Single DevOps toolchain” pitfall.
This pitfall concerns the usage of a single toolchain for all microservices. Fortunately, this
pitfall was addressed since their observation during their survey by employing independent
toolchains by means of pipelines within the continuous integration system for the backend
and frontend microservices. SRQ2: Students of the university know and use supporting
software for code quality, e.g., static analysis tools such as Checkstyle [12] or PMD [13].
However, they did not define a common code style supported by these tools in ExplorViz
Legacy. SRQ4: Initially the Java based Google Web Toolkit (GWT) was used [11], which
seemed to be a good fit in 2012, since Java is the most used language in the lectures. GWT
provides different wrappers for Hypertext Markup Language (HTML) and compiles a set
of Java classes to JavaScript (JS) to enable the execution of applications in web browsers.
Employing GWT in the project resulted in a monolithic application (hereinafter referred
to as ExplorViz Legacy), which introduced certain problems over the course of time; Every
change affects the whole project due to its single code base. New developed features were
hard wired into the software system. Thus, a feature could not be maintained, extended,
or replaced by another component with reasonable effort. This situation was a leading
motivation to look for an up to date framework replacement. With the intention to take
advantage of this situation and modularize the software system.

Answers found in Balalaie, Heydarnoori and Jamshidi (2016): RQ1: Migrating
the system towards the target architecture was not a one step procedure and it was
done incrementally without affecting the end users. The migration steps was treated as
architectural changes (adding or removing components) that consists of two states: (i)
before the migration, and (ii) after the migration. SRQ4: Backtory is written in Java

Chapter 4. Systematic Literature Mapping 51

using the Spring framework. The underlying RDBMS is an Oracle 11g. Maven is used
for fetching dependencies and building the project. All of the services were in a Git
repository, and the modules feature of Maven was used to build different services. The
deployment of services to development machines was done using the Maven’s Jetty plugin.
However, the deployment to the production machine was a manual task. The architecture
of Backtory before the migration to microservices is illustrated in Figure 2(a). In this
Figure, solid arrows and dashed arrows respectively illustrate the direction of service
calls and library dependencies. Figure 2(a) also demonstrates that Backtory consisted of
five major components. SRQ5: Deployment in the development environment is difficult;
Service contracts are critical; Distributed system development needs skilled developers;
Creating service development templates is important; Microservices is not a silver bullet.

Answers found in Levcovitz, Terra and Valente (2016): SR4: applied the proposed
technique on a large system from a Brazilian bank. The system handles transactions
performed by clients on multiple banking channels (Internet Banking, Call Center, ATMs,
POS, etc.). It has 750 KLOC in the C language and runs on Linux multicore servers. The
system relies on a DBMS with 198 tables that performs, on average, 2 million transactions
a day.

Answers found in Balalaie, Heydarnoori and Jamshidi (2015): SRQ4: SSaaS is
written in Java using the Spring framework. The underlying RDBMS is an Oracle 11g.
Maven is used for fetching dependencies and building the project. All of the services were
in a Git repository, and the modules feature of Maven was used to build different services.
At the time of writing this paper, there were no test cases for this project. The deployment
of services in development machines was done using the Maven’s Jetty plugin. However, the
deployment to the production machine was a manual task that had many disadvantages.

4.3 Decomposition
I considered as decomposition any research that did not mentioned any other

approach other than a generic migration from monolithic software to microservices.

The researches Kazanavičius and Mažeika (2019), Sayara, Towhid and Hossain
(2017), Mazlami, Cito and Leitner (2017), Kecskemeti, Marosi and Kertesz (2016), Selmadji
et al. (2018), Jin et al. (2018), Carvalho et al. (2019), Christoforou, Odysseos and Andreou
(2019), Kuryazov, Jabborov and Khujamuratov (2020), Francesco, Lago and Malavolta
(2018), Silva, Carneiro and Monteiro (2019), Amiri (2018), Ren et al. (2018), Abdellatif et
al. (2021), Taibi, Lenarduzzi and Pahl (2017), Kazanaviius and Mazeika (2020), Laigner
et al. (2019) show techniques, challenges, automation for migration / decomposition
of monolithic to microservices; In Janes and Russo (2019) a tool to measure software
degradation during migration to microservices is presented. In Cojocaru, Uta and Oprescu

Chapter 4. Systematic Literature Mapping 52

(2019), Fan and Ma (2017), Taibi et al. (2019), Taibi and Systä (2019), Abdullah, Iqbal
and Erradi (2019), Henry and Ridene (2020), Desai, Bandyopadhyay and Tamilselvam
(2021) a framework is developed to decompose monolithic for microservices.

4.3.0.1 Research Question Answers

Answers found in Kazanavičius and Mažeika (2019): RQ1: Monolith should be
modernizing to microservices when: Monolith became too big and complex to maintain or
extend; Modularity and decentralization are an important aspect; Preference for long term
benefits in comparison to those in the short term. SRQ2: The following type of legacy
applications are not recommended to refactor: Very old applications that are built using
very old languages and databases; Applications what has a poor design; A application that
are tightly coupled to the database. SRQ3: To choose migration methods and technics
which best suits for an organization is very a hard task. The first question which always
should be answered: refactor or rebuild? In most cases there is not so many resources and
time to completely rebuild the solution.

Answers found in Fan and Ma (2017): RQ1: Use of DDD to modularize the
monolithic before migration. SRQ5: Complex environment settings: The configuration
is not as simple as in a Monolithic architecture system, and many automation tools
must be carefully set up to achieve the desired results. This includes monitoring tools,
server environment, automatic deployment tools, and automatic integration. Using more
resources: Microservices use multiple tools to achieve architectural flexibility, such as
Service Discovery and API Gateway. This consumes more resources and increases the
complexity of the system.

Answers found in Jin et al. (2018): RQ1: First leverage execution traces collected
at runtime to guide microservice extraction. Execution traces are able to expose actual
software behavior accurately. A lot of tools can help obtain execution traces. Here Kieker
was used to monitor four software projects, in which 204 unique execution traces were
extracted. This study shows that an execution trace inherently represent a business
function. Another contribution was an execution oriented clustering method towards
grouping similar functionalities as a service. FoME (Functionality oriented Microservice
Extraction) was used to refer to the proposed method. Concretely, execution traces was
clustered to recommend microservice skeletons, and then apply two strategies, namely,
“Move class” and “Pull up class”, to deal with crossovers overlapping between services.

Answers found in Taibi et al. (2019): RQ1: In order to finalize the decision on
whether or not to migrate to Microservices, teams should first analyze their existing
monolithic system. The system should be analyzed by considering the metrics reported
in Table 16. SRQ2: Metrics identified and analysed before migration. SRQ5: The vast
majority of the interviewees migrated to Microservices in order to improve maintainability.

Chapter 4. Systematic Literature Mapping 53

Answers found in Kuryazov, Jabborov and Khujamuratov (2020): RQ1: This step
helps to identify how high is the tight coupling among system parts. For instance, the
analysis steps identifies if a legacy system already has parts that are not tightly coupled
(i.e., loosely coupled) with the rest of the system. A system can be predicted (whether its
modules are tightly or loosely coupled) by measuring several metrics [8], e.g., Cohesion and
Coupling. This phase is needed for estimating how much effort is required for migration.
The result of this phase is analyzed a software system including their analysis reports.

Answers found in Taibi and Systä (2019): RQ1: Analysis of the System Struc-
ture. All processes start by analyzing dependencies mainly with the support of tools
(Structure101, SchemaSpy 2 , or others).

Answers found in Francesco, Lago and Malavolta (2018): RQ1: Analyse Source code,
Test suits, architectural docs, textual docs; understanding legacy system, find dependencis
legacy, analysis legacy, document legacy. SRQ5: Almost all participants (15/18) have
acknowledged the long time to release new features as the main challenge faced in the
pre-existing system. From an architectural perspective, participants find challenging the
high degree of coupling among modules (13/18) in the pre-existing system.

Answers found in Silva, Carneiro and Monteiro (2019): RQ1: Domain-Driven
Design (DDD) concepts to translate functionalities into domain and subdomain and
thereby support the migration; related to the restructuring of the legacy system to a
modularized version. SRQ1: Using DDD and bounded contexts lowers the chances of
two microservices needing to share a model and corresponding data space, risking a tight
coupling. Avoiding data sharing facilitates treating each microservice as an independent
deployment unit. Independent deployment increases speed while still maintaining security
within the overall system. DDD and bounded contexts seems to make a good process
for designing components. SRQ2: Manual identification of candidate features and their
respective relationships, by navigating among the directories and files and identifying the
purposes of each class. SRQ4: EPromo system was selected as the subject of the Pilot study.
It comprises a typical example of a corporate/business coupon web system implemented
in the PHP programming language for the management of outreach campaigns. The web
server is Nginx and its features include: creation of personalized offers and issuance of
tickets made by the customer. All functionalities are implemented in a large artifact,
connected to a single relational database (MySQL).

Answers found in Ren et al. (2018): RQ1: Firstly, static and dynamic characteristics
of application was obtained through static analysis of the source code and tracing data
during application’s execution.

Chapter 4. Systematic Literature Mapping 54

Table 5 – SLM Analysis

Response Collected Antipattern to Mitigate
Use of sonarQube or Arcan Tool to detect smell;
Evaluate the database tables and classify them
into business subsystems in the pre-migrations
phase; Grouping entities of the system into
candidate microservices;

Shared persistence; Inappropriate
service intimacy;

Apply a set of numerous activities that is refer
to as evolvability assurance; Microservice greedy; Megaservice;

Use of DDD to modularize and to translate
functionalities into domain and subdomain
before migration; Strategy to identify how high
is the tight-coupling;

Wrong cuts; Megaservice; Shared
Libraries; Cyclic Dependence

4.4 Summary
In this chapter, the systematic literature mapping was discussed with the categories

of mapping, a brief overview of each research, and the answers to the research questions
found. Not all research provided the expected answers. But as the Table 5 shows, it was
possible to extract some answers from a brief analysis of the SLM. In the data analysis 7
chapter, a full analysis of the study is shown.

55

5 Rapid Review

Similar to SLM, not all studies in this rapid review provided the expected answers.
Although some strategies were found, the authors did not show exactly how they were
applied.

5.1 General Approaches

5.1.1 Log Aggregation

Part of the articles found mention some techniques, such as Newman and Reisz
(2020) mentions that it is necessary to implement some form of log aggregation or backlog
to process log files locally, and that these files can be automatically aggregated to a central
location where they can be queried and processed. In this case of log aggregation, it is
reasonable to assume that a variety of tools 1 are available that can solve this problem.
Log aggregation is a strategy to find problems more easily and have real-time monitoring,
but it is not really related to antipatterns. According to Sigma (2021), the task in creating
a backlog is to identify candidate microservices. The next steps are to select a refactoring
strategy, design the microservice and make changes according to CI/CD and testing
procedures, set up CI/CD, and implement the microservice.

5.1.2 Data First

To Hubers (2021) start with Data is the first step before migrate to microservices.
Relational data needs to be designed conceptually from the start, before you even consider
the placement and design of functions to carry out business processes. Roos (2020) Explain
about organization matter for cultural shift "Stop feeding the monster, leave monolithic as
it is start developing in microservice".

5.1.3 Coupling and Cohesiveness

Richardson (2021) mention a review of the so called AS-IS code. The first step is
to split the code and turn delivery management into a separate, loosely coupled module
within the monolith. To Lea (2016), when designing applications, avoid using library code
that increases coupling between applications, so that developers building clients are free
to make different technology choices if that becomes advantageous. To Deshpande and
Singh (2020) a good approach is to stop adding things to the monolithic app. Fix what is
1 Backlog tools: (Humio, ELK stack)

Chapter 5. Rapid Review 56

broken and accept only small changes. Also identify components that are more loosely
coupled than others and use them as a starting point. A key step in identifying the core
components of any monolithic application is analyzing the codebase. It also helps you
understand the cohesiveness between various modules and prepare a list of microservices
that you want to build. To Gupta (2021) one of the most important and challenging steps
is to select the business functionality to be decomposed. One can start with either selecting
parts of the code that are frequently modified or functionality that is needed to be scaled
on demand. One may end up with a list of such functionalities. The next step would be to
select the one amongst the list which is fairly loosely coupled.

5.2 Strangler Pattern
Strangler Pattern (Fowler, 2004) it is a way to handle the release of refactored code

in a large web application. Strangler Pattern is a popular design pattern to incrementally
transform a monolithic application into microservices by replacing a particular functionality
with a new service. Once the new functionality is ready, the old component is “strangled
Transform, Co-Exist and Eliminate. The author Sitnikova (2021) applied Strangler pattern,
identify all local components and determine which of them are best for migrating. This
involves checking for duplicated data, checking all data formats; Identifying Component
Dependencies. This is done using a static analysis of the source code to search for calls
between various libraries and data types.

To Goel (202) there are tree good strategies, using the Strangler Pattern, using
Domain-Driven Design "Requires an understanding of the domain for which the application
will be written. The necessary domain knowledge to create the application resides with the
people who understand it". And the general migration approach that has three steps: Stop
adding functionality to the monolithic application; Split the frontend from the backend;
Decompose and decouple the monolith into a series of microservices.

To Kornilov (2020) use strangler pattern with the anti-corruption layer pattern.
The main advantage of the strangler pattern is that it offers an incremental migration
process without breaking the whole application functionality. After applying the pattern the
extracted microservice and the monolith are part of the bigger application and communicate
with each other. Most likely, they use different domain models that are converted during
the communication process. The process involves some glue code, which resides in the
monolith, in the microservice, or on both sides. This code is called the anti-corruption layer.
In this case, anti-corruption means that the design solutions of the extracted microservice
and the monolith don’t affect each other. In other words, the anti-corruption layer pattern
is applicable to each extracted microservice and makes its design independent of the
monolith design.

Chapter 5. Rapid Review 57

To Richardson (2016) the best way to migrate it is gradually build a new application
consisting of microservices, and run it in conjunction with your monolithic application.
Over time, the amount of functionality implemented by the monolithic application shrinks
until either it disappears entirely or it becomes just another microservice.

5.3 Modularity
Domain-driven design (DDD) has some ways to find service boundaries. When

working with organizations that are looking at microservice migration, is common to
start with a DDD modeling exercise on the existing monolithic application architecture
(Newman; Guimarães, 2021). To Lavann, EdPrice and neilpeterson (2021) applying DDD
has a few steps: Applied retroactively to an existing application, as a way to begin
decomposing the application:

• Start with a ubiquitous language, a common vocabulary that is shared between all
stakeholders.

• Identify the relevant modules in the monolithic application and apply the common
vocabulary to them.

• Define the domain models of the monolithic application.

• The domain model is an abstract model of the business domain.

• Define bounded contexts for the models. A bounded context is the boundary within
a domain where a particular domain model applies.

• Apply explicit boundaries with clearly defined models and responsibilities.;

Accordingly to Assouline and Grazi (2017) domain-driven design advocates modeling
based on the practical use cases of the actual business. In its simplest form, DDD consists
of decomposing a business domain into smaller functional chunks, possibly at either the
business function or business process level, so that the complexity of both a business and
problem domain can be better apprehended and resolved through technology. For Samokhin
(2018), first concentrate on user stories forming cohesive business-capability. Then, within
each one, focus on objects that possess some identity and behavior. That’s how you’d get
the higher-level view of your business-processes expressed with DDD aggregates (which are
often sagas). Put the rest of the logic in value-objects. Thus you can end up with almost
no service classes. The author Janssen (2021) explain how to migrate in a few steps. Each
service has to have its own database to keep it independent of all other services. Step 1:
Identify independent modules and split your business code; Step 2: Remove queries and

Chapter 5. Rapid Review 58

associations across module boundaries; Step 3: Each module becomes a service and final
step: Refactor your modules into independent services.

To Haywood and Betts (2017) modules it’s about ensuring that the code is unders-
tandable, encapsulating functionality and constraining how different parts of the system
interact. If any object can interact with any other object, then it’s just too difficult for
a developer to fully anticipate all side-effects when code is changed. Instead the better
way it is to break the app into modules small enough that a developer can understand
each module’s scope and can reason about its function and responsibility. To Mak (2017)
Modularity can also be achieved by other means. The key is that it can effectively draw and
enforce boundaries during development. However, this can also be achieved by creating a
well-structured monolith. Creating good modules requires the same design rigor as creating
good microservices. A module should model (part of) a single bounded context of the
domain. Module boundaries in a modular application are easier to change. Refactoring
across modules is typically supported by the type-system and the compiler. Redrawing
microservice boundaries involves a lot of inter-personal communication to not let things
blow up at run-time.

5.4 Summary
In this chapter some findings of the gray literature was showed, as it happened in

the SLM it was difficult to find clear evidence about the research question, some strategies
that are taken before the migration process was found, but they are not directly linked
with the antipatterns in microservices, during the thematic analysis this subject will be
discuss again with the conclusions.

59

6 Interview

Interviews were recorded (audio and video) and converted to text. If doubts about
an answer arose during the analysis, it was possible to return to the recording to clarify
them. The shortest interview lasted 28 minutes and the longest 42 minutes. The transcribed
interviews can be found in the appendix .3.

6.1 First Group of Questions
The first group of questions had the intention to learn about the interviewees about

this general knowledge about microservices, distributed systems, about the migration
process, planning, members teams, members knowledge etc.

6.1.1 Question 1

In the first question (Table 6), the interviewee #1 said that they had a system
with more than thirty years of development and outdated technology, and needed modern
technology that could be easily adapted to the current market. #2 also wanted a modern
technology and mentioned the difficult with scalability and maintenance of the monolithic
system, the high number of bugs, the high cohesion and coupling, and the high number of
functionalities with many modules with dependencies on each other. #4 Wanted scalability
and flexibility to change the system as needed, including changing technology. Old system
with high complexity and no money to invest in staff. Develop monolithic first to migrate
incrementally. #5 Difficulty to maintain code, upgrade technology which was Java and
Hibernate, "this was never considered because they were afraid to break the code". It
was also mentioned that maintenance was difficult because of the size of the system and
the hours of configuring the system in the customer’s environment because they had to
have their own infrastructure, their own server, etc. So it was very expensive and took
a long time just to develop a new functionality. #6 The motivation for the migration
was essentially decoupling. The old system was in Delphi with services that did not work
properly and were hard to maintain, plus it was getting harder to find professionals
with knowledge of Delphi. #7 Mentioned that they had a monolithic with client/server
architecture, front end and back end, they just wanted a system that was more scalable.
They do not really migrate, they just use monolithic systems as knowledge repositories.
They assure that they are building microservices from scratch.

Chapter 6. Interview 60

Table 6 – Responses of 1st question - Motivation to migrate

ID 1 2 3 4 5 6 7
Wanted Modern Technology
Scalability
Flexibility
Maintainability
Decoupling

Table 7 – Responses of 2nd question

ID 1 2 3 4 5 6 7
Book
Lectures
Case Studies
Blog Posts
Consultants
Previous knowledge

6.1.2 Question 2

From the 2nd question (Table 7) #1 buys a book and each member of the team
reads it and each uses his own form of study. #2 and #7 also read a book, lectures and
case studies from big companies, #7 starts studying with three architects. #3 mentions
that he read everything he found and stresses the importance of reading the pros and
cons, especially the cons of microservices. #4 studied how to migrate for four months. #5
studied what technologies are used in the market today, hired consultants to help with
development and understand the complexity of microservices. #6 Had no training, used
initial time to understand monolithic systems, how to decouple them, started conversations
with customers to identify business rules.

6.1.3 Question 3

To the 3rd question (Table 8) they all give simple answers, but #7 mentions that
they form so-called squads with three to five members each, and #5 mentions that today
they have more than forty people.

6.1.4 Question 4

For the fourth question (Table 9), respondents #4, #5, and #6 could not measure
the number of microservices because it varied during the pre-migration process. #1, #2,
and #3 start with 5. #1 has 13 today and #2 has 10. #7 plan 25 microservices from the
beginning.

Chapter 6. Interview 61

Table 8 – Responses of 3rd question

ID How many stakeholders participated
in the pre-migration and migration process?

1 1 to 5
2 5 to10
3 More than 50
4 1 to 5
5 1 to 5
6 1 to 5
7 1 to 5

Table 9 – Responses of 4th question

ID How many microservices were planned in the pre-migration phase?
1 Start with 5, today 13
2 5 to10
3 5
4 Did not planned a number of MS
5 Did not planned a number of MS
6 Did not planned a number of MS
7 25 to 30

6.1.5 Question 5

#1 Had no metric, cited DDD as a form of defining microservices based on domain,
but size was not considered. #2 used business domains such as people, courses, shopping
carts, products, etc. #4 and #5 had no metrics, while #6 mentioned common sense to
evaluate whether each microservice is needed. #7 Had no metrics, just the motivation
of the business, context boundaries. "It was easy to understand communication between
objects than to look for other ways to have that metric, like lines of code or functionality.
Sometimes a lot more code was required to communicate between two microservices
because they were separate, when they were kept together the communication was not
required.

6.1.6 Question 6

#1 Says the process started by one year and six months and was done in parallel,
planning, study and implementation. #2 Built the system from scratch, with a year of
development to have the first stable version of the main services. #4 Said that everything
was happening at the same time, but they had orchestrated everything very well. #5 Said
that the time to deliver the functionality was well planned. #6 Four months of planning
and six months of study, and they are still in the development phase. #7 Six months
pre-migration phase and 2 years migration.

Chapter 6. Interview 62

Table 10 – Responses of 7th question

ID Members who participated in the migration to microservice

1

2 Senior Developers,
1 Senior Engineering,
1 Manager,
1 Junior Developer

2

1 Engineering
1 Architect
2 Developers (Back/Front-end)
1 Dev/Ops

3 No reply

4
1 Front-end Developer
1 Dev/Ops
1 Back-end Developer

5 5 Developers/Architects
1 UX/UI Designer

6 No reply

7

1 Product Owner
1 Architect
1 Test Engineer
5 Developers

6.1.7 Question 7

For the seventh question (Table 10), #1 had two senior developers and one senior
engineer, one manager and one junior developer. #2 One engineer/architect, two developers
(back-end and front-end), one focused on infrastructure "Was a very small team, but the idea
with growth was to use a metric to control a number of microservices per team."#4 Started
with one front-end, one infrastructure and one back-end. #5 Had 5 developers/architects
and one person responsible for UX. #7 Had one PO, one architect, one test and five
developers. They have this pattern for each team.

6.1.8 Question 8

In the eighth question (Table 11), #1 says that the technology of monolithic was
Delphi and they chose GoLang for microservice, "this choice was made due to practicality,
easy learning curve, easy scalability and a set of tools and frameworks compatible with
cloud infrastructure."#2 Monolithic was PHP and MySQL. With microservice, it was
PHP, MySQL, MongoDB, Redis, Docker, OAuth2, Kubernetes. "Using the right tool for
the proposed problem, in terms of programming language, was maintained because the
team was very small. The databases were used for different purposes to better solve each
area."#4 Python is used in the microservice, React in the frontend, Terraform in the
infrastructure, Postgresql in the database along with Kubernetes and AWS. #5 Monolithic

Chapter 6. Interview 63

Table 11 – Responses of 8th question

ID Monolithic Technology Microservice Technology
1 Delphi GoLang

2 PHP, Mysql PHP, MySql, MongoDB,
Redis, Docker, OAuth2, Kubernetes

3 No reply No reply

4 No reply Python, React, TerraForm, PostgreSql,
Kubernetes, AWS

5 Java 4, Hibernate Java8, Kotlin, PostgreSql, React,
React Native, Sql Lite

6 Delphi, Firebird GoLang, VueJS, PostgreSql

7 Java, Jboss, PostgreSql, Oracle,
Sql Server Native Android app

Skala, Kotlin, Node, MySql, Postgres,
Cassandra Neo4J, S2, Elasticsearch

was Java 4 with Hibernate, in front-end javascript, html css and jQuery. Microservice
continued with java 8 and kotlin and postgresql. Reactjs in the front-end along with mobile
react native and sql lite. "The people who were already on the team helped the new guys,
there was no training, they just started coding."#6 The technology in Monolith was Delphi
with Firebird, for microservice C#, VueJS, GoLang and the database Postgresql. #7
Monolith was a Java application running on a Jboss client server along with Postgresql,
Oracle and Sql server, the front end was a native Android app. Microservices started
from the idea that there would not be just one language. Today, besides Java, there are
also Skala and Kotlin, services also with Node front with Javascript / Mysql, postgresql,
cassandra, neo4j, s3, elasticsearch and REST JSON for communication.

6.1.9 Question 9

In the ninth question #1 team with focus and experience in design patterns and
microservices. #2 "Lots of knowledge in object-oriented programming, lots of knowledge
in design patterns, intermediate knowledge in microservices and distributed systems."#3
Expert in object-oriented programming and design patterns, intermediate knowledge
related to microservices, and much knowledge related to distributed systems."#4 Basic
knowledge from studies. #5 "Initially it was higher seniority members, then new lower
seniority members. Knowledge of microservices and distributed systems was low at first,
they learned over time."#6 "The leader had a greater knowledge of design patterns and
distributed systems. The rest of the team had basic to intermediate knowledge. The team
started to learn about clean architecture in depth during the project."

6.1.10 Question 10

About domain systems of the interviewees (Table 12) it varied from finances,
e-commerce’s, trade merchandising (industries to agencies) to biggest Brazilian ERP.

Chapter 6. Interview 64

Table 12 – Responses of 10th question

ID Domain of the system
1 commerce, sales, client management

2 E-commerce and Online Teaching
Trade Merchandising (industries and agencies)

3 ERP
4 commerce, sales, client management
5 commerce, sales, client management
6 Finances, Bank
7 commerce, sales, client management

Table 13 – Responses of 11th question

ID 1 2 3 4 5 6 7
Megaservice
Wrong Cuts
Cyclic Dependency
Shared Persistency
Inappropriate Service Intimacy
Shared Libraries
Microservice Greedy
Legacy organization

6.2 Second Group of Questions
The second group of questions was about finding out whether the respondents

already knew about microservices antipatterns, lessons learned, and other things.

6.2.1 Question 11

For the eleventh question the table was refined (Table 13) after the data analysis,
although some respondents did not confirm that they knew about antipatterns in this
question, they mentioned them later in the interview. #1 Already knew megaservice and
wrong cuts, other antipatterns they did not know. #2 "I already knew megaservice, wrong
cuts, cyclic dependency, shared persistence, shared libraries and microservice greedy".#3
"Yes i knew, megaservice, wrong cuts, cyclic dependency, shared persistence, Inappropriate
Service Intimacy, shared libraries, microservice greedy e Legacy organization". #4 and #6
did not know academically, only from concept or with another names from books. #5 Not
knew exactly antipatterns, but the problems reported were familiar. Megaservice was a
concern, not building a very large microservice, had microservices split wrongly (wrong
cuts), caused a big impact on the system. There was also a call cycle between microservices.
Shared libraries were used, with a plan to avoid rework. #7 "Yes, megaservice, inappropriate
service intimacy, microservice greedy".

Chapter 6. Interview 65

Table 14 – Responses of 12th question

ID 1 2 3 4 5 6 7
Megaservice
Wrong Cuts
Cyclic Dependency
Shared Persistence
Inappropriate Service Intimacy
Shared Libraries
Microservice Greedy
Legacy Organization

6.2.2 Question 12

For the twelfth question (Table 14) #1 Mention that in the planning and study
phase, attempts were made to avoid two antipatterns megaservice and wrong cuts, no
other antipatterns were mentioned. #2 Considered megaservice, wrong cuts, shared
persistence, shared libraries and microservice greedy. "Services were divided into business
domains (DDD - Bounded Context). In case of non-action: cyclic dependency, lack of
knowledge in asynchronous communication (queues) and project development time."#3
"Yes, megaservice, wrong cuts, cyclic dependency, shared persistence, inappropriate service
intimacy, shared libraries, microservice greed and legacy organization. #4 "Today we have
already figured out how to avoid antipatterns, e.g., the antipattern of shared persistence.
The plan is to have one messenger, meaning no microservice communicates with another,
so if one fails, there is no problem, only the connection between the messenger and the
microservice is changed."#5 The plan was to avoid a megaservice based solely on not
creating too large a service that would be difficult to maintain, and it was assumed
that shared persistence would prevent high coupling. #6 "Common sense and the team’s
experience from previous work on bad practices was used. #7 "Yes, during the migration, a
mega service was discovered that was disconnected and required a lot of code to integrate."

6.2.3 Question 13

#1 "Yes, the organization’s principle is to use DDD as a basis for development, and
DDD was used to separate the monolith". #2 Yes, some concepts were used and so was The
Twelve-Factor App (Wiggins, 2017). #3 "DDD causes as much trouble as microservices,
and actually one place where DDD doesn’t make sense is the microservice, like, almost
always, OOP. OOP is to manage complexity, DDD is to manage extreme complexity,
microservice is to make everything small and avoid (individual) complexity, it makes no
sense to mix things up. People are doing random things with no real study. Anyone using
DDD is making a monolith broken into parts and not MS, and has no idea what they are
doing."#4 Separate service based on demand, if a service has more access, or is using more

Chapter 6. Interview 66

resources. #5 "No specific approach was used, it was separated by business". #6 "It was
thought about architecture, technologies, ways of communication between microservices,
event-drive (message), DDD and Clean Architecture was applied". #7 "Breaking down by
business context, then, during the migration, different microservices were detected that
worked on the same data domain and synchronization between them was necessary. After
understanding this problem, a study on DDD was started to better structure it in the
context of domains."

6.2.4 Question 14

#1 "Database is already separated, the same technique was uMatheus de Lara
Dias da Silvased for database separation". #2 "(DDD – Bounded Context) of the services
involved". #3 "If you are going to adopt microservices, each one must have their own,
otherwise it’s not microservice. Doing this means that the application will have to take
care of what the DB used to take care of for free for you. There are strategies in the
monolith when the DB can’t take it. ".#6 "The old database was still used for a while,
database normalization practices". #7 "see what were the existing standards for database
separation in the context of microservices from the beginning, he already understood
that he should separate. isolation between microservices 99% of communications between
miscroservice is used rest api or messaging each service has its information domain have
different instances to increase resilience horizontal distribution of data each tenant has its
specific maintenance shema to have insulation"

6.2.5 Question 15

#1 and #2 Recreate the system from scratch, so they eliminate any antipattern
from monolithic system, like code smells #1 says "Yes, the system was rebuilt practically
from 0, so it was planned to eliminate any kind of antipattern existing in the monolithic
system". #2 "Was recreated from scratch."#3 "Well done refactoring solves problems
without adopting microservice. Microservice is an excuse to refactor. Solve application
problems without adopting microservice, which creates a new problem that you didn’t
have before". #4 Part of the system is in the cloud and part of the system’s infrastructure,
when the system was designed, part of the data that would be in the cloud was changed
to be on the client side, which led to maintenance problems. #5 Has used sonarQube and
code review to eliminate code smells and bugs. #6 "It was tried to apply TDD, but due
to deadlines and the team’s lack of experience, it was not possible to continue with this
practice".

Chapter 6. Interview 67

6.2.6 Question 16

The sixteenth question was related to lessons learned. #2 mentioned problems
with provisioning, communication between services, authentication and authorization.
"I think few projects really need this approach (microservice), especially if it is created
from scratch, with a team of up to 15 people I think it is completely unfeasible. #3 No,
hardly anyone needs it. There may be some point microservices where it makes sense,
but not a microservice architecture, not something until you have a good monolith. Do
not use crutches. #4 "So far there was no big problem, problems were easy to solve Data
access problem requires a lot of rework, few people add new features or do refactoring,
sometimes time is wasted on refactoring Lack of system documentation, difficulty in
updating."#5 "Levelling of knowledge about microservices, distributed systems, training
about technologies to be used more people involved in technology decisions, more testing.
After implementing and starting to use the system, a poor choice of technology was
identified and there was no time to change the situation."#6 "Difficult because I was not
involved in the planning, had no knowledge of architecture and software engineering. The
lesson would be to study more, consume more materials."#7 "Do the best you can with
the information you have today, you will make mistakes and learn and correct from them.
Problems were found that brought good experiences to help other teams and serve as a
foundation for future implementations, do not wait until you have all the knowledge in
the world to get started"

6.2.7 Question 17

The last question (Table 15) #1 "I would develop microservices directly, remembe-
ring that if I develop in a monolith and then have to migrate, I will not have duplicate
work. The lessons they learned during the migration were useful to develop in a way that
also avoids the antipatterns."#2 "It depends on the team. If it is a big team that already
knows the project and really needs it, I would use it without a doubt, otherwise not. In
my case, I have always worked in small and medium-sized companies, I would prefer to
start with a monolith without a doubt and migrate gradually."#3 "You do not need a
microservice and if you do, it has to be PROVEN. You must have something simple that
has proven incapable of meeting the requirements when done right, and EVERY has been
tried to solve the problem without it. Almost always, accepting MS means a testimony of
incompetence.". #4 "develop monolithically at first, now you get a feel for using shared
libraries, for example, and a macro understanding of the system due to the complexity of
microservices, at the beginning it would be harder, an initial project sometimes has no idea
of basic things like business rules that mature over time. The initial investment was also
low, it would not have been possible to develop in MS in the beginning. #5 "it depends
on the maturity of the team a mature team already has the baggage to work directly

Chapter 6. Interview 68

Table 15 – Responses of 17th question

ID Monolithic Microservice
1
2
3
4
5
6
7

with microservices, with separate teams if it is not clear how the system will work, not
enough knowledge in microservices, it is best to start in monolithic when the knowledge
related to the business is very mature and advanced."#6 "Developing in microservices is
what allows you to deliver new products because of the scalability and the development
practices are not always good. Maybe the best way would be to think about strategies
that make the developer’s life easier."#7 "develop in monolithic first with monolithic it
would be much easier to involve the customer to use the information to teach the best
configuration to solve his needs they started in microservice without fully understanding
monolithic business contexts, it is easier".

6.3 Data Analysis

6.3.1 1st Group of questions

In the first group of answers, not many motivations for migration were discovered.
Looking at all the benefits of microservices known from the literature, only five motivations
were mentioned, most of which related to modern technology, followed by scalability and
maintainability with two mentions. One of the so-called advantages of microservices is the
ability to use different technologies. One of the respondents mentioned that he used this
feature initially and encountered so many problems that he preferred to give up and use
the same technology for all microservices today.

The motivation for modern technologies was confirmed when respondents were
asked what technologies exist in monolith. Most of them were using outdated technologies
or outdated versions of a particular technology, such as Java 4, so it is a trend to be up to
date in terms of versions of frameworks and technologies.

The most common method to learn about microservices was learning from books,
then lectures and case studies. Academic articles/papers were not mentioned. Regarding
the members of the initial migration teams, it became clear that most of them start with
a small number of people that gradually grow over time. The teams also change over time.
One of them said that after some time they had only one architect per team.

Chapter 6. Interview 69

Almost half of the respondents did not think about planning a set of microservices
from the beginning. They feel that this was not as important initially, although it was
critical given the need for at least an estimated number of functionalities or modules. The
other responses mention a low number of microservices, with the exception of one that
initially stands out with a high number of microservices. This suggests that it is not easy
to have a metric for creating a microservice. Most of the respondents use business logic to
determine the right size of each microservice. Migration time is also not easy to measure,
with most respondents taking at least six months between study and development.

6.3.2 2nd Group of Questions

Nearly all respondents indicated that they knew about the megaservice antipattern
prior to this interview. This was to be expected, as it became clear during the RR that a
distributed monolith was a concern and a warning. Although other antipatterns such as
misuse of shared libraries were also a concern, respondents did not cite this as a major
problem. In fact, they said they intentionally use cyclic dependencies, and when the
problem of one microservice crashing and the others crashing as well due to this cycle
was explained, they said that none of this was a big problem to solve, but just organizing
messaging between microservices.

The most commonly cited approach to mitigating antipatterns was the use of DDD.
Considering that this approach is also used to separate monoliths, it makes sense when
considering the most common antipatterns such as megaservice, the correct use of the
context boundary, and the contexts business and logical data separation.

In general, everyone who participated in this interview is eager to avoid antipatterns,
especially to avoid future problems, such as those related to maintainability. For example,
one of the interviewees mentioned a wrong choice of technology. This has nothing to do
with an antipattern, but he regretted it because there is no easy way to get rid of this
technology anymore, and today it is necessary to rewrite a good part of the system. That’s
why it’s important to make your decisions carefully when planning. That does not mean
that bad decisions will never happen, but this investigation should make it clear that
antipatterns exist and that there are ways to avoid them. At the beginning of this research,
I had the idea of looking for refactoring techniques that could avoid antipatterns. However,
during the interviews I realized that refactoring is not a suitable approach due to changing
technologies and the need to rewrite the whole system into microservices. Studies and
frameworks are being developed in the literature that analyze source code and separate
it based on various factors, such as logs. None of the interviewees mentioned any kind
of reuse of the monolithic system, except as a source of information or in some form of
extracting functionality, not as copy and paste, but as a way to look at the system and
replicate it with the new technology and architecture.

Chapter 6. Interview 70

Respondents demonstrated a good understanding of the complexity of microservices
and reported issues they faced that can be summarized as a lack of preparation for working
with microservices due to inadequate training and study. I have found that it is easier to
learn while working than to study and then apply the knowledge. This is due to the time
it takes to study and the cost that companies sometimes do not want to pay. One of the
interviewees mentioned that it is interesting to execute with the knowledge you have right
now, and when you make mistakes, you learn from them.

Developing a new application in microservices does not seem to be the best solution.
Martin Fowler mentioned this (Fowler, 2015), and the interviewees confirmed this due to
the complexity of microservices. In a monolith, it would be easier to involve the customer,
find the best way to solve the problem, the best configuration, etc. This problem may also
depend on the size and maturity of the team. As some interviewees mentioned and can
also be found in the literature, a small team is not a reason to struggle with microservices.

6.4 Summary
This chapter presents the results of the interviews, how the migration process to

microservices and the process of studying and understanding the complexity of microservices
went, what experience and knowledge the interviewees had. And also about the knowledge
of the interviewees about antipatterns in microservices and their strategies to mitigate them
in the future. The next chapter focuses on a more direct discussion and final conclusions
from this research.

71

7 Analysis and Discussions

7.0.1 Analysis procedure

In this chapter I discuss the results based on previous chapters. A thematic synthesis
map will be drawn to represent graphically codes/themes and its relationships. The main
research question will be answered through the analysis and discussion of the data compared,
codified and themed.

7.1 Systematic Literature Mapping Analysis
The initial readings and surveys of the main points of each study, using a spreadsheet

with rows, columns, where the first column was the article ID and each following column
represented a research question and subresearch questions. In analyzing the responses,
they were divided into 3 categories: Modularization, Decomposition, and Technical Debt.
Within technical debt, 3 subcategories were found: Antipatterns, Architectural Debt, and
Refactoring..

• Modularization: In this category, was grouped studies focused on modularizing the
monolithic system with strategies to achieve this goal and assist in the definition
of each microservice. Was noticed that there is a tendency to seek the modularized
system, or even develop a modularized monolithic system in order to migrate to
microservices more easily in the future.

• Decomposition: In this category was grouped studies that aimed to extract microser-
vices from the monolithic system, using strategies or frameworks for this.

• Technical Debt:

Antipatterns: Studies that focus on analyzing problems that occurred in the phase
of migration from monoliths to microservices, which show a lack of understanding
about the complexity of microservices.

Architectural debts: Studies that showed types of defects related to the difficulty
of maintaining a system.

Refactoring: Studies that show refactoring techniques or strategies as a way to
migrate the monolithic to microservices.

After organize and separate the findings into categories and with further reading
and analysis the following strategies emerged: DDD, Evolvability Assurance, Strategy to

Chapter 7. Analysis and Discussions 72

Table 16 – SLM Codes
Code Description

DDD for Modularization
Using DDD for a better understanding of the
domain, this approach is useful to help find
the right boundaries for each microservice

Evolvability Assurance
Use of methods, techniques, and tools to
evaluate or improve evolvability and to
facilitate sustainable long-term development

Strategy to Identify
Tight Coupling Ways to prevent high coupling in the system

Group Entities Ways to ensure group entities based on Business
Domain

Classify DB in Business
Subsystem

Ways to separate and classify tables of database
based on business Domain

Identify Tight Coupling, Group Entities and Classify DB in Business Subsystem. Each
strategy was transformed in code (Table 16).

For more details on the responses collected in the SLM, see the Villaca (2022b).

7.2 Rapid Review Analysis
For this rapid review the same strategy was adopted, I created a spreadsheet to

collect and group the data, where the first column was the study ID and the following
were the research questions for the rapid review and metrics to collect. Analyzing the
texts, it was difficult to extract the strategies the way I wanted, this happens due to the
novelty of this research, antipatterns were recently cataloged and not all practitioners
know them, and for this reason mitigate them it is not always a concern. But I was able
to group the information into the following categories with a thorough analysis of the
responses collected: Log Aggregation, Data, Coupling and Cohesion, Strangler Pattern,
and Modularity.

• Log Aggregation: Use of a log tool to assist developers to identify with bugs, functio-
nalities that could be decomposed in microservices;

• Data: Look at data first, to analyse entities and group them in subsystems;

• Coupling and Cohesion: Look at coupling and cohesiveness to identify bottlenecks in
the system, this category also could be related to refactoring in SLM categories;

• Strangler Pattern: Strategy to decompose the monolithic in migration phase, develop
each functionality until the monolithic is extinct.

Chapter 7. Analysis and Discussions 73

Table 17 – Rapid Review Codes

Code Description
Use of Backlog strategy Use of a log tool to assist developers

Look at data first Analyse entities and group them in subsystems
before looking at code

Measure coupling and cohesion Strategy to Identify
Tight Coupling

Use of strangler pattern Extract each functionality until the monolithic
is extinct

DDD for Modularization
Using DDD for a better understanding of the
domain, this approach is useful to help find
the right boundaries for each microservice

• Modularization: Use of strategies, like DDD, for modularization. Category also
founded in SLM.

When analysing each category, the following strategies emerged: Use of Backlog
strategy, Look at data first, measure coupling and cohesion, use of strangler pattern and
DDD for modularization. Each strategy was transformed in code (Table 17).

For more details on the responses collected in the Rapid Review, see the Villaca
(2022a).

7.3 Interview Analysis
The interview analysis process was different because I did another type of data

collection, seeking initial information that could help to understand the migration context
of each interviewee, so different categories were defined, but not all of them will be
transformed into code. The categories defined were experience and members, motivation
for migration, technologies used, planning, antipatterns knowledge, antipatterns mitigate
strategies, antipatterns decomposition strategies and lessons learned.

List of Categories:

• Experience and members: collected experience of each interviewee and members of
the migration team;

• Motivation for migration: what was the motivation for migration, if was related with
the know benefits from microservices;

• Technologies used: what was the technologies used;

• Planning: how was the planning process from pre-migration and migration;

Chapter 7. Analysis and Discussions 74

Table 18 – Interview Codes
Code Description

DDD for Modularization
Using DDD for a better understanding of the
domain, this approach is useful to help find
the right boundaries for each microservice

Clean Architecture Create layered architectures that are simple,
extendable and easy to maintain.

Twelve Factor App
12 principles of making software that can be
scaled quickly and maintained in a consistent
manner

• Antipatterns knowledge: what was the knowledge of antipatterns of interviewee and
members;

• Antipatterns mitigate strategies: what was the strategies to mitigate antipatterns;

• Antipatterns decomposition strategies: what was the strategies to decompose the
microservices;

• Lessons learned: what was the lessons learned of the pre-migration and migration
process.

Of the categories analysed the following strategies appear: DDD, Clean Architecture
and Twelve Factor App (Table 18).

Chapter 7. Analysis and Discussions 75

Table 19 – Themes & Codes
Theme Codes SLM RR Interview

Modularity

Domain-Driven Design
Strangler Pattern
Identify Tigh Coupling
Backlog

Data
Group Entities
Classify DB in Business
SubSystem
Data First

Organisational Culture
Clean Architecture
Twelve Factor App
Evolvability Assurance

7.4 Themes
Accordingly to Cruzes and Dyba (2011) the codes founded in the 3 phases of this

research (Tables 16, 17 and 18), were grouped and transformed in the themes, which are
as follows: modularity, data and organization culture (Table 19).

Modularity includes DDD which was mentioned in SLM, RR and Interview, strangler
pattern, identify tight coupling and cohesion and use of backlog. Data includes group
entities, classify DB in business subsystem and data first. Organizational Culture includes
use of clean architecture, twelve factor app and evolvability assurance.

Accordingly with Cruzes and Dyba (2011) the process for thematic analysis is to
reduce overlap and transform codes into themes and then create models or high order
themes. For this research I didn’t fell the need for do this process of create a theme and
then another high order themes, because did not have enough data. So from codes I could
extract themes and this make sense at the time.

As showed in Figure 9 for a better visualization, I grouped the codes into themes.
Modularity was linked with Data because each module or later each microservice will have
his own data, so make sense that this strategies could be related, and on the other hand,
this Databases strategies could not be inside Modularity theme because you look at data
before you look at the code, or at the system as a whole. Clean Architecture was linked
with DDD because this was mentioned in the interviews, as an strategy to take in parallel
and more than a strategy do create a microservice, clean architecture it is to implement
in an intrinsic way inside the organization. Same way I linked twelve factor app to data
first, because make sense to use a strategy that can help the organization to maintain the
system in a consistent manner, which means to start to use an approach and stick with it
at the end.

Chapter 7. Analysis and Discussions 76

DDDStrangler Pattern

Identify Tight
Coupling

Backlog

Group Entities

Classify DB in Business
Subsystem

Data First Clean Architecture

Twelve Factor App

Evolvability
Assurance

ModularityData Organizational
Culture

Figure 9 – Thematic map of strategies to mitigate anti-patterns in microservices

7.5 Discussion
So of the main research question - What are the adopted strategies before the

migration from a monolithic system to microservices in order to mitigate existing antipat-
terns in microservices - came clear that the use of some strategies can help to mitigate
antipatterns in microservices. I highlight the use of DDD (Fan; Ma, 2017; Silva; Carneiro;
Monteiro, 2019; Newman; Reisz, 2020; Lavann; EdPrice; neilpeterson, 2021; Assouline;
Grazi, 2017; Samokhin, 2018) or Strangler Pattern (Kornilov, 2020; Sitnikova, 2021; Goel,
202; Richardson, 2016) to mitigate megaservice and wrong cuts. As mentioned by Silva,
Carneiro and Monteiro (2019) DDD lowers the chances of two microservices needing to
share a model and corresponding data space, risking a tight coupling, which means that
the practitioner would have better control over the right size of the microservice and its
boundaries.

Any of Data theme to mitigate shared persistence. Relational data needs to be
designed conceptually from the start, before you even consider the placement and design
of functions to carry out business processes (Hubers, 2021). Group entities strategy is to
define similarity measures between domain entities and use a clustering algorithm that
returns clusters of entities (Santos; Silva, 2020).

Each of the organizational culture themes can mitigate shared libraries and cyclic
dependencies as mentioned by the interviewees, as well as concerns about maintaining and
developing clean and scalable code in the long term.

Use of backlog strategy (Sigma, 2021; Newman; Reisz, 2020) can also mitigate
megaservice, microservice greedy because you can measure if a functionality uses few
resources or if it can be aggregated with another. Also identify tight coupling can help
to mitigate shared libraries. When designing applications, avoid using library code that
increases coupling between applications, so that developers building clients are free to
make different technology choices if that becomes advantageous (Deshpande; Singh, 2020).

These strategies found in this study are not a guarantee to avoid antipatterns, they
are only ways to mitigate them. It is important to keep in mind that these strategies
must be taken along with good planning, team training, investment in consulting when

Chapter 7. Analysis and Discussions 77

possible, and other measures that can ensure that the migration to microservices can be
done gradually and with as few errors as possible.

Some of the antipatterns cataloged by Carrasco, Bladel and Demeyer (2018) like
thinking microservices are a silver bullet; rewrite all services into microservices at once;
learn as you go - although it has not been considered in most of this study, can be mentioned
at this moment because it can also be mitigated, if you think that a thorough study of
microservices and better planning is enough to invalidate the idea that microservices
are a silver bullet. Rewrite all services into microservices at once can be mitigates using
strangler pattern (Kornilov, 2020; Sitnikova, 2021; Goel, 202; Richardson, 2016). One of the
interviewees cited "learning as you go"as one of the reasons for the problems encountered
during the migration phase to microservices. As mentioned earlier, a thorough study can
help to mitigate this antipattern.

7.6 Limitations of the study
The limitations of the proposed strategies for mitigate antipatterns in microservices

are listed as follows:

• Strategies was defined in high level, more information could be extracted in each
step from the methodology, especially from the interviewees;

• Each strategy could be more explored, e.g. more studies from DDD could be analysed
and detailed strategies could be described;

• Strategies comparable to those that appeared in this study could be analyzed, e.g.,
for clean architecture there would be other strategies that could have the same effect.
The same could be done for DDD and other strategies.

• Although they produced good responses, the interviews conducted for this study
could be done differently, with a longer implementation time that would bring more
respondents into the study, and the questionnaire could also be designed differently
to obtain more information from respondents.

7.7 Summary
In this chapter, I have discussed data analysis using a thematic synthesis approach.

It can be stated that the main research question has been answered, although these
conclusions have only been drawn from the reading and analysis and further studies can
be conducted to prove whether the answers are true or not.

78

8 Conclusion & Future Work

8.1 Conclusion
This dissertation advances in finding forms to mitigate the common antipatterns

in microservices before migrating from monolithic to microservices.

At the beginning of the study, I set out the background to familiarize the reader
with the context of the study. I wrote about monolithic architectures, why monolithic
architectures degrade, I talked about one of the different ways to modernize monolithic
systems, namely migrating to microservices, and finally I presented the catalog of anti-
patterns in microservices that exist in the literature so far. Some of the antipatterns are
exclusive to microservices as they relate to the architecture of distributed systems, while
others can also be mitigated in monolithic systems, which are the focus of this research.

In Chapter 3, I talked about the methodology, starting with the systematic literature
mapping, the definition of the research question and sub-questions, and the search string,
after I deemed it necessary to do a rapid review of the grey literature to confirm or not the
SLM findings. Then, I prepared the interviews using the GQM technique to identify the
goals, questions, and metrics. This process was helpful to develop the interview questions.
Finally, I discuss the thematic synthesis that I used in the data analysis.

Chapters 4 and 5 presented the SLM and RR, respectively, where I found the
categories that would later be transformed into codes and themes.

Chapter 6 addressed the interview process, in which I elaborate the questions based
on the information previously obtained in the methodology. I conducted seven interviews,
two via Google Forms and five via Google Meet, all of which were conducted remotely
due to time, distance, and COVID-19. During the interviews, I found that antipatterns
were indeed an issue. All interviewees demonstrated knowledge of Antipatterns, some even
under different names. The use of DDD proved to be the most practical way to avoid the
most important antipattern, megaservice. However, in the analysis and reading, I realized
that having a megaservice in microservices may be a symptom of another problem, a poor
choice, because perhaps the microservice was not the best solution, but the monolith itself.
Some of the interviewees brought this to my attention in the last question.

Chapter 7 focused on the data analysis and discussions where I presented the
thematic analysis by extracting codes from SLM, Rapid Review, and interview and then
converting them into codes and then into themes. This process was helpful to define the
answers to my research question. I believe that antipatterns such as megaservice, which
was most frequently mentioned by the respondents, can be mitigated with strategies such

Chapter 8. Conclusion & Future Work 79

as DDD. The other antipatterns can be mitigated through better planning and use of the
other strategies found in this study.

8.2 Future Work
Microservices are still a new topic in software engineering and there is still a lot of

work to be done on this topic. Perhaps new antipatterns will emerge in the future and this
research will need to be revised and updated. It might also be necessary to start from the
direct development of microservices and apply the strategies mentioned in this research to
see if antipatterns can be mitigated.

In a new interview, it could be done similarly, but with more emphasis on each
antipattern, i.e., ask the respondent to answer to each antipattern, which would be the
best strategy to mitigate, because I did it in an open way where the respondent could
freely answer and quote as they saw fit.

The strategies founded in this research can be validated in other studies, like a case
study, to see if the strategies can be applied, what is the scenario that would be applied
and what would be the results.

This study focused on researching the literature and experts’ opinions on what
strategies exist to mitigate anti-patterns in microservices. Future research can focus on
how to apply these strategies and what practical impact they have on microservices
architecture.

80

References

Abdellatif, M. et al. A taxonomy of service identification approaches for legacy software
systems modernization. Journal of Systems and Software, v. 173, p. 110868, 2021.
ISSN 0164-1212. Available on: <https://www.sciencedirect.com/science/article/pii/
S0164121220302582>.

Abdullah, M.; Iqbal, W.; Erradi, A. Unsupervised learning approach for web application
auto-decomposition into microservices. Journal of Systems and Software, v. 151, 02 2019.

Ahmed, I.; Mannan, U. A.; Gopinath, R.; Jensen, C. An empirical study of design
degradation: How software projects get worse over time. In: 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 2015. p. 1–10.

Amiri, M. J. Object-aware identification of microservices. In: . 2018.

Assouline, P.; Grazi, V. Perspective on Architectural Fitness of Microservices. 2017.
<https://www.infoq.com/articles/Microservices-Architectural-Fitness/>.

B. Pinto G., S. S. C. Rapid reviews in software engineering. 2020.

Balalaie, A.; Heydarnoori, A.; Jamshidi, P. Migrating to cloud-native architectures using
microservices: An experience report. In: . 2015. ISBN 978-3-319-33312-0.

Balalaie, A.; Heydarnoori, A.; Jamshidi, P. Microservices architecture enables devops:
an experience report on migration to a cloud-native architecture. IEEE Software, v. 33,
p. 1–1, 05 2016.

Basili, V.; Rombach, H. The tame project: towards improvement-oriented software
environments. IEEE Transactions on Software Engineering, v. 14, n. 6, p. 758–773, 1988.

Bogner, J.; Fritzsch, J.; Wagner, S.; Zimmermann, A. Assuring the evolvability of
microservices: Insights into industry practices and challenges. In: . 2019.

Bonér, J.; Farley, D.; Kuhn, R.; Thompson, M. The Reactive Manifesto. 2014.

Brogi, A.; Neri, D.; Soldani, J.; Zimmermann, O. Design principles, architectural smells
and refactorings for microservices: A multivocal review. 06 2019.

Brooks, A.; Daly, J.; Miller, J.; Roper, M.; Wood, M. Reactor risk reference document -
Technical Report NUREG-1150. Washington D.C, 1989.

Candela, I.; Bavota, G.; Russo, B.; Oliveto, R. Using cohesion and coupling for software
remodularization: Is it enough? ACM Trans. Softw. Eng. Methodol., Association for
Computing Machinery, New York, NY, USA, v. 25, n. 3, jun. 2016. ISSN 1049-331X.
Available on: <https://doi.org/10.1145/2928268>.

Carrasco, A.; Bladel, B. van; Demeyer, S. Migrating towards microservices: migration and
architecture smells. In: . 2018. p. 1–6.

https://www.sciencedirect.com/science/article/pii/S0164121220302582
https://www.sciencedirect.com/science/article/pii/S0164121220302582
https://www.infoq.com/articles/Microservices-Architectural-Fitness/
https://doi.org/10.1145/2928268

References 81

Carvalho, L. et al. Extraction of configurable and reusable microservices from legacy
systems: An exploratory study. In: Proceedings of the 23rd International Systems and
Software Product Line Conference - Volume A. New York, NY, USA: Association for
Computing Machinery, 2019. (SPLC ’19), p. 26–31. ISBN 9781450371384. Available on:
<https://doi.org/10.1145/3336294.3336319>.

Christoforou, A.; Odysseos, L.; Andreou, A. Migration of software components to
microservices: Matching and synthesis. In: Proceedings of the 14th International Conference
on Evaluation of Novel Approaches to Software Engineering. Setubal, PRT: SCITEPRESS
- Science and Technology Publications, Lda, 2019. (ENASE 2019), p. 134–146. ISBN
9789897583759. Available on: <https://doi.org/10.5220/0007732101340146>.

Cojocaru, M.; Uta, A.; Oprescu, A.-M. Microvalid: A validation framework for
automatically decomposed microservices. In: 2019 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom). 2019. p. 78–86.

Comella-Dorda; Wallnau; Seacord; Robert. A survey of black-box modernization
approaches for information systems. In: Proceedings 2000 International Conference on
Software Maintenance. 2000. p. 173–183.

Cruzes, D. S.; Dyba, T. Recommended steps for thematic synthesis in software engineering.
In: 2011 International Symposium on Empirical Software Engineering and Measurement.
2011. p. 275–284.

de Toledo, S. S.; Martini, A.; Sjøberg, D. I. Identifying architectural technical
debt, principal, and interest in microservices: A multiple-case study. Journal of
Systems and Software, v. 177, p. 110968, 2021. ISSN 0164-1212. Available on:
<https://www.sciencedirect.com/science/article/pii/S0164121221000650>.

Desai, U.; Bandyopadhyay, S.; Tamilselvam, S. Graph neural network to dilute outliers for
refactoring monolith application. 02 2021.

Deshpande, A.; Singh, N. P. Challenges and patterns for modernizing a mono-
lithic application into microservices. 2020. <https://developer.ibm.com/articles/
challenges-and-patterns-for-modernizing-a-monolithic-application-into-microservices/>.

Escobar, D. et al. Towards the understanding and evolution of monolithic applications as
microservices. In: 2016 XLII Latin American Computing Conference (CLEI). 2016. p.
1–11.

Fan, C.-Y.; Ma, S.-P. Migrating monolithic mobile application to microservice architecture:
An experiment report. In: 2017 IEEE International Conference on AI Mobile Services
(AIMS). 2017. p. 109–112.

Fink, A. Survey research methods. In: . 2010. p. 152–160. ISBN 9780080448947.

Fowler, M. StranglerFigApplication. 2004. <https://martinfowler.com/bliki/
StranglerFigApplication.html>.

Fowler, M. Microservices a definition of this new architectural term. 2014.
<http://martinfowler.com/articles/microservices.html>.

Fowler, M. Monolith First. 2015. <https://martinfowler.com/bliki/MonolithFirst.html>.

https://doi.org/10.1145/3336294.3336319
https://doi.org/10.5220/0007732101340146
https://www.sciencedirect.com/science/article/pii/S0164121221000650
https://developer.ibm.com/articles/challenges-and-patterns-for-modernizing-a-monolithic-application-into-microservices/
https://developer.ibm.com/articles/challenges-and-patterns-for-modernizing-a-monolithic-application-into-microservices/
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
http://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MonolithFirst.html

References 82

Fowler, M. Refactoring Improving the Design of Existing Code. 2018. <https:
//martinfowler.com/books/refactoring.htm>.

Francesco, P. D.; Lago, P.; Malavolta, I. Migrating towards microservice architectures:
An industrial survey. In: 2018 IEEE International Conference on Software Architecture
(ICSA). 2018. p. 29–2909.

Furda, A.; Fidge, C.; Zimmermann, O.; Kelly, W.; Barros, A. Migrating enterprise legacy
source code to microservices: On multitenancy, statefulness, and data consistency. IEEE
Software, v. 35, n. 3, p. 63–72, 2018.

Gamma, E.; Helm, R.; Johnson, R. E.; Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995. (Addison-Wesley
Professional Computing Series). ISBN 978-0-201-63361-0. Available on: <https:
//www.safaribooksonline.com/library/view/design-patterns-elements/0201633612/>.

Garousi, V.; Felderer, M.; Mäntylä, M. Guidelines for including the grey literature and
conducting multivocal literature reviews in software engineering. 07 2017.

Goel, A. CHOOSING THE RIGHT STRATEGY TO MIGRATE YOUR
MONOLITHIC APPLICATION TO A MICROSERVICES-BASED AR-
CHITECTURE. 202. <https://capgemini-engineering.com/us/en/insight/
part-3-choosing-the-right-strategy-to-migrate-your-monolithic-application-to-a-microservices-based-architecture/
>.

Gupta, A. From Monolith to Microservices: An epic Migration Journey. 2021.
<https://dzone.com/articles/from-monolith-to-microservices-an-epic-migration-j>.

Haywood, D.; Betts, T. In Defence of the Monolith, Part 1. 2017. <https:
//www.infoq.com/articles/monolith-defense-part-1/>.

Henry, A.; Ridene, Y. Migrating to microservices. In: . Microservices: Science
and Engineering. Cham: Springer International Publishing, 2020. p. 45–72. ISBN
978-3-030-31646-4. Available on: <https://doi.org/10.1007/978-3-030-31646-4_3>.

Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of pico as a knowledge representation
for clinical questions. AMIA Annu Symp Proc, p. 359–363, 02 2006.

Hubers, T. How big is a microservice? 2021. <https://medium.com/geekculture/
the-size-of-a-microservice-b9e6bc90475>.

Ibryam, B. When Microservice Fails. 2021. <https://docs.google.com/spreadsheets/d/
1vjnjAII_8TZBv2XhFHra7kEQzQpOHSZpFIWDjynYYf0/edit#gid=0>.

Jambunathan, B.; Y., K. Microservice design for container based multi-cloud deployment.
International Journal of Engineering and Technology (IJET), v. 8, 02 2016.

Jambunathan, B.; Y., K. Multi cloud deployment with containers. v. 8, p. 421–428, 02
2016.

Janes, A.; Russo, B. Automatic performance monitoring and regression testing during the
transition from monolith to microservices. In: 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). 2019. p. 163–168.

https://martinfowler.com/books/refactoring.htm
https://martinfowler.com/books/refactoring.htm
https://www.safaribooksonline.com/library/view/design-patterns-elements/0201633612/
https://www.safaribooksonline.com/library/view/design-patterns-elements/0201633612/
https://capgemini-engineering.com/us/en/insight/part-3-choosing-the-right-strategy-to-migrate-your-monolithic-application-to-a-microservices-based-architecture/
https://capgemini-engineering.com/us/en/insight/part-3-choosing-the-right-strategy-to-migrate-your-monolithic-application-to-a-microservices-based-architecture/
https://capgemini-engineering.com/us/en/insight/part-3-choosing-the-right-strategy-to-migrate-your-monolithic-application-to-a-microservices-based-architecture/
https://dzone.com/articles/from-monolith-to-microservices-an-epic-migration-j
https://www.infoq.com/articles/monolith-defense-part-1/
https://www.infoq.com/articles/monolith-defense-part-1/
https://doi.org/10.1007/978-3-030-31646-4_3
https://medium.com/geekculture/the-size-of-a-microservice-b9e6bc90475
https://medium.com/geekculture/the-size-of-a-microservice-b9e6bc90475
https://docs.google.com/spreadsheets/d/1vjnjAII_8TZBv2XhFHra7kEQzQpOHSZpFIWDjynYYf0/edit#gid=0
https://docs.google.com/spreadsheets/d/1vjnjAII_8TZBv2XhFHra7kEQzQpOHSZpFIWDjynYYf0/edit#gid=0

References 83

Janssen, T. From Monolith to Microservices – Migrating a Persistence Layer. 2021.
<https://thorben-janssen.com/monolith-to-microservices-persistence-layer/>.

Jin, W.; Liu, T.; Zheng, Q.; Cui, D.; Cai, Y. Functionality-oriented microservice extraction
based on execution trace clustering. In: . 2018. p. 211–218.

Kamei, F. et al. Grey literature in software engineering: A critical review. CoRR,
abs/2104.13435, 2021. Available on: <https://arxiv.org/abs/2104.13435>.

Kaplunovich, A. Tolambda–automatic path to serverless architectures. In: 2019
IEEE/ACM 3rd International Workshop on Refactoring (IWoR). 2019. p. 1–8.

Kazanaviius, J.; Mazeika, D. Analysis of legacy monolithic software decomposition into
microservices. In: Doctoral Consortium/Forum. 2020.

Kazanavičius, J.; Mažeika, D. Migrating legacy software to microservices architecture. In:
2019 Open Conference of Electrical, Electronic and Information Sciences (eStream). 2019.
p. 1–5.

Kecskemeti, G.; Marosi, A.; Kertesz, A. The entice approach to decompose monolithic
services into microservices. 2016 International Conference on High Performance
Computing & Simulation (HPCS), p. 591–596, 2016.

Khadka, R. et al. Does software modernization deliver what it aimed for? a post
modernization analysis of five software modernization case studies. In: 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 2015. p.
477–486.

Kitchenham, B. A.; Charters, S. Guidelines for performing Systematic Literature Reviews
in Software Engineering. 2007. Available on: <https://www.elsevier.com/__data/promis_
misc/525444systematicreviewsguide.pdf>.

Kitchenham, B. A.; Pfleeger, S. L. Personal opinion surveys. In: Shull, F.; Singer, J.;
Sjøberg, D. I. K. (Ed.). Guide to Advanced Empirical Software Engineering. : Springer
London, 2008. p. 63–92.

Knoche, H.; Hasselbring, W. Drivers and barriers for microservice adoption - a survey
among professionals in germany. v. 14, p. 1–35, 01 2019.

Kornilov, D. Monolithic to microservices: Design patterns to ensure mi-
gration success. 2020. <https://blogs.oracle.com/cloud-infrastructure/post/
monolithic-to-microservices-how-design-patterns-help-ensure-migration-success>.

Kuryazov, D.; Jabborov, D.; Khujamuratov, B. Towards decomposing monolithic
applications into microservices. In: 2020 IEEE 14th International Conference on
Application of Information and Communication Technologies (AICT). 2020. p. 1–4.

Laigner, R.; Lifschitz, S.; Kalinowski, M.; Poggi, M.; Salles, M. A. V. Towards a technique
for extracting relational actors from monolithic applications. In: . 2019.

Lavann; EdPrice; neilpeterson. Migrate a monolith application to microservices using
domain-driven design. 2021. <https://docs.microsoft.com/en-us/azure/architecture/
microservices/migrate-monolith>.

https://thorben-janssen.com/monolith-to-microservices-persistence-layer/
https://arxiv.org/abs/2104.13435
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://blogs.oracle.com/cloud-infrastructure/post/monolithic-to-microservices-how-design-patterns-help-ensure-migration-success
https://blogs.oracle.com/cloud-infrastructure/post/monolithic-to-microservices-how-design-patterns-help-ensure-migration-success
https://docs.microsoft.com/en-us/azure/architecture/microservices/migrate-monolith
https://docs.microsoft.com/en-us/azure/architecture/microservices/migrate-monolith

References 84

Lea, G. Why “Don’t Use Shared Libraries in Microservices” is Bad Advice. 2016.
<https://www.grahamlea.com/2016/04/shared-libraries-in-microservices-bad-advice/>.

Lenarduzzi, V.; Lomio, F.; Saarimäki, N.; Taibi, D. Does migrating a monolithic system
to microservices decrease the technical debt? Journal of Systems and Software, v. 169, 07
2020.

Levcovitz, A.; Terra, R.; Valente, M. Towards a technique for extracting microservices
from monolithic enterprise systems. 05 2016.

Li, M.; Smidts, C. A ranking of software engineering measures based on expert opinion.
IEEE Transactions on Software Engineering, v. 29, n. 9, p. 811 – 824, sept. 2003. ISSN
0098-5589.

Li, R.; Liang, P.; Soliman, M.; Avgeriou, P. Understanding architecture erosion:
The practitioners’ perceptive. CoRR, abs/2103.11392, 2021. Available on: <https:
//arxiv.org/abs/2103.11392>.

Li, S. et al. Understanding and addressing quality attributes of microservices architecture:
A systematic literature review. Information and Software Technology, v. 131, p. 106449,
2021. ISSN 0950-5849. Available on: <https://www.sciencedirect.com/science/article/pii/
S0950584920301993>.

Linthicum, D. S. Practical use of microservices in moving workloads to the cloud. IEEE
Cloud Computing, v. 3, n. 5, p. 6–9, 2016.

Macia, I. et al. Are automatically-detected code anomalies relevant to architectural
modularity? an exploratory analysis of evolving systems. In: Proceedings of the 11th
Annual International Conference on Aspect-Oriented Software Development. New York,
NY, USA: Association for Computing Machinery, 2012. (AOSD ’12), p. 167–178. ISBN
9781450310925. Available on: <https://doi.org/10.1145/2162049.2162069>.

Mahanta, P.; Chouta, S. Translating a legacy stack to microservices using a modernization
facade with performance optimization for container deployments. In: . 2020. p.
143–154. ISBN 978-3-030-40906-7.

Mak, S. Modules vs. microservices: Apply modular system design principles while avoiding
the operational complexity of microservices. 2017. <https://www.oreilly.com/radar/
modules-vs-microservices/>.

Marshall, C.; Brereton, P.; Kitchenham, B. Tools to support systematic reviews in software
engineering: A cross-domain survey using semi-structured interviews. In: Proceedings of
the 19th International Conference on Evaluation and Assessment in Software Engineering.
New York, NY, USA: Association for Computing Machinery, 2015. (EASE ’15). ISBN
9781450333504. Available on: <https://doi.org/10.1145/2745802.2745827>.

Martin, R. C. Design Principles and Design Patterns. 2000.

Mazlami, G.; Cito, J.; Leitner, P. Extraction of microservices from monolithic software
architectures. In: 2017 IEEE International Conference on Web Services (ICWS). 2017. p.
524–531.

https://www.grahamlea.com/2016/04/shared-libraries-in-microservices-bad-advice/
https://arxiv.org/abs/2103.11392
https://arxiv.org/abs/2103.11392
https://www.sciencedirect.com/science/article/pii/S0950584920301993
https://www.sciencedirect.com/science/article/pii/S0950584920301993
https://doi.org/10.1145/2162049.2162069
https://www.oreilly.com/radar/modules-vs-microservices/
https://www.oreilly.com/radar/modules-vs-microservices/
https://doi.org/10.1145/2745802.2745827

References 85

Newman, S.; Guimarães, L. Migrating Monoliths to Microservices with De-
composition and Incremental Changes. 2021. <https://www.infoq.com/articles/
migrating-monoliths-to-microservices-with-decomposition/>.

Newman, S.; Reisz, W. Sam Newman: Monolith to Microservices. 2020. <https:
//www.infoq.com/podcasts/monolith-microservices/>.

Ogbole, M.; Ogbole, E.; Olagesin, A. Cloud systems and applications : A review.
International Journal of Scientific Research in Computer Science, Engineering and
Information Technology, p. 142–149, 02 2021.

Pigazzini, I.; Fontana, F. A.; Lenarduzzi, V.; Taibi, D. Towards microservice smells
detection. In: Proceedings of the 3rd International Conference on Technical Debt. New
York, NY, USA: Association for Computing Machinery, 2020. (TechDebt ’20), p. 92–97.
ISBN 9781450379601. Available on: <https://doi.org/10.1145/3387906.3388625>.

Pigazzini, I.; Fontana, F. A.; Maggioni, A. Tool support for the migration to microservice
architecture: An industrial case study. In: Bures, T.; Duchien, L.; Inverardi, P. (Ed.).
Software Architecture. Cham: Springer International Publishing, 2019. p. 247–263. ISBN
978-3-030-29983-5.

Ren, Z. et al. Migrating web applications from monolithic structure to microservices
architecture. In: Proceedings of the Tenth Asia-Pacific Symposium on Internetware. New
York, NY, USA: Association for Computing Machinery, 2018. (Internetware ’18). ISBN
9781450365901. Available on: <https://doi.org/10.1145/3275219.3275230>.

Richardson, C. Refactoring a Monolith into Microservices. 2016. <https://www.nginx.
com/blog/refactoring-a-monolith-into-microservices/>.

Richardson, C. Microservice Architecture. 2018. <https://microservices.io/patterns/
microservices.html>.

Richardson, C. Refactoring a monolith to microservices. 2021. <https://microservices.io/
refactoring/>.

Roos, W. Getting ready for microservices – strangling the monolith. 2020. <https:
//amazicworld.com/getting-ready-for-microservices-breaking-down-the-monolith/>.

Samokhin, V. Why Microservices Fail. 2018. <https://hackernoon.com/
why-microservices-fail-6cdc006f9540>.

Santos, N.; Silva, A. R. A complexity metric for microservices architecture migration. In:
2020 IEEE International Conference on Software Architecture (ICSA). 2020. p. 169–178.

Sayara, A.; Towhid, M. S.; Hossain, M. S. A probabilistic approach for obtaining an
optimized number of services using weighted matrix and multidimensional scaling. In:
2017 20th International Conference of Computer and Information Technology (ICCIT).
2017. p. 1–6.

Selmadji, A.; Seriai, A.; Bouziane, H.; Dony, C.; Mahamane, R. Re-architecting oo
software into microservices: 7th ifip wg 2.14 european conference, esocc 2018, como, italy,
september 12-14, 2018, proceedings. In: . 2018. p. 65–73. ISBN 978-3-319-99818-3.

https://www.infoq.com/articles/migrating-monoliths-to-microservices-with-decomposition/
https://www.infoq.com/articles/migrating-monoliths-to-microservices-with-decomposition/
https://www.infoq.com/podcasts/monolith-microservices/
https://www.infoq.com/podcasts/monolith-microservices/
https://doi.org/10.1145/3387906.3388625
https://doi.org/10.1145/3275219.3275230
https://www.nginx.com/blog/refactoring-a-monolith-into-microservices/
https://www.nginx.com/blog/refactoring-a-monolith-into-microservices/
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://microservices.io/refactoring/
https://microservices.io/refactoring/
https://amazicworld.com/getting-ready-for-microservices-breaking-down-the-monolith/
https://amazicworld.com/getting-ready-for-microservices-breaking-down-the-monolith/
https://hackernoon.com/why-microservices-fail-6cdc006f9540
https://hackernoon.com/why-microservices-fail-6cdc006f9540

References 86

Shimoda, A.; Sunada, T. Priority order determination method for extracting services
stepwise from monolithic system. In: 2018 7th International Congress on Advanced
Applied Informatics (IIAI-AAI). 2018. p. 805–810.

Sigma. MIGRATING MONOLITH TO MICROSERVICES: STEP-
BY-STEP GUIDE. 2021. <https://sigma.software/about/media/
migrating-monolith-microservices-step-step-guide>.

Silva, H.; Carneiro, G.; Monteiro, M. Towards a roadmap for the migration of legacy
software systems to a microservice based architecture. In: . 2019. p. 37–47.

Sitnikova, A. Monolith vs Microservices: Everything You Need To Know. 2021.
<https://bambooagile.eu/insights/monolith-vs-microservices/>.

Solingen, R.; Berghout, E. The goal/question/metric method: A practical guide for quality
improvement of software development. 01 1999.

Taibi, D.; Auer, F.; Lenarduzzi, V.; Felderer, M. From monolithic systems to microservices:
An assessment framework. 09 2019.

Taibi, D.; Lenarduzzi, V. On the definition of microservice bad smells. IEEE Software,
v. 35, n. 3, p. 56–62, 2018.

Taibi, D.; Lenarduzzi, V.; Pahl, C. Processes, motivations and issues for migrating to
microservices architectures: An empirical investigation. IEEE Cloud Computing, v. 4, 10
2017.

Taibi, D.; Lenarduzzi, V.; Pahl, C. Microservices anti patterns: A taxonomy. In: .
2019.

Taibi, D.; Systä, K. From monolithic systems to microservices: A decomposition framework
based on process mining. In: . 2019.

Teixeira, E. et al. Software process line as an approach to support software process reuse:
a systematic literature review. Information and Software Technology, v. 116, 08 2019.

Tian, F.; Liang, P.; Babar, M. A. How developers discuss architecture smells? an
exploratory study on stack overflow. In: 2019 IEEE International Conference on Software
Architecture (ICSA). 2019. p. 91–100.

Tighilt, R. et al. On the study of microservices antipatterns: a catalog proposal. In: . 2020.
p. 1–13.

Toledo, S.; Martini, A.; Sjøberg, D. Improving agility by managing shared libraries in
microservices. In: . 2020. p. 195–202. ISBN 978-3-030-58857-1.

Vasylenko, A. Monolithic Architecture. 2018. <https://www.n-ix.com/
microservices-vs-monolith-which-architecture-best-choice-your-business/>.

Villaca, G. L. D. rapidreview2.pdf. 4 2022. Available on: <https://figshare.com/articles/
figure/rapidreview2_pdf/19527781>.

Villaca, G. L. D. systematic-literature-mapping.pdf. 4 2022. Available on:
<https://figshare.com/articles/figure/systematic-literature-mapping_pdf/19526230>.

https://sigma.software/about/media/migrating-monolith-microservices-step-step-guide
https://sigma.software/about/media/migrating-monolith-microservices-step-step-guide
https://bambooagile.eu/insights/monolith-vs-microservices/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://figshare.com/articles/figure/rapidreview2_pdf/19527781
https://figshare.com/articles/figure/rapidreview2_pdf/19527781
https://figshare.com/articles/figure/systematic-literature-mapping_pdf/19526230

References 87

Walker, A.; Das, D.; Černý, T. Automated code-smell detection in microservices through
static analysis: A case study. Applied Sciences, v. 10, 11 2020.

Wiggins, A. Twelve Factor App. 2017. <https://12factor.net/pt_br/>.

Wolfart, D. et al. Modernizing legacy systems with microservices: A roadmap. In:
Evaluation and Assessment in Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2021. (EASE 2021), p. 149–159. ISBN 9781450390538. Available
on: <https://doi.org/10.1145/3463274.3463334>.

Wolfart, D. et al. Towards a process for migrating legacy systems into microservice
architectural style. In: . 2020. p. 255–264.

Yang, X.; Chen, L.; Wang, X.; Cristoforo, J. A dual-spiral reengineering model for legacy
system. In: . 2005. v. 2007, p. 1 – 5.

Zirkelbach, C.; Krause, A.; Hasselbring, W. Modularization of research software for
collaborative open source development. 07 2019.

Zirkelbach, C.; Krause, A.; Hasselbring, W. On the modularization of explorviz towards
collaborative open source development. In: . 2019.

https://12factor.net/pt_br/
https://doi.org/10.1145/3463274.3463334

Appendix

References 89

.1 Systematic Literature Mapping

.1.1 Protocol Mapping

 PROTOCOL - MAPPING

 Research Topic : Refactoring Monolithic System Towards
 Migrations to Microservices

 Authors : Guilherme Luciano Donin Villaca / Ivonei Freitas da Silva

References 90

 Review History
 Date Review Author Role Description

 30/09/2020 1 Guilherme /
 Ivonei Main researchers Initial draft

 26/10/2020 2 Guilherme Main researcher Reescrita background

 16/11/2020 3 Ivonei Main researcher Revisão background

 21/03/2021 4 Guilherme Main researcher Inclusion/Exclusion e QC

 08/04/2021 5 Guilherme Main researcher String Review

 28/04/2021 6 Guilherme Main researcher Revisão Final

 2

References 91

 1 Team

 MEMBER ACADEMIC
 DEGREE RESPONSIBILITY ROLE

 Guilherme Luciano Donin
 Villaca

 M.Sc. Candidate,
 University of the
 State of Paraná.

 Develop protocol.
 Select studies.
 Collect, analyze and
 synthesize data.
 Assess studies quality.
 Write report.

 Main
 Researcher

 Ivonei Freitas da Silva
 Ph.D., Federal
 University of
 Pernambuco.

 Review report. Advisor

 2 Background

 It is known that over time the software suffers degradation and, in order to maintain
 quality, the best approach is to reduce software defects (bug fixes) and design problems
 (refactoring) [1]. These problems can also be called anomalies in the code and are key
 factors for degradation, if not removed, the software can suffer from erosion, which occurs
 when architectural violations are introduced and drift, when bad design decisions affect the
 architecture [8]. Degradation occurs due to constant changes and implementations of new
 features, which is the way to meet the requirements that arise as the system grows. Such
 changes end up in conflict with the way the software was originally built, either with the
 design or with the initial implementation, and become expensive to revert, in addition, the
 technology used to build the software may become out of date after some years, becoming
 incompatible with current demands like the cloud. To contain the degradation, it is common
 to think of several approaches, whether to completely rebuild the system from scratch,
 using new design techniques and technologies.The modernization of software is one of the
 paths to be taken, whether in the form of refactoring, remodeling [5] or migration to another
 approach such as software product lines or to a new architecture, such as microservices.
 However, when thinking about a new architecture, such as microservices, it should be
 taken into account that an architecture based on distributed systems also brings greater
 complexity when compared to a monolithic system, where there was a single system to
 manage (deploy) , sometimes on a single server, and even if it were necessary to replicate
 that system on different servers, it is not comparable to dozens or hundreds of parts of a
 system being replicated on different servers. But when looking for scalability, resilience,
 heterogeneity of technologies and other benefits that the cloud provides, there must be a
 preparation for this scenario.

 The essence of microservices is to decompose the application's components into
 small functionalities logically grouped as services, each running in its own process and
 communicating with lightweight mechanisms, usually an HTTP resource API [6]. In

 3

References 92

 addition, a constant idea in this universe of applications in the cloud is the reuse of
 software, which brings efficiency to the application as a whole, making it possible to
 consume services without the need to create functionality from scratch [7]. The migration
 from monolithic systems to microservices has been an industry trend in recent years,
 gaining popularity and hype, inspired by big players such as Amazon, Linkedin, Netflix,
 among others.

 However, in the literature (state of the art) there are researches that point out
 problems that occur in the migration from monolithic to microservices and that after the
 migration is completed these problems negatively affect the quality of the new architecture.
 According to taibi [3] [4] these problems also called bad smells and anti patterns are
 caused by bad practices that occur during development and affect some quality attributes
 of the software such as understandability, testability, extensibility, reusability and
 maintainability of the system under development. It is also concluded that practitioners
 need to carefully make the decision of migrating to MSA based on the return on
 investment, since this architectural style additionally causes some pains in practice [9]. In
 other words, the inside chaos of monoliths were transformed into some other external and
 visible complications after the separation and componentization.

 This study aims to review and find what activities, and important practical and research
 issues concerning research directions. This review is systematically performed, following
 Kitchenham’s guideline [10], which aids in assuring consistent results from a set of
 individual studies, called primary studies, since a single primary study does not answer a
 research question from every possible perspective at the same time and does not produce
 practical recommendations. Secondary studies, such as our study, are expected to give
 practical recommendations.

 This document’s rationale is stated at delineating the research objectives and clearly
 explaining the review carrying on process, through defining research questions and
 planning on how the sources and studies selection will be accomplished. The research
 questions will guide the design of the review process.

 4

References 93

 3 Research Questions

 The research questions that will guide this study are:

 Our main question is What and How are the adopted strategies by the researchers or
 practitioners to refactor the architecture of a monolithic system before adopting a
 modernization process for Microservice?
 Rationale: We want to understand whether they are preparing to avoid (or mitigate) future
 (and possible) bad smells after migrating.
 Strategies here can mean recommendations or refactoring techniques to improve the
 design of an existing code [13], the use of design patterns [14], design principles [15] or
 even approaches of reactive manifesto [16]. Other meanings for strategy are: criteria,
 processes, guidelines, tools, patterns, metrics.

 Based on this question, we refine it into specific subquestions .

 SQ. Are the microservice bad smells considered in those strategies?
 Rationale: Bad smells can be related to monolith or microservice architecture. Tools,
 techniques, etc maybe exist to mitigate these microservice bad smells. On one hand, we
 want to understand whether microservice bad smells can be observed in monolithic
 systems before migrating to microservice architecture. For example, megaservice (a
 microservice bad smell) can be observed as a big module in monolithic architecture. On
 the other hand, we also want to know whether those tools or techniques that deal with
 microservice bad smells could be customized or not when dealing with monolithic bad
 smells, and vice-versa.

 SQ. Which strategy is used to determine the extent of monolithic software
 degradation?
 Rationale: If the software is very degraded outdated technology, many defects (bugs) and
 design problems, what strategies in this scenario have been adopted for modernization.

 SQ. Which strategy is used to identify whether upgrading to microservices is
 possible?
 Rationale: If the software is very degraded or outdated technology, many defects (bugs)
 and design problems can be found, what strategies have been adopted for modernization.

 SQ. What was the context (scenario) of the monolithic system?
 Rationale: Context characterized by architecture, business goals, organizational,
 restrictions.

 SQ. What were the challenges and recommendations?
 Rationale: Migration to microservices is still on the rise in the industry and we still need to

 5

References 94

 identify many challenges and good practices to assist new practitioners who wish to
 migrate to microservices

 The research question and the sub questions are discussed from the following viewpoints
 of the PICO structure that is according to its guidelines, articulating a question in terms of
 its four anatomic parts—Problem/Population, Intervention, Comparison, and Outcome
 (PICO)—facilitates searching for a precise answer [11]:

 Study Population : practitioners/projects that refactor monolithic software before migrating
 to microservices, researchers/projects that study refactoring of monolithic software before
 migrating to microservices.
 Study Intervention : use of some software engineering strategy such as activities,
 practices, tools, standards, guidelines, patterns, metrics, criteria, evidence during the
 refactoring of the monolithic before migrating to microservices.
 Study Comparisons : -
 Study Outcomes :(i) what are the adopted strategies; (ii) how was the adoption of the
 strategy. (iii) What the problems, lessons learned, or challenges they have found during
 the refactoring. (iv) What are adopted criteria and evidence when selecting and adopting
 refactoring strategies.
 Study design : all empirical studies designs such as case studies, technical reports on
 feasibility study, controlled experiments (and quasi-experiments), experience reports, the
 survey with the practitioners, and action research that show adoption of refactoring of
 monolithic software before migrating to microservices.

 4 Search Process

 The primary studies should be searched by following keywords: monolith, microservice;
 smell, antipattern, bad practice, pitfall, refactor, reengineer, violation, defect and
 degradation.

 Search strings construction is based on research questions, PICO structure. They are
 assembled by using boolean ANDs and ORs to merge keywords. Following the search
 strings used in this review are listed:

 ● ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR

 refactor* OR reengineer* OR violation OR defect OR degradation) AND (

 microservice* OR micro-service* OR "micro services"))

 6

References 95

 Based on [12] our strategy for search engines was defined in a similar way, by analysing

 their ability to use logic expressions, full text recovery, automated searches of paper

 content and searches using specific fields (for example, title, abstract, keywords). Primary

 studies search should be focused on important journals, conferences proceedings, books,

 thesis and technical reports. The search process is manual and based on web search

 engines, studies references and digital libraries of relevant publishers and organizations in

 software engineering, such as:

 - Scopus (https://www.scopus.com/home.uri)
 - IEEEXplore (https://ieeexplore.ieee.org/Xplore/home.jsp)
 - ScienceDirect (www.sciencedirect.com)
 - Google Scholar (https://www.googlescholar.org/)

 Specific researchers can also be contacted directly through their WebPages and emails, if
 it is necessary to gather further information on any relevant research and the paper (or set
 of papers) related to the work does not provide enough information on such issues.

 According to [10], it is necessary to define inclusion and exclusion criteria for the papers
 selection. These criteria should identify the primary studies, i.e. the ones identified during
 the research, which provide evidence about the research question. These criteria are
 presented in the following 5 and 6 sections.

 5 Critério de Inclusão e Exclusão

 Inclusion Criteria establish the inclusion reasons for each study found during the search.
 Studies on the following topics will be included:

 1. Estudo descreve estratégia para refatorar sistemas monolíticos antes de migrar ou
 modernizar para microsserviço.

 2. Estudo descreve algum desafio ou recomendação para refatorar o sistema
 monolítico antes de migrar ou modernizar para microsserviços.

 3. Estudo mostra condições de degradação, falhas ou defeitos antes de migrar ou
 modernizar de monolítico para microsserviços.

 4. Estudo apresenta ferramentas ou frameworks que auxiliam ou monitoram defeitos
 no projeto do sistema monolíticos.

 Exclusion Criteria describe the following reasons to discard studies:

 7

References 96

 1. Duplicated studies. Whenever a certain study has been published in different
 publications, the most recent and/or complete version will be used, unless they are
 complementary information.

 2. O estudo não é um artigo de pesquisa científica ou é um artigo de conferência.
 3. Estudo não está escrito em inglês.
 4. Versões anteriores de trabalhos selecionados

 6 Primary Study selection process

 The selection process for primary studies is performed by a joint effort of two researchers;
 one of them is M.Sc. Student and the other is a Doctor and advisor.

 It is based on automated search in a digital database, then the reading of titles, abstracts,
 keywords. After, the included studies are read the introduction and conclusion. Finally, the
 complete study is read.

 As papers are read, exclusion/inclusion criteria must be obey and, if any are achieved, it
 must be rejected but its details are kept in a reference repository system (e.g. JabRef)
 containing information to further analysis and research, when necessary.

 8

References 97

 7 Reliability of inclusion decisions

 Whenever a paper is analyzed by more than one researcher, it is necessary to evaluate
 their viewpoints, in order to have a consensus on the topic. A faithfully agreement level
 must exist. If the researchers do not find a common point of view after discussion, the
 advisor will give appropriate directions. Finally, the authors can be also contacted.

 8 Study Quality Assessment

 The purpose of quality criteria is to evaluate the primary studies, as a means of weighting
 the importance of individual studies and guiding their understanding.

 9

References 98

 The following primary studies can be viewed in searches as approaches and surveys.
 Hence, we define common and specific quality criteria for all of the studies types. Table 4
 shows the quality criteria for approaches associated to Testing in Software Product Line,
 and Table 5 presents a quality criteria for surveys found in that area. These surveys
 correspond to related work with this review.

 The scope presented on Table 4 and Table 5 represent how the quality criteria should be
 applied to each study.

 .

 10

References 99

 Table 4. Quality Criteria of Software Refactoring for migration to microservices.

 ID QUALITY CRITERIA OPTIONS SCORE

 QC1 Are there any refactoring
 strategies described?

 Yes. They are explicitly defined in the
 study. 1

 Partly. They are implicit. 0,5

 No. They are not defined and cannot
 be readily inferred. 0

 QC2
 Are there any references
 to refactoring for
 migration to microservice
 described?

 Yes. They are explicitly defined in the
 study. 1

 Partly. They are implicit 0,5

 No. They cannot be found in study
 activities. 0

 QC3
 Are there any references
 to bad smells in
 microservices described?

 Yes. They are explicitly defined in the
 study. 1

 Partly. They are implicit. 0,5

 No. They are not defined and cannot
 be readily inferred. 0

 QC4 Are there any references
 to design problems ?

 Yes. They are explicitly defined in the
 study. 1

 Partly. They are implicit. 0,5

 No. They are not defined and cannot
 be readily inferred. 0

 QC5
 Are there any references
 to defects of software
 (code smells in
 monolithic) ?

 Yes. They are explicitly defined in the
 study 1

 Partly. They are implicit. 0,5

 No. They are not defined and cannot
 be readily inferred. 0

References 100

 9 Data Collection

 The data extraction forms must be designed to collect all the information needed to
 address the review questions and the study quality criteria. The following will be extracted
 from each study:

 ● The study’s title and authors.

 ● The source (conference, journal, and so on.).

 ● The year when the study was published. In case of study was published in
 different sources, the most relevant will be used in any analysis although both
 dates will be recorded.

 ● Classification (related work or approach).

 ● Scope (Refactoring strategies, Modularization Techniques).

 ● The answers for research questions addressed by the publication.

 ● Summary (a summary with brief analysis, overview of its weaknesses and
 strengths).

 ● Quality criteria score.

 The main data extraction effort will be performed by two researchers. Reviewers will check
 the work, as pointed in the previous section (Section 7).

 Supplementary publications to a study should be grouped. Each study will be documented
 in a form pattern. It will also be documented the reviewer’s name and date of the review.

 10 Data Analysis and Synthesis

 The primary studies will be categorized since there are many techniques and methods
 applicable to different scenarios. After analyzing the primary studies, they will be grouped
 in categories to facilitate the tabulation and further comparative analysis. The studies
 containing any exclusion criteria will also be tabulated, where it will be described the
 exclusion reason.

 According to the comparisons and study analysis, the following criteria will be raised:

 ● The strategies strengths and weaknesses;

 ● Limitations and trends in refactoring (remodularization) of monolithic systems
 before migrating to microservice architecture;

 ● Challenges in the area to be addressed;

 ● Best practices (recommendations) of refactoring (remodularization) of monolithic
 systems before migrating to microservice architecture.

References 101

 11 Dissemination

 The results of the study can be of interest for the software engineering community as well
 as researchers interested in migrating from monolithic to a microservice architecture or, in
 some cases, any other form of modernization. It will also be documented that the study
 accomplished results in a technical report format in order to ensure that readers are able to
 properly evaluate the rigor and validity of the review.

 12 References

 [1] I. Ahmed, U. A. Mannan, R. Gopinath and C. Jensen, "An Empirical Study of Design
 Degradation: How Software Projects Get Worse over Time," 2015 ACM/IEEE International
 Symposium on Empirical Software Engineering and Measurement (ESEM) , Beijing, China,
 2015, pp. 1-10, doi: 10.1109/ESEM.2015.7321186.

 [2] Ganesh, Samarthyam & Suryanarayana, Girish & Sharma, Tushar. (2016). Refactoring
 for software architecture smells. 1-4. 10.1145/2975945.2975946.

 [3] D. Taibi and V. Lenarduzzi, "On the Definition of Microservice Bad Smells," in IEEE
 Software, vol. 35, no. 3, pp. 56-62, May/June 2018, doi: 10.1109/MS.2018.2141031.

 [4] Taibi, Davide & Lenarduzzi, Valentina & Pahl, Claus. (2019). Microservices
 Anti-Patterns: A Taxonomy.

 [5] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. 2016. Using
 Cohesion and Coupling for Software Remodularization: Is It Enough? ACM Trans. Softw.
 Eng. Methodol. 25, 3, Article 24 (August 2016), 28 pages.
 DOI: https://doi.org/10.1145/2928268

 [6] Jambunathan, Baskaran & Y., Kalpana. (2016). Microservice Design for Container
 based Multi-cloud Deployment. International Journal of Engineering and Technology
 (IJET). 8.

 [7] D. S. Linthicum, "Practical Use of Microservices in Moving Workloads to the Cloud," in
 IEEE Cloud Computing, vol. 3, no. 5, pp. 6-9, Sept.-Oct. 2016, doi:
 10.1109/MCC.2016.114.

 [8] Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Nenad Medvidovic,
 and Arndt von Staa. 2012. Are automatically-detected code anomalies relevant to

 13

References 102

 architectural modularity? an exploratory analysis of evolving systems. In <i>Proceedings of
 the 11th annual international conference on Aspect-oriented Software Development</i>
 (<i>AOSD '12</i>). Association for Computing Machinery, New York, NY, USA, 167–178.
 DOI:https://doi.org/10.1145/2162049.2162069

 [9] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhihao Shan,
 Jinfeng Shen, Muhammad Ali Babar, Understanding and addressing quality attributes of
 microservices architecture: A Systematic literature review, Information and Software
 Technology, Volume 131, 2021, 106449, ISSN 0950-5849,
 https://doi.org/10.1016/j.infsof.2020.106449

 [10] Kitchenham, B. (2007). "Guidelines for performing Systematic Literature Reviews in
 Software Engineering ," V 2.3 EBSE Technical Report, EBSE-2007-01.

 [11] Huang, X., Lin, J., & Demner-Fushman, D. (2006). Evaluation of PICO as a knowledge
 representation for clinical questions. AMIA ... Annual Symposium proceedings. AMIA
 Symposium , 2006 , 359–363.

 [12] Teixeira, E. N., Aleixo, F. A., de Sousa Amâncio, F. D., OliveiraJr, E., Kulesza, U., &
 Werner, C. (2019). Software Process Line as an Approach to Support Software Process
 Reuse: a Systematic Literature Review. Information and Software Technology.
 doi:10.1016/j.infsof.2019.08.007

 [13] Refactoring Improving the Design of Existing Code. Disponível em:
 < https://martinfowler.com/books/refactoring.html >. Acesso em 20 mar.2021

 [14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. <i>Design
 patterns: elements of reusable object-oriented software</i>. Addison-Wesley Longman
 Publishing Co., Inc., USA.

 [15] Martin, Robert C. "Design principles and design patterns." Object Mentor 1.34 (2000):
 597.

 [16] The Reactive Manifesto. Disponível em: < https://www.reactivemanifesto.org/pt-BR >.
 Acesso em 20 mar.2021

 14

References 103

References 104

.1.2 SLM Paper Count

Digital Library Papers Observation
Science direct 264
ieeeXplore 21
Scopus 46
Google Scholar 120
Mapeamento Migração 62

Found Papers 513
1st round exclusion 367 Papers 1st Exclusion (Title, keywords, unavailable, duplicates)

2nd round exclusion 87 Abstract
Final Set 59

References 105

References 106

.2 Rapid Review

 PROTOCOL - RAPID REVIEW

 Research Topic : Refactoring Monolithic System Towards Migrations to
 Microservices

 Authors : Guilherme Luciano Donin Villaca / Ivonei Freitas da Silva

References 107

 Review History
 Date Review Author Role Description

 30/10/2021 1 Guilherme /
 Ivonei

 Main
 researchers Initial draft

 08/11/2021 2 Guilherme Main
 researchers Revisão GQM da RR

 08/11/2021 3 Guilherme
 Main

 researchers Revisão Final

 2

References 108

 1 Team

 MEMBER ACADEMIC
 DEGREE RESPONSIBILITY ROLE

 Guilherme Luciano Donin
 Villaca

 M.Sc.
 Candidate,
 University of the
 State of Paraná.

 Develop protocol.
 Select studies.
 Collect, analyze and
 synthesize data.
 Assess studies
 quality.
 Write report.

 Main
 Researcher

 Ivonei Freitas da Silva
 Ph.D., Federal
 University of
 Pernambuco.

 Review report. Advisor

 Resumo do tópico para revisão rápida

 … por aqui o mesmo resumo do mapping, só que tratando de GL. Talvez o
 parágrafo abaixo sirva para indicar que será uma rapid review também. Mas
 quando passar isso para a dissertação, decidimos se colocamos ou não.

 Exemplo: This Rapid Review (RR) [1] on GL aims to analyze <<facet>> to
 characterize it in the IoT field, regarding what, how, where, when and why is used
 in the context of IoT projects, verifying the existence of published studies
 supporting the previous results. The 5W1H aims to give the observational
 perspective on which information is required to the understanding and
 management of the facet in a system (what); to the software technologies
 (techniques, technologies, methods, and solutions) defining their operationalization
 (how); the activities location being geographically distributed or something external
 to the software system (where); the roles involved to deal with the facet
 development (who); the effects of time over the facet, describing its
 transformations and states (when); and to translate the motivation, goals, and
 strategies going to what is implemented in the facet (why), in respect of IoT
 projects.

 1. Necessidade para focar na revisão da literatura cinza

 aplicar a tabela 2 da [referencia do artigo de GL] , original está no trabalho
 do garousi. Acho que os Yes/No são iguais ao do trabalho sobre DevSecOps.

 JUSTIFICATIVA PARA USAR GLR

 3

References 109

 ver introdução do artigo “Grey Literature in Software Engineering: A critical
 review” do Fernando Kamei et al. publicado no IST, 2021

 2 - GQM

 Ver/Colocar refs de GQM

 Goal

 Purpose To understand

 Object Approaches of modularizing monolithic systems before
 migrating to microservice systems

 Issue with respect to the effectiveness in addressing microservice
 bad smells

 Viewpoint from the practitioners’ perspective

 Research
 Question

 s

 Q1
 What are the approaches made in monolithic systems before
 migrating to microservice systems from the viewpoint of the
 practitioners?

 Q2
 How approaches made in monolithic systems before migrating
 to microservice systems work from the viewpoint of the
 practitioners?

 Metrics

 Q1

 M1 List of approaches

 M2 List of categories of approaches

 M3 Structure of categories and approaches

 Q2

 M1 Steps

 M2 tools

 M3 techniques

 M4 monolith bad smells adopted catalog

 M5 monolith refactoring adopted catalog

 M6 Limitações

 * PARA AS MÉTRICAS DE Q2, marcar/pontuar se estão ligadas à
 microservice bad smells????

 4

References 110

 3. Especificar as Rqs (research questions)

 Há experiências na GL de times, projetos ou organizações que descreve o
 processo de correção/reengenharia/refatoração do sistema monolito antes de
 migrar para microsserviços?

 Se sim:
 I) No relato consideraram microservice bad smells? Se sim, como foi conduzido?
 II) No relato consideraram catálogos de refactoring ou bad smells de monolito? Se
 sim, como foi?
 III) Quais os desafios, benefícios reportados?

 Se não:
 III) Quais os desafios, benefícios, lições aprendidas reportados sobre
 correção/reengenharia/refatoração do monolito antes de migrar para arquitetura de
 microsserviço?

 3. Definir o protocolo

 Base de busca Piloto: google e google scholar [referencia do artigo de GL]

 String de busca: Mesma do mapping trouxe respostas similares ao mapeamento,
 portanto foi utilizada uma string mais direta para o google:

 “migration from monolithic to microservice”

 Critério de Parada:
 ● somente as 5 primeiras páginas do google
 ● sem snowballing nos links dos artigos, videos, blog posts

 Inclusão

 1 blog posts, video, white paper

 2 (experiência prática) migração de monolito para microsserviço

 3 Dicas, sugestões, passos (steps)

 4 falhas em MSA que estejam interligadas com smells (que podem ser mitigadas
 ainda no monolito) identificadas no mapping

 5

References 111

 Exclusão

 Tópico:

 1 criar microsserviços do zero, ou seja, não migrou do monolito.

 2 SOA, outras tecnologias de serviços.

 3 apenas opinião teórica, sem experiência prática; aponte somente
 diferenças entre monolito e microsserviços com comparações,
 vantagens/desvantagens etc

 4 Somente conteúdo para recomendação de product marketing infomation
 (se algum artigo for incluído tendo esse product marketing information,
 marcá-lo como “more likelihood of bias” na avaliação de qualidade.)

 5 sem snowballing nos links dos artigos, videos, blog posts

 6 Dicas, sugestões, experiência de forma breve/rasa;

 7 Vídeo que não tenha transcrição

 8 Link Indisponível / requer assinatura

 9 Cópia de outro white paper sem dar créditos

 6

References 112

References 113

.2.1 Rapid Review Search Results

11/2/21, 8:32 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=%28+%28+monolith*+%29+AND+%28+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reen… 1/2

Aproximadamente 47.300 resultados (0,50 segundos)

Dica: Pesquisar apenas resultados em português (Brasil). Especifique seu idioma de pesquisa em
Preferências

On the Definition of Microservice Bad Smells - ResearchGate
26 de mar. de 2018 — efficiently when developing or migrating monoliths to microservice-based
systems. As with code and architectural smells, which are patterns ...

Microservice-: specific

https://www.researchgate.net › 324... · Traduzir esta página

5 design smells to avoid when migrating your monolith app
9 de fev. de 2018 — eCommerce implementations are seeing another round of migration from
cots to custom , headless, microservices and cloud native architecture.

https://www.linkedin.com › pulse · Traduzir esta página

Microservice Bad Smells and Anti Patterns | Manuel Kruisz
26 de abr. de 2020 — Building a simple monolithic system in the beginning can help us to
identify parts of the system that can act autonomously, which in contrast is ...

https://www.manuelkruisz.com › m... Traduzir esta página

On the Definition of Microservice Bad Smells -. | Davide Taibi
de D Taibi · Citado por 124 — efficiently when developing or migrating monoliths to
microservice-based systems. As with code and architectural smells, which are patterns…
8 páginas

http://www.taibi.it › sites › files › IEEESW-Preprint PDF

Monolith to Microservices: Evolutionary Patterns to Transform ...
Compre online Monolith to Microservices: Evolutionary Patterns to ... How do you detangle a
monolithic system and migrate it to a microservice architecture?
Não encontrados: smell* | Precisa incluir: smell*

https://www.amazon.com.br › Monolith-Microservices-...

Towards Microservice Smells Detection - Tampere University ...
de I Pigazzini · Citado por 15 — While various tools exist for monolithic systems that can detect
code smells and architectural smells, to the best of our knowl-.
6 páginas
Você visitou esta página em 24/10/21.

https://researchportal.tuni.fi › files › toward_micr... PDF

Migration and Architecture Smells - ACM Digital Library
de A Carrasco · 2018 · Citado por 40 — for migrating monoliths towards microservices. We
present 9 com- mon pitfalls in terms of bad smells with their potential solutions. Using these b…
Você visitou esta página 2 vezes. Última visita: 03/05/21

https://dl.acm.org › doi › pdf

Monoliths, Microservices, and Fish - Runnablog - Runnable
With Runnable's central approach, tracking down bad smells becomes much easier. Our
communication manager logs everything and its primary concern is the ...
Você visitou esta página em 24/10/21.

https://runnable.com › blog › mon... Traduzir esta página

arXiv:1906.01553v2 [cs.SE] 10 Sep 2019
de A Brogi · 2019 · Citado por 24 — tural smells and refactorings for microservices provides
... monolithic application, simply because failures affects only few microservices ...
Você visitou esta página em 24/10/21.

https://arxiv.org › pdf PDF

Todas Vídeos Notícias Imagens Shopping Mais Ferramentas

((monolith*) AND (smell* OR antipattern* OR b

11/2/21, 8:32 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=%28+%28+monolith*+%29+AND+%28+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reen… 2/2

1 2 3 4 5 6 7 8 9 10 Mais

Sam Newman: Monolith to Microservices - InfoQ
25 de mai. de 2020 — Problems That Require a Microservices Approach. Reisz: Decompose
that a bit. What are the smells? You're running a monolith and you start to ...
Você visitou esta página em 24/10/21.

https://www.infoq.com › podcasts Traduzir esta página

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

References 114

11/2/21, 8:32 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=(+(+monolith*+)+AND+(+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reengineer*+OR+v… 1/2

Página 2 de aproximadamente 47.300 resultados (0,52 segundos)

Automated Code-Smell Detection in Microservices ... - MDPI
de A Walker · 2020 · Citado por 6 — static code analysis tools for monolithic applications, but
tools to offer code-smell detection for microservice-based applications are ...
Você visitou esta página em 24/10/21.

https://www.mdpi.com › pdf PDF

Towards microservice smells detection | Semantic Scholar
A case study analyzing more than four years of the history of a big project where two teams
extracted five business processes from the monolithic system as ...

https://www.semanticscholar.org › ... · Traduzir esta página

Analysis of Legacy Monolithic Software Decomposition into ...
1–4. 11. A. Carrasco, B. V. Bladel and S. Demeyer, “Migrating towards Microservices:
Migration and Architecture Smells.” In Proceedings ...
8 páginas

http://ceur-ws.org › Vol-2620 › paper4 PDF

A Decomposition Framework based on Process Mining
de D Taibi · 2019 · Citado por 35 — anti-patterns and code smells (Taibi et al., 2017a) that can
be generated into the monolithic system. From Monolithic Systems to Microservices: A ...
12 páginas

https://www.scitepress.org › Papers PDF

From Monolith to Microservices - YouTube
Growth can be challenging to address once monolithic systems begin to fail
under strain or internal software ...
10 de jan. de 2019 · Vídeo enviado por Docker

https://www.youtube.com › watch

From Monolith to Microservices: A Classification of Refactoring ...
de J Fritzsch · 2018 · Citado por 73 — Keywords: Microservices, Monolith, Modernization,
Refactoring, Cloud, ... as architectural activities that remove a particular architectural smell…
Você visitou esta página em 24/10/21.

https://unpaywall.org › ... PDF

Software Architecture: 13th European Conference, ECSA 2019, ...
Tomas Bures, Laurence Duchien, Paola Inverardi · 2019 · Computers
Migration to microservices process (1) architectural smell detection (2) ... the available
information regards the hidden modules in the monolithic ...

https://books.google.com.br › books · Traduzir esta página

Sustaining Productivity While Detangling the System BY
(!EPUB)->Download Monolith to Microservices: Sustaining Productivity While ... [?
Epub/Kindle]->READ Inside of a Dog: What Dogs See, Smell, and Know BY ...

https://sites.google.com › epub-do... Traduzir esta página

Building Microservices: Designing Fine-Grained Systems
Sam Newman · 2015 · Computers
It's the monolith. Website giving odd errors? It's the monolith. CPU at 100%? Monolith. Smell
of burning? Well, you get the idea.

https://books.google.com.br › books · Traduzir esta página

Software Engineering Aspects of Continuous Development and ...
Jean-Michel Bruel, Manuel Mazzara, Bertrand Meyer · 2019 · Computers

https://books.google.com.br › books · Traduzir esta página

40:01

Todas Vídeos Notícias Imagens Shopping Mais Ferramentas

((monolith*) AND (smell* OR antipattern* OR b

11/2/21, 8:32 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=(+(+monolith*+)+AND+(+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reengineer*+OR+v… 2/2

Anterior 1 2 3 4 5 6 7 8 9 10 Mais

Monolithic applications that have grown over years can become large, ... particular architectural
smell while improving From Monolith to Microservices 129 2 ...

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

References 115

11/2/21, 8:34 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=(+(+monolith*+)+AND+(+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reengineer*+OR+v… 1/2

Página 3 de aproximadamente 47.300 resultados (0,42 segundos)

if1007 - GitHub
Desenvolvimento de Aplicações com Arquitetura Baseada em Microservices - GitHub ... Why
Segment Moved from Microservices to a Monolith, Mar 17, ...
Você visitou esta página em 24/10/21.

https://github.com › ...

Master Microservices with Harness CD—Built to Scale Your Org
Our weather service is starting to smell a lot more like a microservice. ... On the flip side of
microservice architecture is monolithic architecture.

https://harness.io › blog › microser... Traduzir esta página

Refactoring Monoliths to Microservices - Repositório Aberto ...
de JP da Costa Pinto · 2019 — Refactorings aim at fixing code smells, which is the designation
given to pieces of code that are considered bad practices, thus making the ...
Você visitou esta página em 24/10/21.

https://repositorio-aberto.up.pt › bitstream PDF

Getting ready for microservices - strangling the monolith
1 de jul. de 2020 — A lot of code has so called “code smell” and uses legacy technologies.
Based on this list, organizations should make a plan to not only split ...
Você visitou esta página em 24/10/21.

https://amazicworld.com › getting-r... Traduzir esta página

Microservices architecture vs. Monolithic ... - Apiumhub
13 de out. de 2017 — Many small Monoliths · The definition of microservices in this context
entails a physical separation between services · A microservice ...

https://apiumhub.com › microservi... Traduzir esta página

Advice on Freeing Features From a Monolith - Medium
9 de jan. de 2018 — Boy and girl decide to move to a microservice architecture to decouple ...
monolithic service (which from here on we'll call “the monolith”) ...

https://medium.com › advice-on-fr... Traduzir esta página

How big is a microservice? - Medium
We all know that nanoservices are an architecture smell, and you will be ridiculed for creating
a massive monolith — so where is the happy medium?

https://medium.com › geekculture Traduzir esta página

Leia Monolith to Microservices on-line de Sam Newman. | Livros
How do you detangle a monolithic system and migrate it to a microservice architecture? How
do you do it while maintaining business-as-usual?
US$ 9,99 · Em estoque
Não encontrados: smell* | Precisa incluir: smell*

https://pt.scribd.com › Livros › Programação

From monolithic systems to Microservices: An assessment ...
de F Auer · 2021 · Citado por 14 — Re-architecting monolithic systems with Microservices-
based architecture is a common trend. ... On the definition of microservice bad smells.

https://www.sciencedirect.com › pii · Traduzir esta página

Monoliths, Microservices, and MVCx2 - Kelly Sutton
26 de mai. de 2015 — Microservices can often be a certain organizational smell. If there are
more services than engineers, your organization may suffer from the ...

https://kellysutton.com › 2015/05/26 Traduzir esta página

Todas Vídeos Notícias Imagens Shopping Mais Ferramentas

((monolith*) AND (smell* OR antipattern* OR b

11/2/21, 8:34 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=(+(+monolith*+)+AND+(+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reengineer*+OR+v… 2/2

Anterior 1 2 3 4 5 6 7 8 9 10 Mais

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

References 116

11/2/21, 8:34 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=(+(+monolith*+)+AND+(+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reengineer*+OR+v… 1/2

Página 4 de aproximadamente 37 resultados (0,44 segundos)

Monolithic to Microservices Refactoring for Java EE Applications
26 de ago. de 2015 — does that smell like portlets? deploy the multiple war files in a paas (#12
); each microservice should be easily deployable in a container (# ...
Você visitou esta página em 25/10/21.

https://dzone.com › articles › mono... Traduzir esta página

Microservices in a Monolith World - SlideShare
1Microservices in a Monolith World | Phil Wilkins | May 2018 © 2018 Capgemini. ... have a 'bad
smell' • If you need a service it's an API Design Build Local ...

https://pt.slideshare.net › microservi... Traduzir esta página

Distributed Transactions Are Not Microservices - Talentica
20 de abr. de 2020 — What is a Distributed System? Let's go by an example, in an e-commerce
app this will be the order flow in a monolithic version. In Microservice ...

https://www.talentica.com › blogs Traduzir esta página

Monolith vs. Microservices - KongHQ
Microservice Architecture vs. Monolithic Architecture. A microservices architecture
addresses challenges by breaking the application down into smaller ...
Não encontrados: smell* | Precisa incluir: smell*
Você visitou esta página em 26/10/21.

https://konghq.com › learning-center Traduzir esta página

Microservice, monolith, microlith - Oracle Blogs
6 de ago. de 2021 — A proposal to overcome the limitations of both monolith and
microservices applications.
Não encontrados: smell* | Precisa incluir: smell*

https://blogs.oracle.com › post › mi... Traduzir esta página

Moving from Monolith to Microservices Architecture
When a client decides to move from a monolith platform to microservice architecture, there's
both risk and reward. Microservices offer a range of possible ...
Não encontrados: smell* | Precisa incluir: smell*

https://www.willowtreeapps.com › ... Traduzir esta página

SOA vs microservices: going beyond the monolith | CircleCI
6 de out. de 2021 — Learn the difference between service-oriented architecture (SOA) and
microservices, plus which pattern you should use in your software.
Não encontrados: smell* | Precisa incluir: smell*
Você visitou esta página em 26/10/21.

https://circleci.com › blog › soa-vs-... Traduzir esta página

Monolith vs Microservices: Choosing the Right Architecture for ...
Monolith Architecture Advantages · The need for Business Agility · THE Monolithic
Architecture Disadvantages · TO THE RESCUE: MICROSERVICES ADVANTAGES AND…
Não encontrados: smell* | Precisa incluir: smell*
Você visitou esta página em 26/10/21.

https://www.sqli.nl › blog › monoli... Traduzir esta página

Pattern: Strangler application - Microservices.io
How do you migrate a legacy monolithic application to a microservice architecture? Forces.
Solution. Modernize an application by incrementally developing a new ...
Não encontrados: smell* | Precisa incluir: smell*

https://microservices.io › refactoring Traduzir esta página

Todas Vídeos Notícias Imagens Shopping Mais Ferramentas

((monolith*) AND (smell* OR antipattern* OR b

11/2/21, 8:34 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=(+(+monolith*+)+AND+(+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reengineer*+OR+v… 2/2

Para mostrar os resultados mais relevantes, omitimos algumas entradas bastante
semelhantes aos 37 resultados já exibidos.
Se preferir, você pode repetir a pesquisa incluindo os resultados omitidos.

Anterior 1 2 3 4

Into - paradise-juicer.de
17 de dez. de 2020 — The idea of vanishing a legacy monolith into thin air by decoupling it into
beautifully designed microservices is somewhat of a myth and ...

https://qyrb.paradise-juicer.de › into Traduzir esta página

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

References 117

11/2/21, 7:45 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvI20WICuvolI3eHdrVnwgI… 1/2

Página 5 de aproximadamente 299.000 resultados (0,63 segundos)

Collect, Search, & Analyze Traces Across Distributed Architectures. Start Your Free Trial!
Seamlessly Correlate Application Performance to Logs & Underlying Infrastructure Metrics.

Anúncios · Comprar migration from monolithic to microservices

Migrating To Microservices? - Track Any Distributed Service
Anúncio · https://www.datadoghq.com/microservices

Fearless Monolith to Microservices Migration - A guided journey
8 de jun. de 2018 — Consequently, these single services can up – or downscale on demand and
can evolve depending on changing requirements. Another advantage for ...
Você visitou esta página em 01/11/21.

https://www.dynatrace.com › blog Traduzir esta página

Migrating from Monolithic to Microservices - HireTechTeam
8 de set. de 2021 — In a lift and shift approach for migration the features from a monolithic
application are shifted to a microservices based target application ...
Você visitou esta página em 01/11/21.

https://www.hiretechteam.com › mi... Traduzir esta página

Migrating a Monolithic Website to Microservices on ... - Qwiklabs
In this lab you will deploy a monolithic application to a Google Kubernetes Engine cluster, then
break it down into microservices.
Você visitou esta página em 01/11/21.

https://www.qwiklabs.com › focuses Traduzir esta página

Monolithic To Microservices Migration - webcontactus.com
Migrating to Microservices from a Monolithic App. 8 hours ago When starting with a legacy,
monolithic application, you must find parts that can be carved ...
Você visitou esta página em 01/11/21.

https://www.webcontactus.com › m... Traduzir esta página

From monolithic systems to Microservices: An assessment ...
de F Auer · 2021 · Citado por 14 — The proposed assessment framework, based on the
aforementioned metrics, could be useful for companies if they need to migrate to Microservic…

https://www.sciencedirect.com › pii · Traduzir esta página

Migrating a Monolithic Website to Microservices on ... - Coursera
In this Google Cloud Lab, you will deploy an existing monolithic application to a Google
Kubernetes Engine cluster, then break it down into microservices.

https://pt.coursera.org › ... › Operações e suporte

Migrating from Monolithic to Microservices Architecture
Design a microservice architecture that would deliver high performance, scalability and

https://www.focaloid.com › migrati... Traduzir esta página

R$ 267,55
Amazon.com.br

Monolith to
Microservices:…

R$ 258,10
Amazon.com.br

Microservices Patterns:
With Examples in Java

R$ 65,45
Amazon.com.br

Migrando Sistemas
Monolíticos Para…

Todas Imagens Vídeos Notícias Shopping Mais Ferramentas

migration from monolithic to microservices

11/2/21, 7:45 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvI20WICuvolI3eHdrVnwgI… 2/2

Prazos diferentes p/ microsserviços diferentes. Escolha a ferramenta certa hoje.
Desenvolvimento nativo em nuvem mais simples e mais flexível. Baixe agora.
Código do Container · Apps Nativos em Nuvem · Vídeo de Cliente KeyBank

Discover the Fundamental Principles of Microservice Design. Download MuleSoft® Guide.
Learn How to Design, Implement, and Manage Microservices with Anypoint Platform. Cloud
Messaging. Easy Scalability. Decreases Time-to-market. API Connectivity.
API Best Practices · 2022 Digital Trends · Magic Quadrant Leader · API Product Strategy

Learn cloud computing, test your cloud skills, and become a subject-matter expert. Study and
practice at your own pace: set your goals, assess your skills, and ace the exam. Start A Free
Trial. View Events. Check Our Blog. Highlights: Mobile App Available, Webinars Available.
Content Roadmap · Customer Success Stories · AWS re:Invent · Browse Our Library
Monthly Individual Plan - US$ 39,00/mês - Gain Hands-on Skills · Mais

Pesquisas relacionadas

Anterior 1 2 3 4 5 6 7 8 9 10 Mais

availability for the workflow server application; Migrate the ...
Você visitou esta página em 01/11/21.

Migrating from monolithic architecture to microservices
Microservices architecture has become enormously popular because traditional monolithic
architectures no longer meet the needs of scalability and rapid ...

https://www.semanticscholar.org › ... · Traduzir esta página

Refactoring a Monolithic .Net Application to use Cloud Services
Net application to use cloud microservices to increase scalability, ... consider when migrating a
monolithic application into a microservices architecture ...

 Avaliação: 4,7 · 12 votos

https://cloudacademy.com › dotnet-... Traduzir esta página

Migrating production monolithic systems to microservices ...
2 de mar. de 2021 — Stepwise migration: where the developer selects which modules of the
monolithic code will be refactored to microservices step by step. The ...

https://onlinelibrary.wiley.com › spe · Traduzir esta página

Desenvolvimento Simplificado - OpenShift Learning Scenarios
Anúncio · https://developers.redhat.com/red-hat/container

Microservices - Microservices Best Practices
Anúncio · https://www.mulesoft.com/microservices/architecture

Refactoring a Monolithic .Net Application to use Cloud Services
Anúncio · https://www.cloudacademy.com/

monolith to microservices

microservices book

how to migrate to
microservices

monolith to microservices pdf

strangler pattern

how to design microservices

microservices roadmap

microservices database
migration

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

migration from monolithic to microservices

References 118

11/2/21, 8:35 AM ((monolith*) AND (smell* OR antipattern* OR badpractice* OR pitfall* OR refactor* OR reengineer* OR violation OR defect OR degr…

https://www.google.com/search?q=(+(+monolith*+)+AND+(+smell*+OR+antipattern*+OR+badpractice*+OR+pitfall*+OR+refactor*+OR+reengineer*+OR+v… 1/1

Página 5 de aproximadamente 37 resultados (0,40 segundos)

Para mostrar os resultados mais relevantes, omitimos algumas entradas bastante
semelhantes aos 37 resultados já exibidos.
Se preferir, você pode repetir a pesquisa incluindo os resultados omitidos.

Anterior 1 2 3 4

Achieving DevOps: A Novel About Delivering the Best of ...
Dave Harrison, Knox Lively · 2019 · Business & Economics
CPU at 100%? Monolith. Smell of burning? Well, you get the idea. Having a single point of
failure also makes failure investigation somewhat simpler!6 We ...

https://books.google.com.br › books · Traduzir esta página

Software Architecture: 14th European Conference, ECSA 2020, ...
Anton Jansen, Ivano Malavolta, Henry Muccini · 2020 · Artificial intelligence
Nunes, L., Santos, N., Rito Silva, A.: From a monolith to a microservices ... Rizzi, L., Fontana,
F.A., Roveda, R.: Support for architectural smell ...

https://books.google.com.br › books · Traduzir esta página

Imagens de ((monolith*) AND (smell* OR antipa�ern* OR …

Feedback

Ver tudo

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

Todas Vídeos Notícias Imagens Shopping Mais Ferramentas

((monolith*) AND (smell* OR antipattern* OR b

11/2/21, 7:42 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvKY6DFFB_YUKpl-vUfw… 1/3

Dica: Pesquisar apenas resultados em português (Brasil). Especifique seu idioma de pesquisa em
Preferências

Collect, Search, & Analyze Traces Across Distributed Architectures. Start Your Free Trial!
Seamlessly Correlate Application Performance to Logs & Underlying Infrastructure Metrics.

Artigos acadêmicos sobre migration from monolithic to microservices
From monolithic to microservices: An experience report … - Bucchiarone - Citado por 95

… , motivations, and issues for migrating to microservices … - Taibi - Citado por 173

Migrating towards microservices: migration and … - Carrasco - Citado por 40

Anúncios · Comprar migration from monolithic to microservices

Migrating To Microservices? - Track Any Distributed Service
Anúncio · https://www.datadoghq.com/microservices

Sobre trechos em destaque • Feedback

Migrating from Monolith to Microservices

1. Identify logical components.
2. Flatten and refactor components.
3. Identify component dependencies.
4. Identify component groups.
5. Create an API for remote user interface.
6. Migrate component groups to macroservices (move component groups to separate

projects and make separate deployments).

Mais itens... • 28 de set. de 2020

8 Steps for Migrating Existing Applications to Microservices
https://insights.sei.cmu.edu › blog › 8-steps-for-migrating...

As pessoas também perguntam

Feedback

When would you use Microservices over monolithic?

What will need to be considered when splitting the monolithic systems into future
Microservices?

What is the difference between monolith and Microservices?

Which architecture is recommended to refactor a monolithic Web application to a new
Microservices based application?

R$ 267,55
Amazon.com.br

Monolith to
Microservices:…

R$ 65,45
Amazon.com.br

Migrando Sistemas
Monolíticos Para…

R$ 258,10
Amazon.com.br

Microservices Patterns:
With Examples in Java

Em qualquer idioma Em qualquer data Todos os resultados

Todas Imagens Vídeos Notícias Shopping Mais Ferramentas

migration from monolithic to microservices

References 119

11/2/21, 7:42 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvKY6DFFB_YUKpl-vUfw… 2/3

Pesquisas relacionadas

How to break a Monolith into Microservices - Martin Fowler
24 de abr. de 2018 — Migrating a monolithic system to an ecosystem of microservices is an
epic journey. The ones who embark on this journey have aspirations such ...

https://martinfowler.com › articles Traduzir esta página

Refactoring a monolith to microservices
A good way to begin the migration to microservices is to implement significant new
functionality as services. This is sometimes easier than breaking apart of ...
Você visitou esta página 2 vezes. Última visita: 26/10/21

https://microservices.io › refactoring Traduzir esta página

Migrating Monoliths to Microservices with Decomposition and ...
9 de fev. de 2021 — The first is asset capture, the process of identifying which functionality we're
going to migrate to a microservice architecture. Then we need ...
Você visitou esta página em 26/10/21.

https://www.infoq.com › articles Traduzir esta página

Monolith to Microservices: Evolutionary Patterns to Transform ...
How do you detangle a monolithic system and migrate it to a microservice architecture? How
do you do it while maintaining business-as-usual?

https://www.amazon.com.br › Monolith-Microservices-...

Migrating a monolithic application to microservices on Google ...
1 de abr. de 2019 — By moving to microservices, you loosen the dependencies between the
teams. Each team has to care only about the APIs of the microservices they ...
Você visitou esta página em 26/10/21.

https://cloud.google.com › migratin... Traduzir esta página

PART 3: Choosing the Right Strategy to Migrate Your ... - Altran
PART 3: Choosing the Right Strategy to Migrate Your Monolithic Application to a
Microservices-Based Architecture · Step 1 – Transform · Step 2 – Co-Exist · Step 3 ...
Você visitou esta página em 26/10/21.

https://capgemini-engineering.com › ... Traduzir esta página

Monoliths to microservices using domain-driven design
12 de fev. de 2021 — Use a DDD approach to migrate a monolithic application to
microservices.

https://docs.microsoft.com › azure Traduzir esta página

8 Step Guide to Migrate Monolithic Applications into ... - Anblicks
18 de jun. de 2021 — Benefits of Microservices · Step 1: Identify the Logical Component · Step
2: Flatten or Refractor Components · Step 3: Identify the Dependencies of ...

https://www.anblicks.com › blog Traduzir esta página

Monolithic Applications: Migration to Microservices - IBM ...
19 de jun. de 2020 — To move the whole monolithic app into the microservice architecture,
the business unit has to rank candidate services for migration. While one ...
Você visitou esta página em 26/10/21.

https://developer.ibm.com › articles Traduzir esta página

monolith to microservices

microservices book

how to migrate to
microservices

monolith to microservices pdf

strangler pattern

how to design microservices

microservices roadmap

microservices database
migration

11/2/21, 7:42 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvKY6DFFB_YUKpl-vUfw… 3/3

1 2 3 4 5 6 7 8 9 10 Mais

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

References 120

11/2/21, 7:43 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvJYOIvLlcKl_PgDahoHqO… 1/2

Página 2 de aproximadamente 299.000 resultados (0,53 segundos)

Anúncios · Comprar migration from monolithic to microservices

R$ 267,55
Amazon.co…

Monolith to
Microservi…

R$ 258,10
Amazon.co…

Microservices
Patterns:…

R$ 65,45
Amazon.co…

Migrando
Sistemas…

R$ 165,74
Amazon.co…

Microservice
Architectur…

R$ 288,79
Amazon.co…

Building
Microservi…

R$ 223,46
Amazon.co…

Production-
Ready…

R$ 309,34
Amazon.co…

Strategic
Monoliths…

R$ 398,23
Amazon.co…

Building
Microservi…

Autodiscover Services and Metrics In Your Kubernetes Cluster & Distributed Architecture. Get a
Bird's Eye View of Your Distributed Services and Infrastructure In Minutes.

Safe Microservice Migration - Monitor Your Distributed Apps
Anúncio · https://www.datadoghq.com/microservices

Migrating Monolith to Microservices: Step-by-Step Guide
1 de abr. de 2021 — Microservice Migration Step-by-Step · Step 1: Choosing the refactoring
strategy · Step 2: Designing microservices architecture and changes to CI/ ...
Você visitou esta página em 28/10/21.

https://sigma.software › media › mi... Traduzir esta página

Migrate from Monolith to Microservices - Split Blog
1 de set. de 2020 — The point of migrating from monolith to microservices is to mitigate risk,
but many releases of microservices are very risky.
Você visitou esta página em 28/10/21.

https://www.split.io › blog › migrat... Traduzir esta página

Why Transition From Monolith to Microservices? - Medium
3 de mar. de 2020 — The most common reasons teams migrate to microservices are
scalability and productivity challenges. Projects that are growing require more ...
Você visitou esta página em 28/10/21.

https://medium.com › microtica Traduzir esta página

Migrating from a Monolith to Microservices (Next '19 Rewind)
Microservices enable development teams to be more agile, but it's hard to
break up an existing monolithic ...
14 de jul. de 2019 · Vídeo enviado por Google Cloud Tech

https://www.youtube.com › watch

Migrating a Monolithic Website to Microservices on Google ...
7 de out. de 2020 — 1. Introduction · 2. Environment Setup · 3. Clone Source Repository · 4.
Create a GKE Cluster · 5. Deploy Existing Monolith · 6. Migrate Orders to ...
Você visitou esta página em 28/10/21.

https://codelabs.developers.google.com › ... Traduzir esta página

Monolith To Microservices - Sam Newman
How do you detangle a monolithic system and migrate it to a microservices architecture?
How do you do it while maintaining business-as-usual?

https://samnewman.io › books › m... Traduzir esta página

Migrating From Monoliths to Microservices - Opus Software
https://www.opus.software › migrat... Traduzir esta página

3:16

Todas Imagens Vídeos Notícias Shopping Mais Ferramentas

migration from monolithic to microservices

11/2/21, 7:43 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvJYOIvLlcKl_PgDahoHqO… 2/2

Discover the Fundamental Principles of Microservice Design. Download MuleSoft® Guide.
Learn How to Design, Implement, and Manage Microservices with Anypoint Platform.
API Best Practices · 2022 Digital Trends · API Product Strategy · Magic Quadrant Leader

Prazos diferentes p/ microsserviços diferentes. Escolha a ferramenta certa hoje.
Desenvolvimento nativo em nuvem mais simples e mais flexível. Baixe agora. Economize
Tempo e Custos. ROI de 531% em Cinco Anos. Acelere a Entrega de Apps.
Código do Container · Apps Nativos em Nuvem · Vídeo de Cliente KeyBank

Topwebanswers is the Newest Place to Search. Delivering Top Results from Across the Web.
Results from Multiple Engines in topwebanswers. Browse & Discover Useful Results.
Knowledge. Results. Answers. Data. Information. Solutions.

Pesquisas relacionadas

Anterior 1 2 3 4 5 6 7 8 9 10 Mais

23 de set. de 2020 — Migrating to Microservices ... Converting the monolithic application into
microservices is a way of modernizing the application, but only if it ...

9 Most Common Mistakes when Migrating from Monolith to ...
2 de set. de 2020 — An important benefit of using a microservices architecture is that you can
gradually migrate your system from a monolith to microservices-based ...
Você visitou esta página em 28/10/21.

https://nglogic.com › 9-most-comm... Traduzir esta página

Patterns to know before migrating your monolith to microservices
4 de mai. de 2021 — We can use the below steps to migrate monolithic to microservice.
Insert Proxy: Unless you already have a proxy in place, we need to deploy ...
Você visitou esta página em 28/10/21.

https://levelup.gitconnected.com › ... Traduzir esta página

Understand the Value of Migrating to Microservices | Consul
Consul service mesh features enable organizations of any size to implement a controlled
migration from monolith to microservices without disrupting current ...
Você visitou esta página em 01/11/21.

https://learn.hashicorp.com › consul Traduzir esta página

Microservices Best Practices - Microservice Design
Anúncio · https://www.mulesoft.com/microservices/architecture

Desenvolvimento Simplificado - OpenShift Application Runtimes
Anúncio · https://developers.redhat.com/red-hat/container

Monolith to microservices PDF - Monolith to microservices PDF
Anúncio · https://www.topwebanswers.com/bestanswers/topwebanswers

monolith to microservices

microservices book

how to migrate to
microservices

monolith to microservices pdf

strangler pattern

how to design microservices

microservices roadmap

microservices database
migration

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

References 121

11/2/21, 7:43 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvIAtvt8GLTUU9hwGRm6r… 1/2

Página 3 de aproximadamente 103.000 resultados (0,70 segundos)

Autodiscover Services and Metrics In Your Kubernetes Cluster & Distributed Architecture. Get a
Bird's Eye View of Your Distributed Services and Infrastructure In Minutes.

Anúncios · Comprar migration from monolithic to microservices

Safe Microservice Migration - Monitor Your Distributed Apps
Anúncio · https://www.datadoghq.com/microservices

From Monolith to Microservices: An epic Migration Journey
23 de ago. de 2021 — Correctly implementing microservices architecture in a new application
is hard but it is even harder to migrate from an existing monolith to ...
Você visitou esta página em 01/11/21.

https://dzone.com › articles › from-... Traduzir esta página

Towards a Process for Migrating Legacy Systems into ...
de D Wolfart · 2020 — Currently, one of the most common ways of adopting microservice
architectures is by the modernization of legacy monolith systems. The migra- tion of a legacy ...
Você visitou esta página 3 vezes. Última visita: 27/08/21

https://sol.sbc.org.br › eres › article › download PDF

Steps for Migrating from Monolith to Microservices - LinkedIn
19 de jun. de 2021 — This article will explain the steps I follow to migrate from a monolithic
system to a new Domain Microservice.
Você visitou esta página em 01/11/21.

https://www.linkedin.com › pulse · Traduzir esta página

Migrating Applications from Monolith to Microservices
Why should you migrate monolith applications to microservices? Well, the answer is simple.
Monolith applications are harder to scale and present a barrier ...
Você visitou esta página em 01/11/21.

https://eagledream.com › News Traduzir esta página

Migrating from Monolith to Microservices - Camunda
25 de out. de 2021 — Outgrowing your monolithic architecture? Explore our best practices and
tips on leveraging microservices in your automation program.
Você visitou esta página em 01/11/21.

https://camunda.com › 2021/10 Traduzir esta página

Data Migration from Monolith to Microservice in Django - DEV ...
4 de set. de 2021 — How to migrate data from monolith to microservice? · A management
command at monolith to filter out the data related to the microservice present ...

https://dev.to › balwanishivam › da... Traduzir esta página

Microservices white paper: Migrating from a monolithic to ...
https://www.devbridge.com › mon... Traduzir esta página

R$ 267,55
Amazon.co…

Monolith to
Microservi…

R$ 258,10
Amazon.co…

Microservices
Patterns:…

R$ 65,45
Amazon.co…

Migrando
Sistemas…

R$ 165,74
Amazon.co…

Microservice
Architectur…

R$ 288,79
Amazon.co…

Building
Microservi…

Todas Imagens Vídeos Notícias Shopping Mais Ferramentas

migration from monolithic to microservices

11/2/21, 7:43 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvIAtvt8GLTUU9hwGRm6r… 2/2

Discover the Fundamental Principles of Microservice Design. Download MuleSoft® Guide.
Learn How to Design, Implement, and Manage Microservices with Anypoint Platform.
API Best Practices · 2022 Digital Trends · Magic Quadrant Leader · API Product Strategy

Prazos diferentes p/ microsserviços diferentes. Escolha a ferramenta certa hoje.
Desenvolvimento nativo em nuvem mais simples e mais flexível. Baixe agora. Acelere a Entrega
de Apps. Economize Tempo e Custos. ROI de 531% em Cinco Anos.
Apps Nativos em Nuvem · Código do Container · Vídeo de Cliente KeyBank

Learn cloud computing, test your cloud skills, and become a subject-matter expert. Study and
practice at your own pace: set your goals, assess your skills, and ace the exam. View Events.
Check Our Blog. Start A Free Trial. Highlights: Mobile App Available, Webinars Available.
Content Roadmap · AWS re:Invent · Browse Our Library · Customer Success Stories
Monthly Individual Plan - US$ 39,00/mês - Gain Hands-on Skills · Mais

Pesquisas relacionadas

Anterior 1 2 3 4 5 6 7 8 9 10 Mais

This article covers the issues that monoliths impose on product ... How, when, and why to
migrate from a monolithic to a microservice architecture.
Você visitou esta página em 01/11/21.

Refactoring a Monolith into Microservices - NGINX
8 de mar. de 2016 — You gradually build a new application consisting of microservices, and run
it in conjunction with your monolithic application. Over time, the ...
Você visitou esta página em 01/11/21.

https://www.nginx.com › blog › ref... Traduzir esta página

Monolithic to microservices: Design patterns to ensure ...
8 de out. de 2020 — What design patterns should you use to optimize microservice migration?
You've decided that migrating a monolith application to a ...
Você visitou esta página em 01/11/21.

https://blogs.oracle.com › post › m... Traduzir esta página

Migrate from Monolith to Microservices with Lightbend Platform
Lightbend Platform helps you migrate to the right microservice architecture, embracing the
cloud and releasing new functionality more frequently, ...

https://www.lightbend.com › from-... Traduzir esta página

Microservices Best Practices - Microservice Design
Anúncio · https://www.mulesoft.com/microservices/architecture

Desenvolvimento Simplificado - OpenShift Application Runtimes
Anúncio · https://developers.redhat.com/

Refactoring a Monolithic .Net Application to use Cloud Services
Anúncio · https://www.cloudacademy.com/

monolith to microservices

microservices book

how to migrate to
microservices

monolith to microservices pdf

strangler pattern

how to design microservices

microservices roadmap

microservices database
migration

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

References 122

11/2/21, 7:44 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvJPMrrnRZ2nEefRPkL9dp… 1/3

Página 4 de aproximadamente 299.000 resultados (0,70 segundos)

Collect, Search, & Analyze Traces Across Distributed Architectures. Start Your Free Trial!
Seamlessly Correlate Application Performance to Logs & Underlying Infrastructure Metrics.

Anúncios · Comprar migration from monolithic to microservices

Migrating To Microservices? - Track Any Distributed Service
Anúncio · https://www.datadoghq.com/microservices

Migrating Monolithic Applications to Microservices Architecture
20 de out. de 2021 — When evaluating monolithic applications vs microservices, it's clear that
the process of converting a monolith manually to microservices is ...
Você visitou esta página em 01/11/21.

https://vfunction.com › Blog Traduzir esta página

Migration of Monolithic Applications Towards Microservices ...
Migration of Monolithic Applications Towards Microservices Under the Vision of the
Information Hiding Principle: A Systematic Mapping Study. January 2020.

https://www.researchgate.net › 336... · Traduzir esta página

Migrating Monolithic Mobile Application to Microservice ...
de CY Fan · 2017 · Citado por 52 — The microservice architecture (MSA) is an emerging cloud
software system, which provides fine-grained, self-contained service components…

Date Added to IEEE Xplore: 11 September 2017 DOI: 10.1109/AIMS.2017.23
Date of Conference: 25-30 June 2017

Você visitou esta página 2 vezes. Última visita: 04/05/21

https://ieeexplore.ieee.org › docum... · Traduzir esta página

How to Migrate a Monolithic application into Microservices?
Migrating an existing monolithic architecture to microservices is a time-consuming task to
execute but it can be simplified if done systematically.
Você visitou esta página em 28/10/21.

https://newizze.com › how-to-migr... Traduzir esta página

Airbnb's microservices migration - Codemotion Magazine
20 de jan. de 2021 — Airbnb's migration from monolith to microservices. At Codemotion
Milan, Airbnb software engineer Jessica Tai talked about their microservices ...
Você visitou esta página em 01/11/21.

https://www.codemotion.com › mic... Traduzir esta página

From Monolith to Microservices: Reducing the Migration's Pain ...
28 de jul. de 2021 — Migrating data from monolithic storage ... When migrating to a
microservices architecture there's an expectation that each individual service is ...
Você visitou esta página em 01/11/21.

https://doordash.engineering › redu... Traduzir esta página

R$ 267,55
Amazon.com.br

Monolith to
Microservices:…

R$ 258,10
Amazon.com.br

Microservices Patterns:
With Examples in Java

R$ 65,45
Amazon.com.br

Migrando Sistemas
Monolíticos Para…
Migrando Sistemas
Monolíticos Para
Microsserviços: Padrões
Evolutivos Para
Transformar seu Sistema…

R$ 65,45
Amazon.com.br

Todas Imagens Vídeos Notícias Shopping Mais Ferramentas

migration from monolithic to microservices

11/2/21, 7:44 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvJPMrrnRZ2nEefRPkL9dp… 2/3

Prazos diferentes p/ microsserviços diferentes. Escolha a ferramenta certa hoje.
Desenvolvimento nativo em nuvem mais simples e mais flexível. Baixe agora.
Código do Container · Apps Nativos em Nuvem · Vídeo de Cliente KeyBank

Discover the Fundamental Principles of Microservice Design. Download MuleSoft® Guide.
Learn How to Design, Implement, and Manage Microservices with Anypoint Platform.
Enterprise Security. Access Management. Cloud Messaging. Easy Scalability.
API Best Practices · 2022 Digital Trends · Magic Quadrant Leader · API Product Strategy

Learn cloud computing, test your cloud skills, and become a subject-matter expert. Study and
practice at your own pace: set your goals, assess your skills, and ace the exam. Start A Free
Trial. View Events. Check Our Blog. Highlights: Mobile App Available, Webinars Available.
Content Roadmap · Customer Success Stories · AWS re:Invent · Browse Our Library
Monthly Individual Plan - US$ 39,00/mês - Gain Hands-on Skills · Mais

Pesquisas relacionadas

Anterior 1 2 3 4 5 6 7 8 9 10 Mais

How to migrate Monolith to Microservices? - AnAr Solutions ...
24 de ago. de 2021 — Challenges in migrating from Monolith to Microservices: The decision
of migration includes the need for iteration and handling the significant ...
Você visitou esta página em 01/11/21.

https://anarsolutions.com › how-to-... Traduzir esta página

From Monolith To Microservices On Fixed-Price Conditions
31 de mar. de 2021 — Migrating Monolith To Microservices: What Pricing Model Is
Applicable. Updated: Aug 12. Migration from Monolithic Software Architecture to ...
Você visitou esta página em 01/11/21.

https://www.jevera.software › post › migrating-monolit...

From Monolith to Microservices - Migrating a Persistence Layer
Since microservices have become popular, teams are trying to split their monolithic application
into a set of small, independent, and highly-scalable ...
Você visitou esta página em 01/11/21.

https://thorben-janssen.com › mono... Traduzir esta página

Platform Migration from Monolith to Microservices - Intellias
Learn how Intellias implemented a migration strategy for refactoring a monolith to
microservices without interrupting business continuity.
Você visitou esta página em 01/11/21.

https://intellias.com › refactoring-m... Traduzir esta página

Desenvolvimento Simplificado - OpenShift Learning Scenarios
Anúncio · https://developers.redhat.com/red-hat/container

Microservices - Microservices Best Practices
Anúncio · https://www.mulesoft.com/microservices/architecture

Refactoring a Monolithic .Net Application to use Cloud Services
Anúncio · https://www.cloudacademy.com/

monolith to microservices

microservices book

how to migrate to
microservices

monolith to microservices pdf

strangler pattern

how to design microservices

microservices roadmap

microservices database
migration

Brasil 85806 264 Esmeralda Cascavel PR Com base nos seus lugares (Casa) Atualizar local

References 123

11/2/21, 7:44 AM migration from monolithic to microservices - Pesquisa Google

https://www.google.com/search?q=migration+from+monolithic+to+microservices&rlz=1C5CHFA_enBR974BR974&sxsrf=AOaemvJPMrrnRZ2nEefRPkL9dp… 3/3

Brasil 85806-264 - Esmeralda, Cascavel - PR - Com base nos seus lugares (Casa) - Atualizar local

Ajuda Enviar feedback Privacidade Termos

References 124

References 125

.2.2 RR Paper Count

ID
W

hite P
apers aprovados

Inclusão/E
xclusão

1
https://w

w
w

.infoq.com
/podcasts/m

onolith-m
icroservices/

Inclusão-m
otivo 3

ok
2

https://m
edium

.com
/geekculture/the-size-of-a-m

icroservice-b9e6bc90475
Inclusão-m

otivo 3
ok

3
https://am

azicw
orld.com

/getting-ready-for-m
icroservices-breaking-dow

n-the-m
onolith/

Inclusão-m
otivo 3

ok
4

https://bam
booagile.eu/insights/m

onolith-vs-m
icroservices/

Inclusão-m
otivo 3

ok
5

https://m
icroservices.io/refactoring/

Inclusão-m
otivo 3

ok
6

https://w
w

w
.infoq.com

/articles/m
igrating-m

onoliths-to-m
icroservices-w

ith-decom
position/

Inclusão-m
otivo 3

ok
7

https://developer.ibm
.com

/articles/challenges-and-patterns-for-m
odernizing-a-m

onolithic-application-into-m
icroservices/

Inclusão-m
otivo 3

ok
8

https://capgem
ini-engineering.com

/us/en/insight/part-3-choosing-the-right-strategy-to-m
igrate-your-m

onolithic-application-to-a-m
icroservices-based-architecture/Inclusão-m

otivo 3
ok

9
https://docs.m

icrosoft.com
/en-us/azure/architecture/m

icroservices/m
igrate-m

onolith
Inclusão-m

otivo 3
ok

10
https://sigm

a.softw
are/about/m

edia/m
igrating-m

onolith-m
icroservices-step-step-guide

Inclusão-m
otivo 3

11
https://new

izze.com
/how

-to-m
igrate-a-m

onolithic-application-into-m
icroservices/

Inclusão-m
otivo 3

excluir, argum
entos rasos

12
https://dzone.com

/articles/from
-m

onolith-to-m
icroservices-an-epic-m

igration-j
Inclusão-m

otivo 3
reler, pode ter alguns

passos
13

https://w
w

w
.nginx.com

/blog/refactoring-a-m
onolith-into-m

icroservices/
Inclusão-m

otivo 3
14

https://blogs.oracle.com
/cloud-infrastructure/post/m

onolithic-to-m
icroservices-how

-design-patterns-help-ensure-m
igration-success

Inclusão-m
otivo 3

15
https://doordash.engineering/2021/07/28/reducing-the-m

igrations-pain-points/
Inclusão-m

otivo 3
16

https://thorben-janssen.com
/m

onolith-to-m
icroservices-persistence-layer/

Inclusão-m
otivo 3

17
https://sam

new
m

an.io/blog/2015/04/07/m
icroservices-for-greenfield/

Inclusão-m
otivo 3

18
https://w

w
w

.infoq.com
/articles/m

onolith-defense-part-1
Inclusão-m

otivo 3
19

https://w
w

w
.infoq.com

/articles/m
onolith-defense-part-2

Inclusão-m
otivo 3

20
https://w

w
w

.infoq.com
/presentations/event-flow

-system
s

Inclusão-m
otivo 4

21
https://segm

ent.com
/blog/goodbye-m

icroservices/
Inclusão-m

otivo 4
22

https://codeboje.de/developers-problem
-not-m

onoliths/
Inclusão-m

otivo 4
23

https://w
w

w
.oreilly.com

/ideas/m
odules-vs-m

icroservices
Inclusão-m

otivo 3
24

http://w
w

w
.graham

lea.com
/2016/04/shared-libraries-in-m

icroservices-bad-advice/
Inclusão-m

otivo 4
25

https://w
w

w
.infoq.com

/articles/seven-uservices-antipatterns/
Inclusão-m

otivo 4
26

https://itnext.io/anti-patterns-of-m
icroservices-6e802553bd46

Inclusão-m
otivo 4

27
https://natalian.org/2019/05/16/M

icroservices_pitfalls/
Inclusão-m

otivo 4
28

https://techbeacon.com
/app-dev-testing/forget-m

onoliths-vs-m
icroservices-cognitive-load-w

hat-m
atters

Inclusão-m
otivo 4

29
https://rclayton.silvrback.com

/failing-at-m
icroservices

Inclusão-m
otivo 3-4

30
http://chi.pl/2017/01/30/M

icro-m
onolith-A

nti-pattern.htm
l

Inclusão-m
otivo 4

31
https://w

w
w

.infoq.com
/articles/M

icroservices-A
rchitectural-Fitness/

Inclusão-m
otivo 3

32
https://hackernoon.com

/w
hy-m

icroservices-fail-6cdc006f9540
Inclusão-m

otivo 3
34

https://w
w

w
.infoq.com

/presentations/m
icroservices-m

onolith-antipatterns/
Inclusão-m

otivo 4

References 126

References 127

.3 Interviews

UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ / CAMPUS DE CASCAVEL

CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS

PROGRAMA DE PÓS-GRADUAÇÃO STRICTO SENSU EM CIÊNCIA DA COMPUTAÇÃO - MESTRADO

Entrevista para dissertação Mestrado

Aluno: Guilherme Villaca
Prof.: Dr. Ivonei Freitas da Silva

Objetivo: Avaliar as estratégias adotadas antes da
migração de um sistema monolítico para microsserviços a
fim de mitigar anti-padrões existentes em microsserviços

Contexto
A migração de sistemas monolíticos para microsserviços vem sendo uma
tendência nos últimos anos na engenharia de software. Entretanto muitas
organizações migram sem experiência em microsserviços, principalmente por
aprender como migrar através de livros e praticantes [1]. Devido a novidade
do tópico, esse processo de aprender durante a migração acarreta em vários
problemas após a migração, conhecidos como anti-padrões em
microsserviços.
Vários autores vêm, nos últimos anos, catalogando e definindo estes
anti-padrões. Dentre os vários anti-padrões em microsserviços conhecidos,
alguns são exclusivos de microsserviços (como por ex.: não uso de API
gateway ou uso indevido de ESB) e outros são possíveis de mitigar antes da
migração, com um melhor planejamento, pesquisa, uso de técnicas e
estratégias.
Os anti-padrões que nós consideramos possíveis de mitigar antes da migração são
os seguintes:

- Megaservice: Um serviço que faz muitas coisas. Um monólito.

- Wrong Cuts: Monolítico dividido de forma errada;

- Cyclic Dependency: Ciclo de chamadas entre microsserviços;

- Shared Persistency; Diferentes microsserviços acessando o mesmo banco de
dados;

References 128

- Inappropriate Service Intimacy: O microsserviço se conecta a dados privados de
outros serviços em vez de lidar com seus próprios dados.

- Shared Libraries: Bibliotecas compartilhadas entre diferentes microsserviços;

- Microservice Greedy: Microsserviços muito pequenos.

- Legacy organization: A empresa ainda trabalha sem alterar seus processos e
políticas. Como exemplo, com equipes de Dev e Ops independentes, teste manual e
agendamento de lançamentos comuns.

Durante nossas pesquisas consideramos que o uso de algumas técnicas ou
estratégias podem auxiliar na migração e mitigar alguns anti-padrões:

Anti-padrão:
Shared persistence e Inappropriate service intimacy
Estratégia para mitigar:
Avaliar as tabelas do banco de dados e classificá-las em subsistemas de acordo
com o domínio na fase de pré-migração; Agrupar entidades do sistema em
candidatos a microsserviços;
Anti-padrão:
Wrong cuts; Megaservice; Shared Libraries; Cyclic Dependence; Microservice
greedy;
Estratégia para mitigar:
Uso de DDD para modularizar e traduzir funcionalidades em domínio e subdomínio
antes da migração; Estratégia para identificar quão alto está o acoplamento; Aplicar
um conjunto de atividades chamadas de evolucionabilidade garantida;

Com base nestas informações, gostaríamos de questionar a comunidade de
engenharia de software que já fez ou faz parte de um processo de migração de um
sistema monolítico para microsserviços com as questões abaixo.

Para melhor entendimento, considerar nesta entrevista a migração como
sendo dividida em três etapas: Pré-migração - toda a fase de planejamento,
estudo, análise e decomposição do sistema monolítico; Migração - a
implementação do sistema com a arquitetura de microsserviços. E
Pós-migração - com a arquitetura em microsserviços já em produção.

[1] Taibi, Davide & Lenarduzzi, Valentina & Pahl, Claus. (2019). Microservices Anti
Patterns: A Taxonomy. 10.1007/978-3-030-31646-4_5.

References 129

QUESTÕES

1 - Qual foi a motivação para você considerar a migração de monolito para microsserviços e
qual era o contexto do monolito?

#1 - Monolito com 30 anos de desenvolvimento em uma tecnologia obsoleta que
exigia uma nova versão, com uma tecnologia mais atual e fácil de adaptar ao que o
mercado exige

#2 - Flexibilidade nas tecnologias adotadas, fácil manutenção e velocidade no
desenvolvimento de novas features, possibilitando ser criadas integrações, sistemas,
apps de forma rápida. Problemas monolito eram Coesão e acoplamento, número alto de
funcionalidades/módulos, manutenibilidade, muitos bugs e dificuldade para escalar o
sistema.
Muitos módulos com dependência entre si, manutenção em um módulo acaba gerando
bugs em outros, tudo em um mesmo servidor, banco de dados, cache, arquivos ...
*existe a possibilidade sim de escalar um monólito sendo bem projetado.

#3 - Não considerei, seriamente, apenas foi avaliado se teria ganhos maiores que os
custos, não tinha. Quase sempre a adoção de microsserviços existe para mascarar
incompetência da equipe, é quase uma definição automática. Existem exceções mas é
raro, quase sempre a pessoa acha que o caso dela é exceção e não é. Todos os
problemas acima podem e devem ser resolvidos sem MS.

#4 - Pq gostaria de ter MS - Escalabilidade dentro de MS é muito grande
flexibilidade pra mudar o sistema quando necessário. Sistema era muito complexo, não
tinha tempo nem dinheiro pra investir em pessoal. Usam tecnologias de MS kubernetes e
desenvolveu monolito primeiro para migrar aos poucos.

#5 - Difícil manutenção do código, dificuldade de atualizar tecnologia que era java,
atualizar hibernate. Nunca se atualizava tecnologia por que acarreta quebra de código.
Difícil manutenção por ser um sistema muito grande, horas gastas em configuração, pra
rodar o sistema na máquina, pra dar build no sistema também. O cliente tinha que ter uma
infra, servidor próprio, era necessário ir até o cliente, configurar, instalar etc. Implementar
um novo módulo/funcionalidade era mais custoso, poderia afetar todo o sistema, muita
amarração de código.

#6 - motivação principal de monolito pra microsserviços foi principalmente
desacoplamento, havia um sistema em delphi, serviços que não funcionavam direito
exemplo: uma parte era encarregada pra encaminhar emails pro cliente e esse serviço
não funcionava bem era difícil manutenção e delphi era cada vez mais difícil de
encontrar pessoas pra trabalhar por isso a demanda de atualizar a tecnologia.

#7 - tinha um sistema cliente servidor, com processos de aplicação de API
entrou num projeto de construir uma aplicação CRM que se tornou microsserviços
produto já foi concebido para ser microsserviços. O monolítico já era um cliente
servidor, front e back e quando foi aplicado MSA era usar tecnologia atual que
pudesse ser escalável. Foi usado as expertises do monolítico para criar direto em

References 130

microsserviços e não foi exatamente uma migração e sim foi recriado do 0, usando
apenas como base o monolítico.

2 - Quais foram as etapas para estudar/entender/pesquisar as complexidades de
microsserviços? Quais treinamentos foram feitos?

#1 - A organização comprou um livro sobre migração para microsserviços - sam
newman - e todos os membros da equipe passaram a estudá-lo. Cada membro da
equipe usou uma forma própria de estudar e pesquisar

#2 - Palestras, casos de uso de grandes empresas, cursos livres e livros.

#3 - Ler tudo o que é publicado sobre o assunto, não só os que defendem, ver as
entrelinhas, consultar pessoas realmente experientes e que não possuem viés.
Fundamentos de computação, o que falta para as pessoas.

#4 - 2 ou 3 meses estudando como fazer

#5 - quando foi criado a equipe o entrevistado ainda não fazia parte. Algumas pessoas da
equipe inicial estudaram quais tecnologias e ferramentas estavam sendo utilizadas pelo
mercado. Foi contratado consultorias pra auxiliar a desenvolver e entender a
complexidade de microsserviços e não teve nenhum treinamento específico.

#6 - Entender as regras do sistema monolítico, identificar o que fazia, como
desacoplar, o que a parte deveria fazer, conversar com as pessoas pra identificar as
regras de negócio. Não houveram treinamentos específicos, apenas o background da
equipe.

#7 - A experiência começou envolvendo 3 arquitetos pra pesquisar e estudar uma
forma de desenvolver em microsserviços sem uma ideia de reaproveitar o monolítico.
Olhando como big players faziam, netflix etc pra não cometer os mesmos erros
enfrentados.

3 - Quantos envolvidos participaram do processo de pré-migração e migração?

#1 - 5 pessoas no total. Hoje são 3 pessoas na equipe.

#2 - Menos que 10.

#3 - Mais que 50.

#4 - 4 pessoas.

#5 - 5 desenvolvedores/arquitetos e o gestor e foi crescendo até ter 40 pessoas.

#6 - uma equipe de 3 pessoas (1 back, 1 front 1 líder) e 1 infra.

References 131

#7 - inicialmente 3 e foram criados squads. os primeiros investiram tempo em
pesquisa, escolha de tecnologia/frameworks . Cada squad PO, 3 a 5 desenvolvedores
1 testados e depois 1 arquiteto entrou em cada equipe.

4 - Quantos microsserviços foram planejados na fase de pré-migração?

#1 - Foi dividido em 5 módulos e 13 microsserviços até o momento.

Obs: Equipe reduzida utilizando microsserviços, portanto não há separação de
microsserviços por times. Nem tecnologias demais envolvidas.

#2 - Entre 5 e 10.

#3 - Menos que 5.

#4 - não tinha número de MS.

#5 - foi planejado de forma macro, pensado em módulos, funcionalidades.

#6 - não soube, variava muito conforme o andamento do projeto, havia muitas
discussões e ocorria de 1 microsserviço virar em 2 ou o contrário.

#7 - entre 25 a 30 microsserviços.

5 - Foi utilizado alguma métrica para definir o tamanho de cada microsserviço? Ex: linhas de
código, número de funcionalidades, classes, modelos etc.

#1 - Não foi pensado em nenhuma métrica, foi citado o DDD como forma de definir
cada microsserviço de acordo com seu domínio, mas tamanho não foi considerado.

#2 - Áreas de domínio do negócio ex: pessoas, cursos, carrinho de compras, produtos.

#3 - Isso não faz sentido, quem faz isso mostra que não ter a menor ideia do que está
fazendo.

#4 - não tinha métrica.

#5 - não soube dizer.

#6 - Era usado uma espécie de bom senso avaliar que o microsserviço seria dividido
se necessário.

#7 - não existia nenhuma técnica, apenas motivação de negócio context boundaries.
Era muito mais fácil entender a comunicação entre objetos do que olhar pra outras
formas de ter essa métrica, como linhas de código, funcionalidades etc. Então às
vezes era necessário muito mais código entre dois microsserviços pois eles foram
separados, se fossem mantidos juntos essa comunicação a mais entre eles não seria
necessário.

References 132

6 - Qual o tempo estimado para cada fase do processo de pré-migração e migração?
Planejamento, Estudo, Decomposição, Refatoração, Implementação etc.

#1 - o processo iniciou há 1 ano e 6 meses, sendo que foi feito em paralelo,
planejamento, estudo e implementação.

#2 - Recriamos do zero, cerca de um ano de desenvolvimento para ter a primeira versão
estável dos principais serviços.

#3 - Isso não faz sentido, quem faz isso mostra que não tem a menor ideia do que está
fazendo.

#4 - Tudo aconteceu junto mas era bem orquestrado como fazer.

#5 - O tempo foi planejado em relação a entregas de funcionalidades, não detalhou.

#6 - 4 mêses planejamento e 6 meses de estudo, ainda está sendo implementado.

#7 - 6 meses pré migração e 2 anos a migração.

7 - Quais os papéis envolvidos? Engenheiro/arquiteto de software, desenvolvedor,
responsável por infra-estrutura etc.

#1 - 2 desenvolvedores sênior, 1 engenheiro/desenvolvedor sênior, 1 gestor, 1
desenvolvedor junior.

#2 - 1 engenheiro/arquiteto, 2 desenvolvedores (1 back-end e 1 front-end), um focado em
infraestrutura.

#3 - Não tem como não envolver todos.

#4 - 1 frontend, 1 infra e 1 backend.

#5 - era 5 desenvolvedores/arquitetos e 1 destinado a UX.

#6 -

#7 - 1 PO, 1 arquiteto, 1 teste, 5 desenvolvedores.

8 - Qual a tecnologia do monolito? Quais as tecnologias adotadas para microsserviços? Se
for a mesma, por que manteve? se alterou por que alterou? Se alterou quanto tempo
considerou/despendeu-se para a curva de aprendizado da nova tecnologia, foi feito
investimento em contratação/treinamento?

#1 - Tecnologia do monólito era delphi e Tecnologia do microsserviços GOLANG. Foi
escolhida pela praticidade, ser uma linguagem com curva de aprendizado simples,

References 133

ser facilmente escalável e ter ferramentas e frameworks voltados e compatíveis com a
infraestrutura da nuvem

#2 - PHP, MySQL em ambiente AWS. PHP, MySQL, MongoDB, Redis, Docker, OAuth2 em
ambiente AWS (Kubernetes e outros serviços). Utilizar a ferramenta correta para o
problema proposto, na questão de linguagem de programação mantemos a mesma pois a
equipe era bem reduzida. Na questão de banco de dados utilizamos bancos com
propósitos diferentes para resolver melhor cada área do negócio envolvida. Em
treinamentos online e eventos quando possível.

#3 - Poderiam ser várias, ao contrário da crença popular isso é possível, as pessoas nem
conseguem definir o que é monólito ou microsserviço, como podem adotar algo assim?
Arquitetura monolítica não é o mesmo que executável monolítico. A motivação de trocar
deveria ser sempre pela escolha errada antes. Mas quase sempre é o gosto, as pessoas
só não gostam de confessar. Contrate e treine bons profissionais para não precisar de
muletas.

#4 - Python é utilizado, no front é react. Na infra terraform e banco postgres usando
também kubernetes amazon.

#5 - Monólito era java 4 com hibernate, no frontend era javascript, html, css, jquery
microsserviços continuou java 8 / koblin bancos relacionais postgres. Reactjs no front e
mobile react native sql lite. As pessoas que estavam na equipe auxiliavam os novos, não
havia treinamento, simplesmente já começavam a programar.

#6 - monolito Delphi, firebird. Microsserviços C#, VueJS, GoLang e banco de dados
postgresql.

#7 - monolito uma aplicação em java rodando em jboss cliente servidor tradicional com
Postgres oracle e sql server,. No front era app android código nativo. Microsserviços
partiu da ideia que não teria 1 linguagem apenas, hoje além de java tem skala e kotlin,
serviços também com node, front com javascript / frameworks, mysql, postgres,
cassandra, neo4j, s3, elasticsearch e comunicação REST JSON.

9 - Qual o nível de conhecimento e experiência da equipe em relação a Orientação a
Objetos, padrões de projeto, microsserviços, sistemas distribuídos etc.

#1 - Equipe com foco e experiência em padrões de projetos, microsserviços.

#2 - Muito conhecimento em OO, muito conhecimento em padrões de projeto,
conhecimento intermediário em relação a microsserviços e sistemas distribuídos.

#3 - Especialista no assunto em OO e em padrões de projeto, conhecimento
intermediário em relação a microsserviços e muito conhecimento em sistemas
distribuídos.

#4 - Mais conhecimento que veio da graduação.

References 134

#5 - Inicialmente eram membros com senioridade maior, depois novos integrantes
eram de níveis menores. Conhecimento de microsserviços e sistemas distribuídos
era escasso inicialmente, foram aprendendo com o tempo.

#6 - o líder tinha um conhecimento maior em padrões, sistemas distribuídos. O
restante da equipe era entre básico e intermediário e passaram a estudar bastante
clean architecture durante o projeto.

#7 -

10 - Quais projetos já participaram? Quais eram as áreas/domínios? Qual a quantidade?

#1 - Domínio - comércio em geral.

#2 - E-commerce e EAD; Trade Merchandising (indústrias e agências); Participou de
menos deu 10 projetos

#3 - O maior ERP do mercado brasileiro (em todos critérios), entre outros.
menos que 10 projetos participou. Principalmente ERPs desktop. Eu trabalho em projetos
durante muito tempo, não pulo de projeto em projeto sem comprometimento com o que
estou fazendo, são projetos para vida toda. Não considero como projetos as pequenas
tarefas de programação.

#4 -

#5 -

#6 -

#7 -

Questões Específicas

11 - Vocês conheciam os anti-padrões existentes em microsserviços antes dessa
entrevista? Se sim, quais vocês conheciam?

#1 - Já conheciam megaservice o wrong cuts. Os demais anti-padrões não
conheciam.

#2 - Sim, megaservice, wrong cuts, cyclic dependency, shared persistence, shared
libraries, microservice greedy.

#3 - Sim, megaservice, wrong cuts, cyclic dependency, shared persistency,
Inappropriate Service Intimacy, shared libraries, microservice greedy e Legacy
organization.

#4 - Não conheciam, alguns antipadrões já eram conhecidos através de livros.

References 135

#5 - Conhecia, não exatamente antipadrões, mas os problemas relatados eram
familiares. Sim, megaservice era uma preocupação, não construir um microsserviço
muito grande. Tiveram microsserviços divididos de forma errada (wrong cuts),
causando um grande impacto no sistema. Também teve ciclo de chamada entre
microsserviços. Foi utilizado bibliotecas compartilhadas, com planejamento de evitar
retrabalho.

#6 - Nunca tinha ouvido falar de antipadrões, alguns conceitos sim de forma
acadêmica não.

#7 - Sim, megaservice, inappropriate service intimacy, microservice greedy.

12 - Na fase de pré-migração foi tomada alguma medida para enfrentar os anti-padrões?
seja por estudo do que eram esses anti-padrões em detalhes ou qualquer outra
abordagem? Se sim, qual anti-padrão foi considerado?

#1 - No planejamento e fase de estudos faziam esforços para evitar estes
anti-padrões, megaservice e wrong cuts. Outros anti-padrões não foram
mencionados.

#2 - Sim, foi considerado megaservice, wrong cuts, shared persistence, shared
libraries e microservice greedy. Dividimos os serviços em áreas do negócio (DDD –
Bounded Context), e já pensamos em bancos de dados separados. No caso de não tomar
medidas: Dependência cíclica, falta de conhecimento em comunicação assíncrona (filas)
e tempo de desenvolvimento do projeto.

#3 - Sim, megaservice, wrong cuts, cyclic dependency, shared persistence,
Inappropriate Service Intimacy, shared libraries, microservice greedy e Legacy
organization. Não fazer microsserviço, que é o problema mais difícil de resolver da
computação, todos os outros são mais simples, muitas vezes por usar a tecnologia
adequada, montar um time bom, organizar o trabalho corretamente, preocupação com
eficiência. Se não considerar todos AP não passe perto de MS. Se considerar de verdade,
decidirá não passar perto. MS é anti pattern, engenheiros pensam assim, marketeiros
não. APs só devem ser adotados com último recurso.

#4 - Hoje já tem identificado como evitar os antipadrões, como o antipadrão shared
persistence. O planejamento é ter um mensageiro, ou seja nenhum microsserviço irá
se comunicar com outro, para que se um estiver fora não ter problemas, só muda
conexão entre o mensageiro e o microsserviço.

#5 - Sim, houve planejamento pra evitar megaservice, shared persistence.

#6 - Era utilizado de bom senso e experiência da equipe, de trabalhos anteriores
sobre más práticas.

#7 - Sim, havia um megaservice detectado durante a migração, ele foi separado e foi
necessário uma grande quantidade de código para a integração entre os dois.

References 136

13 - Quais foram as etapas para separar o monolito em microsserviços? Foi utilizado uma
abordagem como DDD ?

#1 - Sim, a organização tem como princípio utilizar DDD como base para o
desenvolvimento, e foi utilizado o DDD para fazer a separação do monolito.

#2 - Sim, alguns conceitos foram utilizados e também The Twelve-Factor App.

#3 - DDD causa tanto problema quanto microsserviço, e na verdade se tem um local onde
o DDD não faz sentido é o microsserviço, como, quase sempre, OOP. OOP serve para
gerenciar complexidade, DDD para gerenciar extrema complexidade, MS serve para tornar
tudo pequeno e evitar complexidade (individual), não faz sentido misturar as coisas. As
pessoas estão fazendo coisas aleatórias sem estudo real. Quem usa DDD está fazendo
um monólito quebrado em partes e não MS, e não tem a menor ideia do que está fazendo.
https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect.

#4 - separar o serviço baseado em demanda, se um serviço tiver mais acesso, ou
estiver usando mais recursos.

#5 - Não foi usado nenhuma abordagem específica, foi separar por negócios.

#6 - Foi pensado na arquitetura, tecnologias, formas de comunicação entre
microsserviços foi aplicado event-drive (mensageria) foi aplicado DDD + Clean
Architecture.

#7 - Quebrar por contexto de negócio, depois durante a migração foi detectado
microsserviços distintos que trabalhavam sobre o mesmo domínio de dados e era
necessário sincronização entre eles. Após entender esse problema foi iniciado um
estudo sobre DDD para estruturar melhor em contexto de domínios.

14 - Qual foi a abordagem para separar o banco de dados?

#1 - Banco de dados já está separado, foi utilizado a mesma técnica para a separação
DDD.

#2 - (DDD – Bounded Context) dos serviços envolvidos.

#3 - Se for adotar MS cada um deve ter seu próprio, caso contrário não é MS. Fazer isso
significa que a aplicação terá que cuidar o que antes o DB já cuidava de graça pra você.
Existem estratégias no monólito quando o DB não aguenta.

#4 -

#5 -

References 137

#6 - Foi usado ainda o banco antigo por um tempo, práticas de normalização do
banco.

#7 - ver quais eram os padrões existentes pra separar banco no contexto de
microsserviços. Desde o início já entendeu que deveria separar. isolamento entre
microsserviços 99% das comunicações entre msa é usado rest api ou mensageria.
Cada serviço tem seu domínio de informação e tem instâncias diferentes pra
aumentar resiliência com a distribuição horizontal de dados e cada tenant tem seu
schema específico de manutenção para ter isolamento.

15 - Foi pensado em alguma técnica de refatoração ou software para eliminar outros
anti-padrões, que não sejam estes relacionados a microsserviços, durante a pré-migração?

#1 - Sim, o sistema foi reconstruído praticamente do 0, portanto foi previsto eliminar
qualquer tipo de anti-padrão existente no sistema monolítico.

#2 - Recriamos do zero.

#3 - A refatoração bem feita resolve os problemas sem adotar MS. O MS é desculpa para
refatorar. Resolva os problemas da aplicação sem adotar MS, que cria um novo problema
que não tinha antes, SEMPRE (100%).

#4 - parte do sistema está em nuvem e parte na infra do sistema, quando o sistema foi
projetado parte de dados que ficaria em nuvem foi alterado para estar em lado do
cliente, o que acarretou em problemas de manutenção.

#5 - foi usado sonarQube e code review.

#6 - Foi tentado aplicar TDD porém devido aos prazos e sem experiência da equipe
não foi possível seguir com essa prática.

#7 -

16 - Quais suas considerações a respeito da fase de pré-migração e migração, quais as
dificuldades/barreiras vislumbradas e/ou lições aprendidas que poderiam ser úteis para
futuras migrações para microsserviços?

#1 -

#2 - Problemas com deploy, comunicação entre serviços, autenticação e autorização.

*penso que poucos projetos realmente precisam dessa abordagem, principalmente se
está sendo criado do zero, equipe de até 15 pessoas acho totalmente inviável.

References 138

#3 - Não faça, quase ninguém precisa disso. Pode existir algum microsserviço pontual
onde fizer sentido, mas não uma arquitetura de microsserviços, não algo antes de ter um
bom monólito. Não use muletas.

#4 - estamos num caminho certo, até o momento não teve um grande problema, os
problemas foram fáceis de resolver. problema de acesso a dados demanda muito
retrabalho, poucos funcionários. Adicionar uma nova funcionalidade ou refatorar, as
vezes perde-se tempo refatorando falta de documentação do sistema, dificuldade em
atualizar.

#5 - Fazer um nivelamento de conhecimentos sobre microsserviços, sistemas
distribuídos. Treinamento sobre as tecnologias que serão utilizadas. Mais pessoas
envolvidas nas decisões sobre as tecnologias, mais testes. Após a implementação e
início de utilização do sistema foi percebido uma má escolha de uma tecnologia e não
havia mais tempo para reverter a situação.

#6 - Dificuldade pois não havia participado de um planejamento, conhecimento de
arquitetura, engenharia de software. Lição seria estudar mais, consumir mais
materiais

#7 - Faça da melhor maneira com a informação que você tem hoje. Você vai errar, e
vai aprender e vai corrigir dessa forma foi encontrado problemas que trouxeram
experiências boas, pra auxiliar outras equipes e servir como base para futuras
implementações. Não esperar ter todo conhecimento do mundo pra começar

17 - Para concluir, em uma possível nova implementação, você consideraria desenvolver
um software direto em microsserviços ou preferiria desenvolver em monolito e depois
migrar? Quais as razões da sua escolha?

#1 - Desenvolveria em microsserviços direto, pensando em não ter um trabalho
redobrado, ao desenvolver em monolito e depois ter que migrar.
As lições aprendidas durante a migração foram úteis para que eles possam
desenvolver de forma a também evitar os anti-padrões.

#2 - Depende da equipe, se for uma equipe grande e com conhecimento prévio do projeto
e realmente necessitar, utilizaria sem dúvidas, caso contrário não.

No meu caso, que sempre trabalhei em empresas de pequeno e médio porte, preferiria
começar em um monólito sem dúvidas e migrar aos poucos.

#3 - Você não precisa de microsserviço e se precisar deve ser PROVADO, deve ter algo
simples que se mostrou incapaz de atender a demanda quando feito certo, e TODOS os
esforços foram feitos para resolver sem ele. Quase sempre a adoção de MS é assinar
atestado de incompetência. Arquitetura de microsserviços é uma fad.

A pesquisa já tem viés. Se a pessoa estudar o assunto sem viés, ela não adota essa
estratégia. Um exemplo é considerar que uma equipe de dezenas de pessoas (pode ser
muitas) precisa de MS. O Linux (a maior base de código com milhares de contribuidoras)

References 139

não precisa, boa parte dos 50 sites mais acessados do mundo não precisam (nem
considerei os que usam sem precisar de fato).

#4 - desenvolver primeiro em monolítico, agora tem-se noção do uso de shared
libraries, por exemplo, e um entendimento macro do sistema. Devido a complexidade
de microsserviços, no início seria mais difícil, um projeto inicial às vezes não tem-se
uma ideia de coisas básicas como regras de negócio, que vão amadurecendo com o
tempo. O investimento inicial também foi pouco, não seria possível no inicio
desenvolver em MS.

#5 - depende da maturidade do time e uma equipe madura já tem bagagem pra trabalhar
direto com microsserviços com equipes separadas. Se não está claro como o sistema vai
funcionar, nem conhecimento suficiente em microsserviços o melhor é iniciar em
monolítico. Se o conhecimento em relação ao negócio é muito maduro e avançado.

#6 - Desenvolver em microsserviço, por questão da escalabilidade e nem sempre
desenvolver com boas práticas é o que possibilita você entregar produtos novos,
talvez pensar em estratégias pra facilitar a vida do desenvolvedor seria o caminho
mais assertivo.

#7 - desenvolver em monolítico primeiro. Com monolito seria muito mais fácil
envolver o cliente pra usar a informação pra ensinar qual a melhor configuração pra
resolver a necessidade dele. Eles começaram em MSA sem entender bem os
contextos de negócio. Monolito é mais tranquilo.

Obrigado pela participação!

References 140

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Context
	Motivation
	Problem - Research Question
	Methodology
	Contribution
	Dissertation Structure

	Background
	Monolithic Architecture
	Why does the monolithic degrade?
	Microservices
	Modernization to Microservices
	Bad Smells/Antipatterns in Microservices
	List Bad Smells/Antipatterns

	Phases for Migration to Microservices
	Summary

	Methodology
	Systematic Literature Mapping
	Research question
	Search process
	Inclusion/exclusion criteria
	Primary study selection process
	Data collection
	Data analysis and synthesis

	Rapid review
	Rapid Review - Research Question
	Rapid Review - Criteria
	Inclusion Criteria
	Exclusion Criteria
	Stop Criteria

	Rapid Review - Search Process
	Rapid Review - Quality criteria
	Rapid Review - Data Analysis and Synthesis

	Interview Based on Expert Opinion
	Goal, Question and Metrics
	Goals
	Questions
	Metrics

	Motivation
	Research design
	Questions
	Expert selection
	Interview Procedures

	Thematic Analysis
	Summary

	Systematic Literature Mapping
	Technical Debt
	Antipatterns
	Architectural Smells
	Research Question Answers

	Refactoring
	Research Question Answers

	Modernization
	Research Question Answers

	Decomposition
	Research Question Answers

	Summary

	Rapid Review
	General Approaches
	Log Aggregation
	Data First
	Coupling and Cohesiveness

	Strangler Pattern
	Modularity
	Summary

	Interview
	First Group of Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10

	Second Group of Questions
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17

	Data Analysis
	1st Group of questions
	2nd Group of Questions

	Summary

	Analysis and Discussions
	Analysis procedure
	Systematic Literature Mapping Analysis
	Rapid Review Analysis
	Interview Analysis
	Themes
	Discussion
	Limitations of the study
	Summary

	Conclusion & Future Work
	Conclusion
	Future Work

	References
	Appendix
	Systematic Literature Mapping
	Protocol Mapping
	SLM Paper Count

	Rapid Review
	Rapid Review Search Results
	RR Paper Count

	Interviews

