UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ CAMPUS DE CASCAVEL CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - CCET PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLA

CONSTRUÇÃO E AVALIAÇÃO DE MAPAS

VANDERLEI ARTUR BIER

CASCAVEL – PARANÁ - BRASIL FEVEREIRO 2015

VANDERLEI ARTUR BIER

CONSTRUÇÃO E AVALIAÇÃO DE MAPAS

Tese apresentada ao Programa de Pós-Graduação *Stricto Sensu* em Engenharia Agrícola em cumprimento parcial aos requisitos para obtenção do título de Doutor em Engenharia Agrícola, área de concentração em Sistemas Biológicos e Agroindustriais.

Orientador: Prof. Dr. Eduardo Godoy de Souza Co-orientadora: Prof. Dra. Lúcia Helena Pereira de Nóbrega

CASCAVEL – PARANÁ - BRASIL FEVEREIRO 2015

Dados Internacionais de Catalogação-na-Publicação (CIP)

Revisões em português, inglês e normas realizadas por Ana Maria Vasconcelos em 16/05/2015.

VANDERLEI ARTUR BIER

"Construção e Avaliação de Mapas"

Tese apresentada ao Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agricola em cumprimento parcial aos requisitos para obtenção do título de doutora em Engenharia Agricola, área de concentração Sistemas Biológicos e Agroindustriais, aprovada pela seguinte banca examinadora:

Orientador: Prof. Dr. Eduardo Godoy de Souza Universidade Estadual do Oeste do Paraná - Campus Cascavel

alenal an

Prof. Dr. Antônio Carlos Andrade Goncalves Universidade Estadual de Maringá

Prof. Dr. Cláudio Leones Bazzi Universidade Tecnológica Federal do Paraná – Campus Medianeira

Prof. Dr. Jerry Adriani Johann

Universidade Estadual do Oeste do Paraná - Campus Cascavel

Prof. Dr. Marcio Furlan Maggi

Universidade Estadual do Óeste do Paraná - Campus Cascavel

Cascavel, 23 de fevereiro de 2015.

BIOGRAFIA

Vanderlei Artur Bier

Natural de Luzerna, Santa Catarina, nascido aos 13 dias do mês de setembro de 1970, possui graduação em Engenharia Agrícola (1992), especialização em Engenharia Agrícola (1996) e mestrado em Engenharia Agrícola (1999) pela Universidade Estadual do Oeste do Paraná. Foi professor no Ensino Médio nas disciplinas de Física, Estatística e Matemática, atuando nos Colégios Nossa Senhora Auxiliadora, Colégio Cristo Rei e no Colégio Marista. No ensino superior foi professor da Universidade Paranaense (UNIPAR, graduação e pós-graduação), União Pan-americana de Ensino (UNIPAN, graduação), Faculdade Assis Gurgacz (FAG, graduação e pós-graduação), Universidade Grande Dourados (UNIGRAN, pós-graduação) e na Universidade Estadual do Oeste do Paraná (UNIOESTE, graduação). Atua na área de Engenharia Agrícola com ênfase nas áreas de máquinas e mecanização agrícola, estatística, geoestatística, agricultura de precisão e topografia.

A Deus, que sempre me fortaleceu.

Aos meus pais, Lothar e Palmira Bier, pelo incentivo desde que comecei a ler, para que o conhecimento, humildade e a honestidade fossem as minhas metas.

À Cinthya Bier, que carregou parte da carga que é estudar, trabalhar e ser pai presente.

Aos meus filhos, Isabelle e Arthur, que são a força sobrenatural de energia que não me deixa abater.

Ao meu Orientador, Dr. Eduardo Godoy de Souza, que sempre me encaminhou e além de tudo é um grande amigo.

A todos os professores que me guiaram, em especial à Dr^a Lúcia Helena Pereira de Nóbrega, minha co-orientadora e o Dr. Miguel Angel Uribe Opazzo.

Aos colegas que me apoiaram, pois esta tese foi desenvolvida contando com o esforço de muitas mãos.

AGRADECIMENTOS

Aos proprietários da Agropecuária Tasca, nas figuras do Sr. Laurindo e Aldo Tasca e funcionários, que além de incentivar o desenvolvimento desta pesquisa, se tornaram amigos pessoais.

À UNIOESTE, através do Programa de Pós-Graduação em Engenharia Agrícola, pela oportunidade na minha qualificação no Doutorado.

A todos os amigos e funcionários da UNIOESTE, com os quais passei uma emocionante fase da minha vida.

CONSTRUÇÃO E AVALIAÇÃO DE MAPAS TEMÁTICOS

RESUMO

A agricultura de precisão (AP) é definida como a utilização de técnicas que permitem manejo localizado de cultivo de acordo com as necessidades da cultura e do solo, para diminuir impactos no meio ambiente. A avaliação de modelos que interpolam dados de campo e geram mapas temáticos é uma tarefa que exige conhecimentos aprofundados no assunto. A precisão com que os mapas de distribuição espacial de atributos do solo são produzidos influencia a aplicação e a utilização da AP. O índice de concordância Kappa de Cohen (K) é a estatística mais utilizada em comparação de mapas temáticos. Entretanto, seu uso com dados quantitativos apresenta o inconveniente de proporcionar variação de concordância com a utilização de diferentes números de classes, adotada durante o processo de geração do mapa. Assim, o objetivo deste trabalho foi selecionar o melhor entre quatro métodos de interpolação (inverso da distância, inverso da distância ao quadrado, krigagem ordinária e cokrigagem) utilizando o índice de seleção de interpoladores (ISI), aqui proposto, a partir de teores de argila, cobre e manganês, dados de elevação do terreno e da condutividade elétrica aparente do solo. Com o uso do ISI, a seleção entre modelos determinísticos e estocásticos de interpolação ficou simplificada. O estudo avaliou ainda a influência nos índices de concordância K e Tau (T), quando se varia o número de classes da matriz de confusão, em resultados oriundos de uma área de 15,5 ha, com solo Latossolo Vermelho Distroférrico típico, no município de Céu Azul, Paraná, Brasil. A partir deste trabalho, foi confirmado que os índices Kappa e Tau apresentam grandes variações de concordância para diferentes números de classes. Para resolver esta situação desenvolveram-se os índices K e T alternativos para comparação de mapas temáticos de dados quantitativos, utilizando-se o coeficiente de desvio relativo, o desvio absoluto médio dos dados interpolados, a média e o desvio padrão dos dados originais do atributo. O resultado mostrou-se como boa alternativa aos índices de K e T baseados na matriz de erro por ser independente do número de classes e ser de cálculo mais simples. A metodologia mostrou-se mais eficiente para situações em que se utilizam mais que quatro classes.

Palavras-chave: agricultura de precisão; Kappa; Tau; coeficiente de desvio relativo; índice

de comparação de erros; geoestatística.

CONSTRUCTION AND EVALUATION OF THEMATIC MAPS

ABSTRACT

The precision agriculture (PA) is defined as the use of site specific management techniques that allow cropping management according to its needs and soil, in order to reduce impacts on the environment. The models valuation that interpolates field data and generates thematic maps is a task that requires in-depth knowledge on this issue. The Cohen Kappa index (K) is the most widely statistics used to compare thematic maps. The accuracy with which the spatial distribution maps of soil attributes are produced influences the implementation and use of PA. However its use has the disadvantage of providing variation in accordance with the use of different numbers of classes, adopted during the map generation process. Thus, this work aimed at selecting the best method among four interpolation ones (inverse distance, inverse distance squared, ordinary kriging and cokriging) using the index of selection of interpolators (ISI), proposed here, based on the contents of clay, copper and manganese, area elevation data and the apparent soil electrical conductivity. The selection among mathematical models and geostatistical interpolation was simplified using the ISI. The study also evaluated the influence in agreement K and Tau (T) indices when varying the number of confusion matrix classes in results that come from a 15.5 ha area, with typical Red Dystrophic soil in Céu Azul countryside, Paraná, Brazil, where soil properties were interpolated with the inverse distance, inverse square of distance, ordinary kriging and cokriging. According to this trial, K and T indices have been confirmed and varied widely of agreement for different numbers of classes. Thus, in order to solve this situation, it was developed K and T equivalent indices to compare thematic maps of quantitative data, using the relative deviation coefficient ,the absolute averaged deviation of interpolated data, the average, and standard deviation of the attribute original data. The result proved to be a good alternative to K and T indices based on the error matrix since it is independent of the classes number and shows a simpler calculation. The methodology was more efficient for situations when more than four classes are used.

Keywords: precision agriculture; Kappa; Tau; coefficient of relative deviation; index of error comparison; geostatistics.

SUMÁRIO

LISTA DE FIGURAS	viii
LISTA DE TABELAS	ix
LISTA DE ABREVIATURAS E SÍMBOLOS	x
ARTIGO 1	1
SELEÇÃO DO MELHOR MODELO DE INTERPOLAÇÃO DE PROPRIEDADES FÍSICA	AS E
QUÍMICAS DO SOLO USANDO ÍNDICE DE SELEÇÃO DE INTERPOLADORES	
ARTIGO 2	17
ÍNDICES KAPPA E TAU ALTERNATIVOS PARA COMPARAÇÃO DE MAPAS TEMÁTI	cos

DE DADOS QUANTITATIVOS

LISTAS DE FIGURAS

4

FIGURA DO ARTIGO 1

Figura 1 Localização do experimento e pontos de amostragem.

FIGURAS DO ARTIGO 2

Figura 1	Localização do experimento e pontos de amostragem no município de	
-	Céu Azul - PR.	22
Figura 2	Índice Kappa e intervalo de 95% de confiança dos métodos de	
	interpolação IQD e KRI, para número de classes variando de dois até	
	dez.	28
Figura 3	Dependência existente entre os índices Kappa (K) e Tau (T).	29
Figura 4	Relação linear existente entre os índices Tau e Kappa para 5 classes dos dados interpolados na comparação dos métodos de interpolação inverso da distância, inverso do quadrado da distância, krigagem e cokrigagem,	
	dois a dois, entre si.	31

LISTAS DE TABELAS

TABELAS DO ARTIGO 1

Tabela 1	Análise descritiva dos atributos coletados em 40 locais amostrais em uma área de LATOSSOLO VERMELHO Distroférrico típico, no município						
	de Céu Azul, Paraná	9					
Tabela 2	Índice de dependência espacial e índice de comparação de erros dos						
	semivariogramas para os modelos ajustados para covariáveis	10					
Tabela 3	Índices de dependência espacial e comparação de erros dos						
	semivariogramas para os modelos ajustados para os atributos	11					
Tabela 4	Erro médio, desvio padrão do erro médio e índice de seleção de						
	interpoladores para cada tipo de interpolação.	13					

TABELAS DO ARTIGO 2

Tabela 1	Classificação e desempenho do índice Kappa segundo autores 1						
Tabela 2	Matriz de correlação espacial com o índice de correlação dos atributos selecionados	26					
Tabela 3	Análise descritiva dos atributos com correlação global de Moram significativa por três anos consecutivos	27					
Tabela 4	Valores de Kappa, Tau, CDR e DAM para cada atributo em função de cada par de interpoladores para cinco classes	30					
Tabela 5	Índices de ajuste e coeficientes de regressão para Kappa e Tau, de acordo com os efeitos considerados	32					

LISTAS DE ABREVIATURAS E SÍMBOLOS

CEAS	Condutividade elétrica aparente do solo
COKRI	Cokrigagem
Cu	Cobre
Elev	Elevação do terreno
ID	Inverso da distância
IQD	Inverso do quadrado da distância
К	Índice Kappa
KRI	Krigagem
Mn	Manganês
рН	Potencial de hidrogeneização
т	Índice Tau

CONSTRUÇÃO E AVALIAÇÃO DE MAPAS TEMÁTICOS: ARTIGO 1 - ÍNDICE DE SELEÇÃO DE INTERPOLADORES

RESUMO: A agricultura de precisão estuda a variabilidade espacial de atributos de interesse objetivando o manejo localizado de insumos agrícolas com aumento dos lucros, diminuição das perdas e preservação do meio ambiente. Para tanto, são utilizados mapas de distribuição espacial de atributos cuja precisão influencia no sucesso do processo. Assim, o objetivo deste trabalho foi propor um índice de seleção de métodos de interpolação que auxilie a escolher o melhor entre modelos determinísticos e estocásticos quando da avaliação de modelos. Este índice de seleção de terreno e medidas de condutividade elétrica aparente do solo utilizando-se quatro métodos de interpolação (inverso da distância, inverso da distância ao quadrado, krigagem ordinária e cokrigagem). A partir de oito casos estudados, um apresentou a cokrigagem, dois o inverso do quadrado da distância e cinco a krigagem como melhores interpolação ficou simplificada.

PALAVRAS–CHAVE: agricultura de precisão; geoestatística; inverso da distância; inverso da distância; inverso da distância ao quadrado; krigagem ordinária; cokrigagem.

CONSTRUCTION AND EVALUATION OF THEMATIC MAPS: PAPER 1 - INTERPOLATOR SELECTION INDEX

ABSTRACT

Precision agriculture studies the spatial variability of interested attributes aiming a precise management of agricultural inputs with increased profits, loss decrease and environmental preservation. Thus, spatial distribution maps of attributes are used whose precision influences the process success. This study aimed at proposing metric comparing interpolation methods that helps to choose the best one between deterministic and stochastic models when evaluating models. This measure, referred to as interpolator selection index (ISI), was validated with content data of clay, copper and manganese, terrain elevation and apparent soil electrical conductivity measurements using four interpolation methods (inverse distance, inverse distance squared, ordinary kriging and cokriging). Based on the eight studied cases, one showed cokriging, two of them showed the inverse square of distance and five showed kriging as the best interpolators. Using the ISI, the selection between deterministic and stochastic interpolations was simplified.

KEYWORDS: Precision agriculture; geostatistics; inverse distance; inverse squared distance; ordinary kriging; cokriging.

INTRODUÇÃO

A seleção do melhor modelo geoestatístico para uma série de dados georreferenciados ocorre pela comparação de valores teóricos com valores obtidos na amostragem, com análise dos erros de estimação e escolha do melhor modelo (FARACO et al., 2008; BAZZI et al., 2009). A técnica, chamada de validação cruzada, foi eleita por Faraco et al. (2008) como a melhor forma de avaliação de ajuste dos modelos teóricos espaciais entre os critérios de informação de Akaike, de Filliben, de validação cruzada e o valor máximo do logaritmo da função verossimilhança.

A validação cruzada permite avaliar erros de estimativas comparando valores previstos com os amostrados. O erro médio (EM) é calculado como sendo a média aritmética das diferenças entre os valores originais e os simulados pelo interpolador, descartando-se temporariamente a amostra no mesmo local em que é feita uma previsão pelo interpolador (ISAAKS e SRIVASTAVA, 1989). Outras medidas que indicam a precisão da estimação são então calculadas como o erro médio reduzido (\overline{ER}), desvio padrão dos erros médios (DP_{EM}), e desvio padrão dos erros reduzidos (S_{ER}) (MCBRATNEY; WEBSTER, 1986; CRESSIE, 1993).

Segundo os critérios de não-tendenciosidade, para escolha do melhor modelo ajustado, o valor populacional para o EM e o \overline{ER} deve ser o mais próximo possível de zero, o valor do DP_{EM} menor possível e o S_{ER} mais próximo de um (MCBRATNEY e WEBSTER, 1986; CRESSIE, 1993; MELLO et al., 2005; FARACO et al., 2008). Como a validação cruzada possibilita o aparecimento de situações ambíguas por utilizar mais de uma estatística, Bazzi et al. (2009), propuseram uma estimativa denominada de índice de comparação de erros (ICE) envolvendo \overline{ER} e S_{ER} para os interpoladores que permitem o cálculo do desvio padrão da interpolação. Assim, é considerado melhor modelo de semivariância aquele que apresentar menor ICE. Esta metodologia não abrange métodos em que não é possível a determinação deste desvio padrão, como é o caso dos interpoladores determinísticos, inverso da distância e inverso do quadrado da distância.

Neste contexto, um dos objetivos deste trabalho foi selecionar o melhor entre quatro métodos de interpolação (inverso da distância, inverso da distância ao quadrado, krigagem ordinária e cokrigagem) a partir de dados de campo, em que a comparação entre resultados feita pelos índices Kappa e Tau fosse discutida em função do número de classes adotado na construção da matriz de confusão.

Outro objetivo deste trabalho foi propor um índice de seleção de interpoladores (ISI) para contribuir com o avanço no estudo de ferramentas que possam avaliar ação de interpoladores determinísticos e estocásticos, e como estudo de casos, selecionar o melhor entre quatro métodos de interpolação (inverso da distância, inverso da distância ao quadrado, krigagem ordinária e cokrigagem). Foram utilizados dados de teor de argila, cobre e manganês, elevação de terreno e medidas de condutividade elétrica aparente do solo.

MATERIAL E MÉTODOS

O estudo foi realizado em uma área de 15,5 ha no município de Céu Azul, Paraná, Brasil, com centro geométrico nas coordenadas -53,832° E; -25,109° N (WGS 1984), altitude média 660 m, cultivada sob sistema de plantio direto, após o cultivo de aveia durante o inverno. No local, é praticada a sucessão de culturas há mais de 10 anos, sendo na safra de verão e safrinha cultivada a cultura da soja ou do milho e durante a safra de inverno, trigo ou aveia como cultura de cobertura.

O solo da área foi classificado como LATOSSOLO VERMELHO Distroférrico típico, conforme Embrapa (2006), com teor de argila entre 600 e 740 g kg⁻¹ de solo. Uma grade irregular foi construída para determinação dos locais de amostragem (Figura 1), usando pontos de referência que se distanciaram de 65 e 130 m alternadamente, acompanhando o nível do terreno.A amostragem de solo foi feita na profundidade de 0 a 0,20 m e as coletas dos valores da condutividade elétrica aparente do solo foram conduzidas nos meses de outubro dos anos de 2011, 2012 e 2013, com umidade relativa do solo em torno de 25%, determinada segundo metodologia da Embrapa (1997), adaptando-se o procedimento sugerido por Wollenhaupt et al. (1994). Ao redor de cada uma das 40 coordenadas e num raio de 3 metros, foram adquiridas aleatoriamente oito sub-amostras, duas por quadrante na divisão simétrica do círculo em quatro quadrantes. O centro da circunferência foi localizado por um GPS Trimble GeoExplorer XT.

Figura 1 Localização do experimento e pontos de amostragem no município de Céu Azul - PR. Coordenadas em graus.

Medidas de condutividade elétrica aparente do solo foram obtidas utilizando um condutivímetro Geonics EM38 (GEONICS LIMITED, 2009), rente ao solo, com medições sob ação do campo eletromagnético nas profundidades de 0 a 0,38 m, 0 a 0,76 m e 0 a 1,5 m pela seleção de combinações entre dois pares de bobinas do equipamento (0,5 m e 1,0 m) e as posições horizontal e vertical de sua utilização. O EM38 foi ligado durante 15 minutos antes de cada série de medidas para estabilizar a temperatura interna. Em seguida, foi feita a calibragem de acordo com instruções do fabricante.

Medidas de elevação do terreno foram adquiridas por uma estação total eletrônica TOPCON GPT-7005i com precisão de 5", com utilização de prisma, a partir do ponto de coordenadas 214632 E e 72199963 N, fuso 22 J/WGS 1984, adquiridas com GPS Trimble GeoExplorer XT com correção posterior pela estação base de Cascavel, Paraná, em outubro de 2013. A partir deste ponto, o desnível da área em cada local de amostragem foi medido e a elevação do terreno destes locais foi obtida por cálculo de diferença entre pontos.

As amostras de solo foram analisadas em laboratório terceirizado (Cooperativa Central de Pesquisa Agrícola - COODETEC) quanto aos atributos texturais (teores de argila, areia e silte) e químicos (teores de Al, C, Ca, Cu, Fe, H+Al3, K, Mg, Mn, P, pH e Zn). Para validar a metodologia discutida neste trabalho, selecionaram-se atributos que se correlacionaram com eles mesmos (dependência espacial) e com algum outro atributo químico ou físico nos anos de 2011, 2012 e 2013.

Para avaliar a correlação espacial entre este atributos utilizou-se o índice de autocorrelação espacial bivariada de Moran (BONHAM, REICH e LEADER, 1995, Equação 1), calculada pelo SDUM – Software para definição de unidades de manejo (BAZZI et al., 2013), com 5% de significância e com 999 iterações de cálculo.

$$I_{YZ} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} * Y_{i} * Z_{j}}{W \sqrt{m_{Y}^{2} * m_{Z}^{2}}}$$
(1)

em que:

 I_{YZ} corresponde ao nível de associação entre as variáveis Y e Z, variando de -1 a 1, cuja correlação positiva é $I_{YZ} > 0$ e correlação negativa é $I_{YZ} < 0$; W_{ij} corresponde ao elemento *ij* da matriz de associação espacial, calculado por $W_{ij} = (1/(1+D_{ij}))$; D_{ij} é a distância entre os pontos i e j; Y_i corresponde ao valor da variável Y transformada no ponto i.

A transformação ocorre para se obter média zero, pela fórmula: $Y_i = (Y_i - \overline{Y})$, em que \overline{Y} é a média amostral da variável Y; Z_j corresponde ao valor da variável Z transformada no ponto j.

E essa transformação ocorre para se obter média zero, pela fórmula: $Z_j = (Z_j - \overline{Z})$, em

que \overline{Z} é a média amostral da variável Z. W corresponde à soma dos graus de associação espacial, obtidos por meio da Matriz W_{ij} , para $i \neq j$. m_Y^2 corresponde à variância amostral da

variável Y. $m_{\rm Z}^{2}$ corresponde à variância amostral da variável Z.

Os atributos selecionados foram analisados de forma descritiva com uso do software Minitab 16 para identificação da existência de pontos discrepantes (*ouliers*) e na verificação da normalidade dos dados aplicaram-se os testes de Anderson-Darling e Kolmogorov-Smirnov a 5% de significância, considerando-se a distribuição como normal quando esta passou por pelo menos um dos testes. Na análise da dependência espacial, considerou-se que os processos foram intrinsecamente estacionários e isotrópicos, a partir do estimador proposto por Matheron (1963). Na geração dos semivariogramas foram utilizados três modelos (esférico, exponencial e gaussiano). Os estimadores foram encontrados pelo método OLS (Ordinary Last Square) no software ArcView 10 (ESRI, 2011), com no mínimo 10 e no máximo 15 vizinhos, padrão do software, limitando o alcance à metade da distância máxima de 552 m entre dois pontos (*cuttof* = 50%), seguindo recomendação de Teixeira e Scalon (2013). A dependência espacial entre as amostras foi mensurada pelo índice de dependência espacial (IDE, Equação 2), classificado segundo Cambardella et al. (1994), como: IDE \leq 25% - forte; 25% < IDE < 75% - moderada e IDE \geq 75% - fraca.

$$IDE = \frac{C_0}{C_1 + C_0} 100$$
(2)

em que:

 C_0 é o efeito pepita; C_1 é a contribuição.

Utilizou-se a validação cruzada (ISAAKS; SRIVASTAVA, 1989) para verificar a eficiência de cada modelo com determinação do erro médio (EM, Equação 3), erro médio reduzido (\overline{ER} , Equação 4), desvio padrão dos erros médios (DP_{EM} , Equação 5) (MCBRATNEY; WEBSTER, 1986; CRESSIE, 1993).

$$EM = \frac{1}{n} \sum_{i=1}^{n} \left(Z(S_i) - \hat{Z}(S_i) \right)$$
(3)

em que:

n é o número de dados; Z(Si) é o valor observado no ponto Si; $\hat{Z}(S_i)$ é o valor estimado por krigagem no ponto S_i sem considerar a observação Z(S_i).

$$\overline{ER} = \frac{1}{n} \sum_{i=1}^{n} \frac{Z(S_i) - \left(\hat{Z}(S_{(i)})\right)}{\sigma\left(\hat{Z}(S_{(i)})\right)} \tag{4}$$

$$DP_{EM} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\hat{Y}(S_i) - EM \right)^2}$$
(5)

em que:

 $\hat{Y}(S_i) = Z(S_i) - \hat{Z}(S_i)$ é a predição do erro associado com a estimativa do valor no ponto S_i ;

 $\sigma(\hat{Z}(S_{(i)}))$ é o desvio padrão da amostra estimada no ponto $S_{(i)}$.

O desvio padrão dos erros médios reduzido (S_{ER}) é apresentado na Equação 6.

$$S_{ER} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \frac{|Z(S_i) - [\hat{Z}(S_{(i)})]|}{\sigma(\hat{Z}(S_{(i)}))}}$$
(6)

em que:

 $\sigma(\hat{Z}(S_{(i)}))$ é o desvio padrão da krigagem no ponto Si, sem considerar a observação Z(S(i)).

Na seleção dos j modelos, utilizou-se o índice de comparação de erros (ICE, Equação 7, BAZZI et al., 2009; SANTOS et al., 2012), que assume menor valor quanto melhor for o modelo do semivariograma.

$$ICE_{i} = \left\{ \frac{ABS(\overline{ER})_{i}}{m \acute{a}x \Big|_{i=1}^{j} \left[ABS(\overline{ER}) \right]} + \frac{ABS(S\overline{ER} - 1)_{i}}{m \acute{a}x \Big|_{i=1}^{j} \left[ABS(S\overline{ER} - 1) \right]} \right\}$$
(7)

em que:

ICE_i é o índice de comparação de erros para o modelo i; $ABS(\overline{ER})$ é o valor absoluto do erro médio reduzido diferente de zero da validação cruzada; $S\overline{ER}$ é o desvio padrão do erro médio reduzido, deferente de zero; $m \hat{a} x \Big|_{i=1}^{j}$ é o maior valor entre os j semivariogramas comparados.

Similarmente ao ICE, mas com o objetivo de comparar métodos de interpolação determinísticos e estocásticos, foi definido, neste trabalho, o índice de seleção de interpoladores - ISI (Equação 8), o qual assume menor valor quanto melhor for o interpolador.

$$ISI = \left\{ \frac{ABS(EM)}{m \acute{a}x|_{i=1}^{j} [ABS(EM)]} + \frac{\left| DP_{EM} - m \acute{n}n|_{i=1}^{j} (DP_{EM}) \right|}{m \acute{a}x|_{i=1}^{j} (DP_{EM})} \right\}$$
(8)

em que:

ABS(EM) é valor em módulo do erro médio maior que zero da validação cruzada e DP_{EM} o seu desvio padrão maior que zero; $min|_{i=1}^{j}$ é o menor valor encontrado entre os j interpoladores comparados e máx. o maior valor.

No processo de construção dos mapas temáticos, utilizou-se o software ArcView 10 (ESRI, 2011).

RESULTADOS E DISCUSSÃO

Foram utilizados o teor da argila, a elevação do terreno, bem como os teores de cobre e manganês na validação da técnica aqui proposta. Estes atributos apresentaram autocorrelação, medida através do índice de auto correlação espacial bivariada de Moran, nos anos de 2011, 2012 e 2013 (Tabelas 1, 2 e 3, Apêndice1), o que é um forte indício de sua dependência espacial. Este procedimento foi adotado para garantir maior consistência nos resultados. Como covariáveis, foram selecionadas a condutividade elétrica aparente do solo e a elevação do terreno, atributos que geralmente apresentam relativa facilidade de aquisição e baixa relação custo/benefício podendo ser obtidos com a cultura implantada e serem medidos diretamente no campo em alta densidade amostral o que diminui o desvio padrão e os erros de tabulação.

Foi verificado que as médias e medianas foram próximas (Tabela 1) de acordo com a análise estatística descritiva dos dados. E, com exceção do cobre coletado no ano de 2011, todos os atributos apresentaram distribuição normal (5%).Os atributos apresentaram coeficiente de variação médio ou baixo. Todavia, as exceções foram os teores de Cu e Mn coletados em 2013, os quais apresentaram alto coeficiente de variação (22,7% e 22,4%, respectivamente), com relação entre valores mínimos e máximos de 2,6 e 2,2, respectivamente.

Na análise das covariáveis elevação do terreno e condutividade elétrica aparente do solo utilizaram-se os modelos esférico, exponencial e gaussiano por serem amplamente abordados na bibliografia científica (MELO et al., 2003; JABRO et al., 2006; ASSUMPÇÃO et al., 2007; SOUZA et al., 2010; ZONTA et al., 2014). Todos os modelos (Tabela 2) apresentaram forte dependência espacial (CAMBARDELLA et al., 1994). Valores de erro médio reduzido (\overline{ER}) mais próximo de zero edesvio padrão do erro médio reduzido (S_{ER}) mais perto de um foram indicativos de melhor modelo, evidenciado pelo menor índice de comparação de erros - ICE (BAZZI et al., 2009).

Atributo	Ano	Mín	Média	Med	Máx	Amp	DP	CV
Argila (g kg⁻¹)	2013	600	679*	680	740	140	36	5,2% (b)
Cobre	2011	7,9	10,1	9,4	15,6	7,7	1,8	18,3% (m)
(mg dm- ³)	2012	7,9	11,5*	10,9	17,1	9,1	2,2	19,2% (m)
	2013	4,3	7,2*	7,1	11,1	6,9	1,6	22,7% (a)
Manganês	2011	105	166*	166	229	124	30,4	18,3% (m)
(mg dm- ³)	2012	72	115*	116	152	80	21,7	18,9% (m)
	2013	66	95*	90	143	77	21,2	22,4% (a)
Elevação do terreno (m)	2013	651	664*	662	676	25	7	1,1% (b)
Condutividade elétrica	2011	205	233*	233	256	51	13,3	5,7% (b)
Aparente do solo	2012	232	258*	256	290	58	13,3	5,2% (b)
(mS)	2013	200	254*	255	291	91	20,7	8,1% (b)

Tabela 1 Análise descritiva dos atributos coletados em 40 locais amostrais em uma área de LATOSSOLO VERMELHO Distroférrico típico, no município de Céu Azul, Paraná

N – nº de amostras; Mín – Mínimo, Med – Mediana, Máx – Máximo, Amp – amplitude; DP – desvio padrão; CV – coeficiente de variação: b – baixo, m – médio, a – alto, classificado de acordo com Gomes e Garcia, (2002); * - normalidade (5%) pelo teste de Kolmogorov-Smirnov..

O melhor modelo de semivariograma para a elevação do terreno na krigagem foi o exponencial. Para a mesma variável, na cokrigagem com condutividade elétrica aparente do solo (CEAS) coletada em 2011, o modelo exponencial, na cokrigagem com CEAS em 2012 o esférico, e na cokrigagem com CEAS 2013 o gaussiano foram os melhores modelos de semivariogramas (Figura 1, Apêndice 1), enquanto o modelo exponencial da krigagem foi o melhor nos três anos para a condutividade elétrica aparente do solo. Para todos os modelos avaliados, o menor ICE das comparações também apontou para aqueles que apresentaram S_{ER} , mais próximo de um. Uma das possíveis explicações é que o menor valor em módulo do ER na equação do ICE representa uma variação pequena no índice e proporcionalmente não interfere tanto na seleção quanto a variação no S_{ER} .

Covariável	Ano	Método	Modelo	Co	C ₁	Alcance	IDE	ER	S_{ER}	ICE	
			Esf	0	51	276	0,0% (Fo)	0,0151	0,3795	0,289	
		KRI	<u>Exp</u>	<u>0</u>	<u>49</u>	<u>276</u>	<u>0,0% (Fo)</u>	<u>0,0065</u>	<u>0,3825</u>	<u>0,192</u>	
			Gau	0	66	276	0,0% (Fo)	0,0897	6,1569	2,000	
			Esf	0	51	276	0,0% (Fo)	<u>0,0060</u>	0,7596	0,137	
		COKRI	<u>Exp</u>	<u>0</u>	<u>49</u>	<u>276</u>	<u>0,0% (Fo)</u>	0,0125	<u>0,9469</u>	<u>0,066</u>	
alay	0040	(CEAS 2011)	Gau	0	52	216	0,0% (Fo)	0,3134	3,0485	2,000	
elev	2013		<u>Esf</u>	<u>0</u>	<u>49</u>	<u>254</u>	<u>0,0% (Fo)</u>	-0,0039	0,7655	<u>0,090</u>	
		COKRI	Ехр	0	49	276	0,0% (Fo)	0,0057	0,6989	0,120	
		(CEAS 2012)	Gau	0	45	170	0,0% (Fo)	-0,1490	4,6762	2,000	
			Esf	0	43	144	0,0% (Fo)	0,0260	0,5342	1,832	
		COKRI	Ехр	0	46	201	0,0% (Fo)	<u>0,0151</u>	0,4400	1,580	
		(CEAS 2013)	<u>Gau</u>	<u>0</u>	<u>43</u>	<u>115</u>	<u>0,0% (Fo)</u>	0,0219	<u>0,6745</u>	<u>1,423</u>	
			Esf	0	189	276	0,0% (Fo)	0,0168	0,8702	1,038	
	2011	KRI	<u>Exp</u>	<u>0</u>	<u>177</u>	<u>276</u>	<u>0,0% (Fo)</u>	<u>0,0062</u>	<u>0,6972</u>	<u>0,459</u>	
			Gau	0	194	210	0,0% (Fo)	-0,0140	4,3877	1,830	
			Esf	0	220	237	0,0% (Fo)	0,0136	1,2375	0,165	
CEAS	2012	KRI	<u>Exp</u>	<u>0</u>	<u>220</u>	<u>276</u>	<u>0,0% (Fo)</u>	<u>0,0114</u>	<u>0,9877</u>	<u>0,096</u>	
			Gau	0	207	155	0,0% (Fo)	0,1224	5,3650	2,000	
			Esf	0	508	156	0,0% (Fo)	0,0197	1,1062	0,695	
	2013	KRI	<u>Exp</u>	<u>0</u>	<u>488</u>	<u>156</u>	<u>0,0% (Fo)</u>	<u>0,0036</u>	<u>0,9296</u>	<u>0,257</u>	
				Gau	0	505	120	0,0% (Fo)	0,0467	1,3900	2,000

Tabela 2 Índice de dependência espacial (IDE) e índice de comparação de erros (ICE) dos semivariogramas para os modelos ajustados para covariáveis

C0 - Efeito pepita; C1 - contribuição; A – Alcance, m; Fo – Forte; Mo – Moderada; ER - erro médio reduzido; SER - desvio padrão dos erros médios reduzido; Esf - Esférico; Exp – Exponencial; Gau – Gaussiano; Negrito e sublinhado - melhor índice; KRI – krigagem; COKRI – cokrigagem; elev – elevação do terreno; CEAS – condutividade elétrica aparente do solo.

Na Tabela 3 são apresentados os parâmetros dos modelos, índice de dependência espacial e índice de comparação de erros para os atributos (teores de argila, Cu, Mn) interpolados por krigagem e cokrigagem (utilizando as covariáveis elevação do terreno e condutividade elétrica aparente do solo).

Os modelos interpolados apresentaram moderada dependência espacial para os teores de argila para todos os interpoladores (Figura 2, Apêndice 1). Os teores de cobre apresentaram forte dependência em 2011 pelos interpoladores krigagem e cokrigagem, em 2012 e 2013 pela cokrigagem e moderada dependência espacial nos anos de 2012 e 2013 pela krigagem (Figuras 3, 4 e 5, Apêndice 1). O Mn apresentou dependência forte em 2011 e 2012 e moderada dependência no ano de 2013 (Figuras 6, 7 e 8, Apêndice 1). Na escolha do melhor modelo de semivariograma (Tabela 3), o modelo exponencial foi o melhor em 11 casos e o esférico foi o melhor em seis casos e o modelo gaussiano não se destacou em nenhum caso.

Atributo		Método	Modelo	Co	C1	Α	IDE	ER	SER	ICE
			Fsf	514	644	276	44% (Mo)	0.0329	1.0236	1 177
		KRI	Exn	514	608	276	45% (Mo)	0 0244	0.9628	1 055
			Gau	<u>514</u>	756	260	40% (Mo)	0.03/2	1 1005	2 000
			Eef	530	623	276	45% (Mo)	0,0012	1,1000	1 442
		COKRI	Exn	530	588	276	47% (Mo)	0,0002	1 0341	1 282
			Gau	530	7/8	276	<u>41 % (Mo)</u>	0.0201	1 0016	1 063
			Gau	429	740	270	27% (Mo)	0,0291	1,0910	0.003
ora	2012	COKPI	Evo	<u>430</u> 129	<u>7 44</u> 701	276	38% (Mo)	0,0341	0.0951	<u>0,903</u> 1 261
ary	2013		Gau	430	701	270	36% (Mo)	0,0397	1 0/12	1,301
		(CEAS 2011)	Gau	430	744	229	27% (Mo)	0.0322	1,0413	1,017
		COKPI	Evo	430 420	<u>744</u> 701	270	$\frac{37\%}{28\%}$ (Mo)	0,0377	0.0500	1,047
			Exp	430	701	270	30% (IVIO)	0,0372	0,9509	1,029
		(CEAS 2012)	Gau	430	723	204	37% (IVIO)	0,0335	1,0000	1,090
			ESI	<u>438</u>	<u>744</u> 704	276	$\frac{37\%}{100}$	0,0297	<u>1,0226</u>	1,283
			Exp	438	701	276	38% (IVIO)	0,0170	0,9437	1,299
		(CEAS 2013)	Gau	438	/19	203	37% (Mo)	0,0263	1,0799	1,888
			Est	0	3	228	0% (Fo)	<u>0,0074</u>	1,2846	0,434
		KRI	Exp	<u>0</u>	<u>3</u>	276	<u>0% (Fo)</u>	-0,0079	<u>1,0327</u>	0,242
	2011		Gau	0	3	115	0% (Fo)	0,0369	2,2186	2,000
			<u>Esf</u>	<u>0</u>	<u>3</u>	<u>276</u>	<u>0% (Fo)</u>	<u>0,0133</u>	<u>1,5374</u>	<u>0,009</u>
		COKRI	Exp	0	3	276	0% (Fo)	1,3366	-0,1113	0,364
		(elev)	Gau	0	5	276	0% (Fo)	3,7892	94,8233	2,000
			Esf	<u>3</u>	<u>2</u>	<u>276</u>	<u>59% (Mo)</u>	-0,0206	<u>0,9847</u>	<u>1,425</u>
		KRI	Ехр	3	2	276	61% (Mo)	-0,0207	0,9647	1,989
Cu	2012		Gau	3	2	276	55% (Mo)	<u>-0,0163</u>	1,0357	1,790
ou	2012		Esf	0	6	276	0% (Fo)	0,0187	1,9594	0,054
		COKRI	Exp	<u>0</u>	<u>5</u>	<u>276</u>	<u>0% (Fo)</u>	<u>0,0049</u>	<u>1,6586</u>	<u>0,027</u>
		(elev)	Gau	0	8	228	0% (Fo)	0,7849	33,1941	2,000
			Esf	1	2	276	29% (Mo)	-0,0036	1,1478	0,865
	2013	KRI	Exp	<u>1</u>	<u>2</u>	<u>276</u>	<u>31% (Mo)</u>	-0,0045	<u>1,0575</u>	<u>0,650</u>
		2013		Gau	1	2	192	31% (Mo)	0,0099	1,2914
	2013		Esf	0	3	276	0% (Fo)	0,0368	1,8270	0,030
		COKRI	Exp	<u>0</u>	<u>3</u>	<u>276</u>	<u>0% (Fo)</u>	<u>0,0237</u>	<u>1,5468</u>	<u>0,020</u>
		(elev)	Gau	0	5	263	0% (Fo)	2,1093	66,7715	2,000
			Esf	0	846	148	0% (Fo)	0,0098	1,1639	0,521
		KRI	Exp	<u>0</u>	<u>1004</u>	<u>276</u>	<u>0% (Fo)</u>	<u>0,0015</u>	<u>1,1279</u>	<u>0,239</u>
	0044		Gau	0	857	115	0% (Fo)	0,0368	1,6429	2,000
	2011		Esf	0	902	179	0% (Fo)	0,0192	1,4686	0,686
		COKRI	Exp	<u>0</u>	<u>1004</u>	<u>276</u>	<u>0% (Fo)</u>	<u>0,0010</u>	<u>1,1917</u>	<u>0,177</u>
		(CEAS 2011)	Gau	0	873	121	0% (Fo)	0,0667	2,1787	2,000
		· · · · ·	Esf	84	496	276	14% (Fo)	-0,0078	1,0777	1,251
		KRI	Exp	84	<u>462</u>	<u>276</u>	<u>15% (Fo)</u>	-0,0019	0,9250	0,486
			Gau	84	431	162	16% (Fo)	-0,0038	1,3089	1,484
Mn	2012		Esf	0	563	231	0% (Fo)	-0.0016	1,3053	0.252
		COKRI	Exp	0 0	568	276	0% (Fo)	-0.0054	1.0395	0.155
		(CEAS 2012)	Gau	<u>-</u>	514	140	0% (Fo)	0.0429	2,4179	2.000
		(02,102012)	Fef	228	247	208	48% (Mo)	0.0231	1 0161	1 446
		KBI	Evo	228	265	200	-070 (IVIO)	0,0231	0.0682	1 622
		ININI	слр Сан	220	200	270 152	40 % (NO)	0.0245	1 0227	1,000
	2013		Eat	122	242	102	200/ (MA)	0,0240	1,0227	1 407
		COKPI	ESI	132	320	100	20% (IVIU) 270/ /Ma	0,0300	1,0002	1,427 1 071
				132	<u>349</u>	190	<u>21% (IVIO)</u>	0,0293	1,0423	<u>1,0/1</u>
		(UEAS 2013)	Gau	132	329	115	28% (IVIO)	0,0397	1,1275	2,000

 Tabela 3 Índices de dependência espacial e comparação de erros dos semivariogramas para os modelos ajustados para os atributos

C0 - efeito pepita; c1 - contribuição; a - alcance, metros; fo - forte; mo - moderada; er - erro médio reduzido; s_{er} - desvio padrão dos erros médios reduzido; esf - esférico; exp - exponencial; gau - gaussiano; negrito e sublinhado - melhor índice; kri - krigagem; cokri - cokrigagem; elev - elevação do terreno; CEAS - condutividade elétrica aparente do solo; arg, cu e mn - teores de argila, cobre e manganês.

Visando comparar os interpoladores krigagem, cokrigagem, inverso da distância e inverso do quadrado da distância (Tabela 4), foram calculados o erro médio (EM) e seu desvio padrão (DP_{EM}) e o índice de seleção de interpoladores(ISI). Em cinco dos oito casos analisados, o melhor interpolador foi a krigagem, seguido por dois casos para o inverso da distância ao quadrado e um caso para cokrigagem. Em cinco dos oito casos, as estimativas, erro médio e seu desvio padrão apontaram para diferentes modelos. Tais dados mostraram a importância do uso do índice de seleção de interpoladores, que possibilitou uma decisão objetiva do melhor modelo. Ressalte-se que a estatística proposta possibilita escolher qual foi o melhor interpolador, mas não quantifica a diferença quantitativa entre os métodos.

A utilização da condutividade elétrica aparente do solo como covariável não aumentou a qualidade do modelo de interpolação para o teor de argila. Um dos motivos pode ser o mesmo número de amostragem dos dois atributos (40). A técnica da cokrigagem funciona melhor em casos em que o atributo principal está sub-amostrado em relação à covariável, logo, reproduz melhor o fenômeno espacial estudado (QUARTEZANI et al., 2011).

Atributo	ano	Interpolador (Covariável)	Modelo	EM	DPEM	ISI
		ID	-	0,6624	30,3944	0,665
		IQD	-	<u>0,5641</u>	30,2628	<u>0,582</u>
		KRI	Exp	0,8553	29,3829	0,787
arg	2013	COKRI (CEAS 2011)	Esf	0,8533	28,5989	0,760
		COKRI (CEAS 2012)	Esf	1,0915	<u>26,3974</u>	0,879
		COKRI (CEAS 2013)	Esf	1,2403	27,3052	1,029
		COKRI (Elevação)	Exp	0,9924	28,3620	0,864
		ID	-	-0,1376	1,4253	1,091
	2011	IQD	-	-0,0856	1,3144	0,638
	2011	<u>KRI</u>	Exp	<u>-0,0049</u>	<u>1,2859</u>	<u>0,035</u>
		COKRI (Elevação)	Esf	0,0295	1,3517	0,259
		ID	-	-0,0500	1,9677	0,986
Cu	2012	IQD	-	<u>-0,0057</u>	1,9994	<u>0,131</u>
Cu	2012	KRI	Esf	-0,0449	<u>1,9565</u>	0,881
		COKRI (Elevação)	Exp	0,0206	2,1906	0,511
	2012	ID		0,0496	<u>1,4302</u>	0,554
		IQD		0,0886	1,4632	1,010
	2013	<u>KRI</u>	Exp	<u>0,0038</u>	1,4688	<u>0,067</u>
		COKRI (Elevação)		0,0493	1,5948	0,653
	2011	ID		0,7794	25,2104	0,823
		IQD		0,9472	<u>25,1789</u>	0,999
		KRI	Exp	0,2639	26,1179	0,314
		COKRI (CEAS 2011)	Exp	<u>0,2348</u>	<u>25,4238</u>	<u>0,257</u>
		ID		0,1069	17,7186	0,770
Mo	2012	IQD		-0,1535	17,2202	1,044
	2012	KRI	Exp	<u>-0,0955</u>	17,3617	<u>0,676</u>
		COKRI (CEAS 2012)	Exp	-0,1134	<u>16,3342</u>	0,734
		ID		2,0902	19,7150	1,003
	2013	IQD		1,9134	19,7438	0,920
	2010	<u>KRI</u>	<u>Esf</u>	<u>0,5689</u>	<u>19,6361</u>	<u>0,272</u>
		COKRI (CEAS 2013)	Exp	0,7479	20,0497	0,378
		ID		-0,2330	3,5176	1,420
		IQD		-0,2321	2,9449	1,253
elev	2013	KRI	Exp	<u>0,0267</u>	<u>2,0261</u>	<u>0,114</u>
	2010	COKRI (CEAS 2011)	Exp	0,0376	2,7865	0,377
		COKRI (CEAS 2012)	Esf	-0,0413	2,6696	0,360
		COKRI (CEAS 2013)	Gau	0,0775	2,7753	0,544

Tabela 4 Erro médio, desvio padrão do erro médio e índice de seleção de interpoladores (ISI) para cada tipo de interpolação

EM - erro médio; DPEM - desvio padrão dos erros médios; negrito e sublinhado - melhor modelo; ID – inverso da distância; IQD – inverso do quadrado da distância; KRI – krigagem; COKRI – cokrigagem; elev – elevação do terreno; CEAS – condutividade elétrica aparente do solo; arg – teor de argila; Cu – teor de cobre; Mn – teor de manganês; sublinhados – melhores desempenhos.

CONCLUSÕES

Em todos os casos estudados, os melhores semivariogramas apontados pelo menor índice de comparação de erros (ICE) também apresentaram o desvio padrão do erro médio reduzido da validação cruzada mais próximo de um, independente do erro médio reduzido ser o menor ou não.

Foi possível aplicar o índice de seleção de interpoladores na escolha entre modelos determinísticos e estocásticos com os melhores semivariogramas para a krigagem e cokrigagem selecionados. Interpoladores que apresentaram uma combinação de menor erro médio e menor desvio padrão do erro médio geraram menor ISI, e foram considerados os melhores, tornando a escolha simplificada e menos subjetiva.

Em cinco dos oito casos estudados o melhor método de interpolação foi a krigagem. Entretanto, o índice aqui proposto possibilita a escolha do interpolador, mas não quantifica a diferença da ação de cada método analisado. Torna-se, então, necessário o estudo para avaliar as diferenças relativas da aplicação de um método para outro, com o objetivo de escolher, entre os melhores interpoladores apontados para um atributo, aquele que fosse menos oneroso ou mais vantajoso ao pesquisador.

REFERÊNCIAS

BAZZI, C. L.; SOUZA, E. G.; URIBE-OPAZO, M. A.; SANTOS, D. **Uso da validação cruzada na seleção de modelos de semivariogramas**. In: Congresso Brasileiro de Engenharia Agrícola, v. 38. 2009.

BONHAM, C. D.; REICH, R. M.; LEADER, K. K. Spatial cross correlation of Bouteloua gracilis with site factors. **Grassland Science**, v. 41, p. 196-201.1995.

CAMBARDELLA, C. A.; MOOMAN, T. B.; NOVAK, J. M.; PARKIN, T.B.; KARLEN, D. L.; TURV, R. F. & KONOPA, A. E. Field-scale variability of soil properties in central Iowa soil. Soil **Soil Science Society American Journal**, v.47, p. 1501-1511. 1994.

EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. **Manual de métodos de análise de solo**, 2 ed., Rio de Janeiro, 212p. 1997.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA EMBRAPA. Centro Nacional de Pesquisa de Solos. **Sistema brasileiro de classificação de solos**. Rio de Janeiro, 306 p. 2006.

ESRI. ArcGIS Desktop: Release 10. Redlands, CA: **Environmental Systems Research Institute**. 2011.

FARACO, M. A.; URIBE-OPAZO, M. A.; SILVA, E. A. A.; JOHANN, J. A.; BORSSOI, J. A. *Seleção de modelos* de *variabilidade espacial* para elaboração de mapas temáticos de propriedades físicas do solo e produtividade da soja. **Revista Brasileira de Ciência do Solo**, v. 32, p. 463-476. 2008.

GEONICS LIMITED.**EM38-MK2: Ground conductivity meter operating manual**. Mississauga, Ontario. 2009.

HU, L; BENTLER, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. **Structural Equation Modeling: A Multidisciplinary Journal**, v. 6, n. 1. 1999.

JABRO, J. D.; STEVENS, B. W.; EVANS, R. G. Spatial relationships among soil physical properties in a grass-alfalfa hay field. Soil Science. v. 171. n. 9. p. 719 - 727. 2006.

McBRATNEY, A. & WEBSTER, R. Choosing functions for semi-variograms os soil properties and fitting them to sample estimates. **Journal of Soil Science**, v. 37, p. 617-639. 1986.

QUARTEZANI, W. Z. ZIMBACK, C. R. L, LANDIM, P. M. B.; OLIVEIRA, R. B. Validação da estimativa por cokrigagem e krigagem para produtividade do café conilon. **Revista Energia na Agricultura**. Botucatu, vol. 26, n.1, p.113-125. 2011.

SANTOS, D.; SOUZA, E. G.; NÓBREGA, L. H. P.; BAZZI, C L.; GONÇAVES Jr, A. C. Variabilidade espacial de atributos físicos de um Latossolo Vermelho após cultivo de soja. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 16, n. 8, p. 843-848. 2012.

SOUZA, E. G.; BAZZI, C. L.; URIBE-OPAZO, M. A. **Thematic and profitability maps for precision agriculture**. In: 10th International Conference on Precision Agriculture, 2010, Denver. Proceedings of the 10th International Conference on Precision Agriculture, v. 1. 2010.

WANG, C. Y., E YAO, L. Q. Mapping an uncertainty zone between interpolated types of acategorical variable. **Computers & Geosciences**, v. 31, n. 7, p. 146–152. 2012.

WOLLENHAUPT. N. C.; WOLKOWSKI. R. P.; CLAYTON. M. K. Mapping soil test phosphorus and potassium for variable-rate fertilizer application. Journal of Production Agriculture, v. 7, p. 441-

448. 1994.

WOLLENHAUPT, N.C.; MULLA, D.J.; CRAWFORD, G. Soil sampling and interpolation techniques for mapping spatial variability of soil properties. In: Pierce, F.J., Sadler, E.J. (ed). **The state of site-specific management for agriculture**. Madison: ASA, CSSA, SSSA, p.19-53. 1997.

YAMAMOTO, J. K., MAO, X. M., KOIKE, K., CROSTA, A. P., LANDIM, P. M. B., HU, H. Z., ZONTA, J. H.; BRANDÃO, Z. N.; MEDEIROS; J. C.; SANA, R. S.; SOFIATTI; V. Variabilidade espacial da fertilidade do solo em área cultivada com algodoeiro no Cerrado do Brasil. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v.18, n. 6, p.595–602. 2014.

CONSTRUÇÃO E AVALIAÇÃO DE MAPAS TEMÁTICOS: ARTIGO 2 - ÍNDICES KAPPA E TAU ALTERNATIVOS

RESUMO: O índice de concordância Kappa de Cohen (K) é a estatística mais utilizada na comparação de mapas temáticos. Entretanto, seu uso com dados quantitativos apresenta o inconveniente de proporcionar variação de concordância com o uso de diferentes números de classes, adotados durante o processo de geração do mapa. Assim, este estudo propôs-se a estudar a influência nos índices de concordância K e Tau (T) quando se varia o número de classes da matriz de confusão em resultados oriundos de uma área de 15,5 ha, de LATOSSOLO VERMELHO Distroférrico típico, no município de Céu Azul - PR. Os atributos do solo foram interpolados com o inverso da distância, inverso do quadrado da distância, krigagem ordinária e cokrigagem. O estudo confirmou que tais estatísticas apresentam variações de concordância para diferentes números de classes. Assim, para resolver a situação, foram desenvolvidos os índices Kappa e Tau alternativos para comparação de mapas temáticos de dados quantitativos, utilizando-se o coeficiente de desvio relativo, o desvio absoluto médio dos dados interpolados, a média e o desvio padrão dos dados originais do atributo. O resultado mostrou-se como boa alternativa aos índices K e T, por ser independente do número de classes e ser de cálculo mais simples.

PALAVRAS–CHAVE: agricultura de precisão; coeficiente de desvio relativo; índice de comparação de erros.

CONSTRUCTION AND EVALUATION OF THEMATIC MAPS:

PAPER 2 - ALTERNATIVE KAPPA AND TAU INDICES

ABSTRACT: The Kappa Cohen (K) index is the most widely used statistics to compare thematic maps. However its use for the quantitative data has the disadvantage of providing variation in accordance with the use of different numbers of classes, adopted during the map generation process. So, this study evaluates the influence in K and Tau (T) agreement indices when there is a variation of classes number of confusion matrix concerning the results from a 15.5 ha area, with atypical Red Dystrophic soil in Céu Azul city in Paraná State, Brazil. The soil properties were interpolated with the inverse distance, inverse distance weighted, ordinary kriging and cokriging. The study confirms that these statistics show accordance variations for different numbers of classes. Thus, in order to solve this situation, alternative Kappa and Tau indices were developed to compare thematic maps of quantitative data, using the relative deviation coefficient, the averaged absolute deviation of interpolated data, average, and standard deviation of original data attribute. The result proved to be a good alternative to the K and T indices based on the error matrix to be independent of the number of classes and simpler to calculate.

KEYWORDS: precision agriculture; coefficient of relative deviation; index of interpolators selection.

INTRODUÇÃO

Mapas temáticos são frequentemente utilizados na espacialização de atributos, coberturas e tipos de solo, edificações rurais, ocupação de animais, entre outros (DALPOSSO et al., 2012; DA SILVEIRA et al., 2013). Estes mapas não são muito úteis sem informações de sua exatidão (NERY; OLIVEIRA; ABREU, 2013). Esses autores devem avaliar o sucesso do seu esforço de mapeamento e seus usuários precisam conhecer a qualidade do mapa para aumentar a confiança nas decisões (VIERA; GARRETT, 2005; ROSSITER, 2014).

Os mapas podem ser comparados para verificar qual possui maior índice de acerto (BASTIANI; URIBE-OPAZO; DALPOSSO et al., 2012), do índice de concordância entre mapas (NERY; OLIVEIRA; ABREU, 2013) ou qual mapa traz a melhor informação quando comparado com um mapa considerado como referência (COELHO et al., 2009; BASTIANI, URIBE-OPAZO e DALPOSSO, 2012; DALPOSSO et al., 2012; DALPOSSO et al., 2013).

Medições baseadas em matrizes de contingência como exatidão global (EG), Kappa(K), Tau(T), monitoração avançada da infraestrutura (*advanced metering infrastructure*, AMI) e lógica fuzzy (LF), podem ser utilizadas para avaliar a precisão de modelos de simulação espacial gerados por métodos quantitativos (COUTO, 2003). Os índices mais usados são K (COHEN, 1960; FOODY, 2004, 2011; BAZZI et al., 2008) e T (MA e REDMOND, 1995). Esses índices auxiliam na comparação de mapas gerados por modelos determinísticos ou estocásticos a partir de cálculos utilizando uma matriz de confusão (COHEN, 1960; BASTIANI, URIBE-OPAZO e DALPOSSO, 2012). Para mensurar a confiabilidade dos dados provenientes desses mapas utilizam-se métricas que consideram erros (ou discordâncias) ocorridos no processo de alocar os dados de cada ponto a uma faixa de classificação (VIEIRA, 2000), e, as métricas podem expressar concordâncias para classes individuais, para o mapa total ou ainda entre um mapa e outro (COUTO, 2003).

O índice Kappa é frequentemente utilizado quando as variáveis em estudo são qualitativas (FONSECA, SILVA e SILVA, 2007; CHEN e KRAUSS, 2004), utilizando o conceito de acordo/desacordo para expressar a reprodutibilidade dessas medidas (FLEISS, 1981; CONGER, 1980; DAVIES; FLEISS, 1982; DE MAST, 2007). O cálculo do Kappa considera a avaliação da precisão de toda a matriz de confusão, incluindo os elementos fora da diagonal principal que representam a discordância na classificação temática, e não apenas os dados de concordância real, o que é uma desvantagem do índice de exatidão global (CONGALTON, 1991;CONGALTON; GREEN, 2009). Autores como Sinha, Yimprayoon e Tiensuwan (2006) apontam características estatísticas indesejáveis que envolvem a probabilidade de acordo e desacordo, como a superestimação do grau de concordância por chance, por não considerarem qual proporção desse acordo é devido ao acaso (SMITH, 2000) e por também incluir a concordância real (FOODY,

1992, 2002). Em casos em que se exige distinguir vários tipos e fontes de desacordo ou quando a classificação é oriunda de dados de diferentes estudos ou populações, o índice K também não é confiável (VIERA e GARRET, 2005), mas pode ser tratado pelo K ponderado (COHEN, 1968), o qual permite atribuir diferentes pesos aos desacordos (FONSECA; SILVA; SILVA, 2007).

O valor máximo de K é 1 e ocorre quando existe um acordo total entre as classificações. Logo, quanto mais próximo de zero estiver, mais ele sugere que o acordo é exclusivamente devido ao acaso (FONSECA, SILVA e SILVA, 2007; COHEN, 1960). Valores negativos até o limite de -1 podem ocorrer e significam graus de acordo inferiores aos esperados pelo acaso, faixa em que Yimprayoon (2013) e Sinha, Yimprayoon e Tiensuwan (2006) sugerem correções na estatística de K.

As principais classificações de K conhecidas (Tabela 1, adaptada de GWET, 2012) são de Landis e Koch (1977), Fleiss (1981) e Altman (1991). As limitações da estatística K ocorrem em parte porque os valores dependem fortemente do que ocorre sobre as marginais da matriz de confusão e acontecem basicamente por três motivos (VON EYE e VON EYE, 2008; SINHA, YIMPRAYOON E TIENSUWAN, 2006; AGRESTI, 2007). A primeira é que K não pode se aproximar do seu valor máximo quando as distribuições não são uniformes; a segunda é que, quando as distribuições marginais diferem, diferentes valores de K são obtidos mesmo quando a associação entre duas classificações é constante e a última, é que o valor de K pode variar mesmo que o coeficiente de acordo bruto, baseado na diagonal principal, seja constante.

Landis e Koch (1977); Caon e Genú (2013)		Altma	an (1991)	Fleiss et al. (2003) Fleiss (1981)			
K	Classificação	K	Classificação	K	Classificação		
0,81 - 1,00	Excelente	0,81 - 1,00	Muito bom	0,75	Excelente		
0,61 - 0,80	Muito bom	0,61 - 0,80	Bom	0,40 - 0,75	Satisfatório a bom		
0,41 – 0,60	Bom	0,41 – 0,60	Moderado	< 0,40	Pobre		
0,21 - 0,40	Razoável	0,21 – 0,40	Razoável				
0,00 - 0,20	Ruim	< 0,20	Pobre				
< 0,00	Pobre						
onte: Adaptado de Gwet (2012).							

Tabela 1	Classifica	ção e desem	penho do í	índice Kapp	ba segundo	autores
		5				

19

Outro aspecto importante é que o índice K fornece somente uma estimativa sobre a similaridade entre dois mapas e deve ser apresentado em conjunto com o limite de confiança (THOMAS; ALLCOCK, 1984; JANSSEN; VAN DER WEL, 1994; STEHMAN; CZAPLEWSKI, 1998; FOODY, 2004). Cohen (1960) apresentou uma aproximação para o erro padrão, logo permite definir os intervalos de confiança dos valores de K bem como realizar testes de significância (STEHMAN, 1996; CONGALTON; GREEN, 1999; FONSECA; SILVA; SILVA, 2007). Para testar se existe diferença significativa entre os coeficientes K de dois pares de mapas, ao nível de 5 %, comparam-se os valores da estatística z (CONGALTON; GREEN, 1999; FOODY, 2004). O uso da abordagem de Cohen (1960) na avaliação da variância gera incertezas em casos em que a suposição de independência não está satisfeita (SOHN; REBELLO, 2002;FOODY, 2004).

Na busca para melhor explicar as relações de concordância da matriz de confusão, o índice Tau(T) foi proposto por Ma e Redmond (1995) em alternativa ao índice K. Autores como Brites et al. (1996) afirmaram que o T é mais fidedigno do que K por representar a exatidão dos processos de classificação com um bom balanceamento na consideração das concordâncias real e casual. Apesar de, inicialmente, o índice K ter sido definido para comparar classificações nominais, isto é, qualitativas, ele tem sido frequentemente utilizado para comparar classificações produzidas a partir de dados quantitativos, como em sensoriamento remoto. O problema é que o índice K (ou T) decresce com o aumento do número utilizado de classes (BRENNER; KLIEBSCH, 1996).

Outros índices utilizados na comparação de mapas temáticos são o coeficiente de desvio relativo - CDR (COELHO et al., 2006), o qual expressa a diferença média percentual, em módulo, dos valores interpolados em cada ponto considerando um deles como o mapa padrão, e a diferença absoluta média - DAM (GALLINCHAND; MARCOTTE, 1993; HE et al., 2010), que expressa a média das diferenças em cada ponto entre um mapa a ser avaliado e o padrão. Esses métodos não dependem do número de classes, mas da discordância pontual de um mapa ao outro. Suas determinações são mais simples do que a dos índices K e T, que necessitam inicialmente da discretização dos dados quantitativos em classes arbitrárias, depois,da criação da materiz de confusão e por fim a aplicação da matemática do seu cálculo. Portanto, o estudo de métodos de avaliação indireta de K e T, em função de índices como o CDR ou DAM, é de interesse, pois pode significar métodos mais simples de verificação de semelhança entre duas representações de um mesmo atributo distribuído espacialmente.

Neste contexto, o objetivo deste trabalho foi propor os índices Kappa e Tau alternativos para comparação de mapas temáticos de dados quantitativos.

MATERIAL E MÉTODOS

Nesta etapa, foram utilizados os dados de uma área de 15,5 ha no município de Céu Azul – Paraná, com centro geométrico nas coordenadas -53,832° E; -25,109° N, e altitude média 660 m, cultivada em sistema de plantio direto, após o cultivo de aveia de inverno. Um sistema de rotação de culturas praticado no local há mais de 10 anos em que nas safras de verão e préinverno é cultivada a cultura da soja ou do milho e na safra de inverno, cultiva-se o trigo ou aveia como cultura de cobertura.

O solo da área foi classificado como LATOSSOLO VERMELHO Distroférrico típico, conforme Embrapa (2006), com textura de argila entre 600 e 740 g kg⁻¹ de solo. Uma grade irregular foi construída para determinação de 40 locais de amostragem (Figura 1), usando pontos de referência que se distanciaram de 65 e 130 m, alternadamente, acompanhando o nível do terreno. A amostragem de solo, resistência do solo à penetração e a condutividade elétrica aparente do solo (CEAS) foram conduzidas no mês de outubro de 2011, 2012 e 2013, antes da época de semeadura de verão (soja).

A textura e elevação do terreno foram mensuradas em outubro de 2011. Oito subamostras aleatórias foram feitas em um raio de 3 metros (adaptado de WOLLENHAUPT; WOLKOWSKI; CLAYTON, 1994), a partir de pontos localizados por um GPS Trimble GeoExplorer XT 2005, duas por quadrante, alocando-se o valor da amostra composta ao centro do círculo.

FIGURA 1 Localização dos pontos de amostragem no município de Céu Azul - PR. Coordenadas em Graus.

As amostras de produtividade foram adquiridas através de um monitor de colheita AFS PRO 600, acoplado em uma colhedora Case IH, cuja média dos dados coletados no raio foi de 3 m ao redor dos pontos amostrais. As amostras de solo foram analisadas (EMBRAPA, 2009) quanto aos atributos texturais (argila, areia, silte) e químicos (AI, C, Ca, Cu, Fe, H+AI, K, Mg, Mn, P, pH, Zn). Medidas de condutividade elétrica foram obtidas utilizando-se condutivímetro Geonics EM38, rente ao solo, abrangendo-se a faixa de profundidade de 0-0,38 m. As medidas de elevação foram coletadas com o auxílio de estação total da marca Topcon, com recurso de leituras com utilização de prisma.

Selecionaram-se atributos que apresentaram dependência espacial pelo índice de autocorrelação espacial bivariada de Moran (LI; CALDER; CRESSIE, 2006) para validar a metodologia discutida neste trabalho. Também correlacionaram-se com mais algum outro atributo a ser utilizado como covariável, utilizando-se a matriz de correlação espacial (BONHAM, REICH e LEADER, 1995), calculada pelo software para definição e avaliação de unidades de manejo em agricultura de precisão - SDUM(BAZZI et al., 2013), com 5% de significância e com 999 iterações de cálculo, padrão do software. Como validação independente, foram utilizados os valores da variável V (Tabelas 2, 3, 4, 5 e 6 do Apêndice 2, ISAAKS; SRIVASTAVA, 1989).

O teor de potássio e o valor do pH (Tabelas7 e 8, Apêndice 2) foram utilizados como amostras locais na validação das equações de regressão porque o conhecimento do nível destes atributos numa atividade comercial de produção agrícola é de fundamental importância. Na definição das covariáveis utilizadas no processo de cokrigagem foram considerados os critérios de facilidade de obtenção, do custo da amostragem e da estabilidade temporal (SERRANO et al., 2012; QUARTEZANI et al., 2011, SUDDUTH et al., 2005), além de apresentar correlação espacial significativa com o atributo a ser estudado (VIEIRA, 2000, SANCHES et al., 2014; BOTTEGA et al., 2011, TARR et al., 2005). Os atributos foram analisados de forma descritiva e exploratória com o software Minitab 16 e Statistica 10.0 e os resultados apresentados no artigo 1.

Os atributos selecionados para análise foram argila (arg), manganês (Mn), cobre (Cu) e elevação do terreno (Elev), e a condutividade aparente do solo e a elevação do terreno foram adotadas como covariáveis. Os atributos Arg e Elev foram coletados somente em um ano por serem considerados estáveis durante os três anos do estudo. Cada atributo estudado foi interpolado pelo inverso da distância (ID), inverso do quadrado da distância (IQD), krigagem (KRI) e cokrigagem (COKRI). Foram convertidos para um grid de 5,5 m de resolução, para obter uma divisão da área de aproximadamente 100 colunas/linhas, padrão em alguns softwares.

Os mapas foram recortados de modo a selecionar somente os pontos interpolados pertencentes ao interior do contorno da área. Por se tratar de dados quantitativos convertidos para nominais, o comportamento das classificações geradas de duas a dez classes foi estudado para determinar o número de classes que usualmente possa ser utilizado na prática (MOLIN; SILVA JR., 2003).

A matriz de confusão para cada conjunto de interpoladores foi gerada para avaliação da similaridade entre mapas gerados por diferentes métodos de interpolação em que foram combinados todos entre todos, variando os números de classes de duas até dez. Para cada matriz de confusão calculou-se o coeficiente K (Equação 1) e seu desvio padrão (Equação 2), considerando-se como amplitude total dos dados a diferença entre o maior e o menor valor dos dados originais de cada atributo, antes da interpolação (ROSSITER, 2014; CAON e GENÚ, 2013, FOODY, 2004; COUTO, 2003; CONGALTON, 1991; COHEN, 1960). A qualidade da concordância do índice K foi classificada de acordo com Landis e Koch (1977) e Caon e Genú (2013).

$$K = \frac{N\sum_{i=1}^{r} x_{ii} - \sum_{i=1}^{r} (x_{i+} x_{+i})}{N^2 - \sum_{i=1}^{r} (x_{i+} x_{+i})}$$
(1)

em que:

 x_{ii} é o valor na linha i e coluna i; x_{i+} é a soma da linha i e x_{+i} é a soma da coluna i da matriz de confusão; N é o número total de pontos interpolados e classificados pela matriz; r é o número de classes da matriz de confusão.
As variâncias do índice K foram calculadas pela Equação 2:

$$\sigma^{2}_{(k)} = \frac{P_{o}(1-P_{o})}{N(1-P_{c})^{2}}$$
⁽²⁾

em que:

 $\sigma^2_{(k)}$ é a variância do índice K; P_o é a proporção de observações corretamente classificadas ou exatidão global, expresso por $P_o = \frac{\sum_{i=1}^r x_{ii}}{N}$; P_c é a proporção esperada de acerto ao acaso, expresso por $P_c = \frac{\sum_{i=1}^r x_{i+}x_{+i}}{N^2}$; N é o número de pontos interpolados e classificados na matriz de confusão.

Assim, utilizou-se a Equação 3 para determinar o intervalo de 95 % de confiança para K, (BASTIANI; URIBE-OPAZO; DALPOSSO, 2012):

$$IC[K, (1-\alpha)\%] = \widehat{K} \pm Z_{\alpha/2} \sqrt{\sigma^2(\widehat{K})}$$
(3)

Calculou-se também o índice Tau - T (Equação 4, MA; REDMOND, 1995), por seu uso terse tornado frequente (JIANG, 2011; DALPOSSO et al., 2012; COUTO, 2003) e ser especialmente adequado para a avaliação dos mapas de solos feitos por classificadores automáticos (ROSSITER, 2014).

$$T = \frac{(P_o - P_r)}{(1 - P_r)}$$
(4)

em que:

 P_r é a concordância esperada devido ao número de r de classes, expressa por $P_r = \frac{1}{r}$.

Outros dois índices foram calculados: o índice coeficiente de desvio relativo – CDR (Equação 5, COELHO et al., 2009) e o índice de diferença absoluta média – DAM (GALLICHAND; MARCOTTE, 1993; HE et al., 2010). O CDR expressa a diferença média (%) em módulo dos valores interpolados em um mapa temático quando comparado com um mapa assumido como referência.

$$CDR = \sum_{i=1}^{N} \left| \frac{\hat{Z}_{i} - \hat{Z}_{i}^{*}}{\hat{Z}_{i}^{*}} \right| \frac{100}{N}$$
(3)

em que:

(E)

N é número de pontos interpolados; \hat{Z}_i^* é o valor estimado no mapa padrão no ponto i; \hat{Z}_i é o valor do mapa comparado no ponto i.

Na comparação entre dois conjuntos de dados, o DAM apresenta a diferença absoluta média na mesma unidade dos dados estudados, determinado pela Equação 6:

$$DAM = \frac{\sum_{i=1}^{N} |\hat{z}_i - \hat{z}_i^*|}{N}$$
(6)

O software Statistica 12.0 (STATSOFT, 2014) foi usado na análise de regressão para modelar os índices K e T em função da média (\bar{X}) e desvio padrão (s) dos dados de campo, do CDR e do DAM. O método de regressão utilizado foi o de "melhores subconjuntos" (*best subsets*). Foi usado o coeficiente de determinação ajustado (*adjusted* R²) e a estatística Cp de Mallows (MALLOWS; 1973, FATTAHI; RAVANDI; TAHERI, 2010; LORESTANI, 2013) como critérios de seleção do melhor modelo entre todos os possíveis subconjuntos (MONTGOMERY;PECK; VINING, 2012). Os valores dos coeficientes R² e R² ajustado variam de zero a um, em que um indica melhor ajuste entre a curva sugerida e os valores reais do atributo. O valor da estatística de Mallows deve estar o mais próximo do número de suportes até no máximo o dobro desse valor (MALLOWS, 1973).

Após análise exploratória, decidiu-se por um modelo (Equação 7) assumindo que a variável dependente, K ou T, é influenciada não somente pelo CDR como também pelo DAM, pela média e desvio padrão do atributo estudado.

 $Y = a + b. CDR + c. \overline{X} + d. s_x + e. DAM + f. CDR. \overline{X} + g. CDR. s_x + h. CDR. DAM + i. \overline{X}. d. s_x + j. \overline{X}. DAM + k. s_x. DAM + l. CDR. \overline{X}. s_x + m. CDR. \overline{X}. DAM + n. CDR. s_x. DAM + o. DAM. s_x. \overline{X}. + \varepsilon$ (7)

em que:

Y é a variável dependente; \overline{X} é a Média do atributo estudado; s_x é o desvio padrão do atributo, a, b, c, ...,n; o são os parâmetros do modelo estimados pelo programa statsoft (2014); e, ε é o erro aleatório.

RESULTADOS E DISCUSSÃO

Os atributos que mais se correlacionaram significativamente pelo índice global de Moran entre si (Tabela 2) foram a condutividade elétrica aparente do solo (CEAS), a medida no ano de 2011 (CEAS 2011) com a argila (Arg) e Mn, medidos no ano de 2011 (Mn 2011), CEAS 2012 com Mn 2012, CEAS 2013 com Mn 2013, elevação do terreno (Elev) com cobre, medida no ano de 2011 (Cu 11), Cu 2012 e Cu 2013. Os atributos condutividade elétrica e Elev foram escolhidos como covariável por serem considerados atributos de fácil aquisição com alta densidade de amostragem (se necessário), sem aumentar proporcionalmente o custo de levantamento de dados (BOTTEGA, 2011; SILVA et al., 2008; TARR et al., 2005).

Autores como Bazzi et al. (2008) demonstraram que a densidade de coleta de dados de produtividade influência diretamente na precisão dos mapas desse atributo e Bottega et al., (2011), consideraram o uso de uma covariável como uma possibilidade para reduzir custos de amostragem de outros atributos de interesse. Vários autores (CORWIN; LESCH, 2005; MCBRATNEY et al., 2005; SPANGENBERG, 2005; MORAL et al., 2008; LÜCK; RÜHLMANNE et al., 2010; COSTA et al., 2014) também apresentaram estudos indicando correlação entre CEAS e a textura do solo, enquanto outros autores (AIMRUN et al., 2007; RORARI et al., 2009; VALENTE et al., 2012), sob determinadas condições, não encontraram correlação significativa. A correlação significativa da CEAS com o Mn também foi observada por autores como Valente et al. (2012) e Costa et al. (2014). Esses últimos ressaltaram que solos com maiores umidades apresentam maior correlação da CEAS com as propriedades do solo.

	Ara	CEAS	Cu11	Cu12	Cu13	Elev	Mn11	Mn12	Mn13
Mn13	-0,110*	0,054	na	na	0,045	-0,061*	na	na	0,058*
Mn12	-0,107*	-0,081*	na	0,070*	Na	-0,101*	na	0,099*	
Mn11	-0,120*	-0,080*	0,070*	na	Na	-0,050*	0,116*		
Elev	0,085*	0,154*	-0,100*	-0,124*	-0,114*	0,183*			
Cu13	-0,099*	-0,030	na	na	0,053*				
Cu12	-0,076*	-0,086*	Na	0,050*					
Cu11	-0,080*	-0,107*	0,097*						
CEAS	0,092*	0,147*							
Arg	0,105*								

Tabela 2 Matriz com o índice de correlação de Moran global dos atributos que apresentaram correlação significativa em três anos consecutivos

Legenda: Arg – Argila; CEAS - Condutividade elétrica aparente do solo; Cu11, Cu12 e Cu13 – teores de cobre coletados em 2011, 2012 e 2013, respectivamente; Elev – elevação do terreno; Mn11, Mn12 e Mn13 – teores de manganês coletados em 2011, 2012 e 2013, respectivamente; * - significativo ao nível de 5%; na – mesmo atributo, ano de avaliação diferente: não avaliado.

A análise descritiva dos atributos considerados (Tabela 3) mostra que as médias foram próximas das medianas, sugerindo a inexistência de pontos discrepantes. Os teores de cobre e

manganês, medidos em 2011, apresentaram coeficientes de variação (CV) classificados como alto (20 < CV ≤ 30%) (PIMENTEL-GOMES; GARCIA, 2002). O restante das medidas apresentou CV baixo ou médio. As médias de Cu e Mn mostraram diminuição nos teores no ano de 2013.

Atributo	Ano	Mín	Média	Med	Máx	DP	CV
Argila (Arg, g kg ⁻¹)	2013	600,0	678,8	680,0	740,0	35,6	5,2 % ^b
Cobre	2011	7,9	10,1	9,4	15,6	1,8	18,3 % ^m
(O	2012	7,9	11,5	10,9	17,1	2,2	19,2 % ^m
(Cu, mg am ^s)	2013	4,3	7,2	7,1	11,1	1,6	22,7 % ^a
Manganês	2011	105,0	165,7	165,5	229,0	30,4	18,3 % ^m
	2012	72,0	114,6	115,5	152,0	21,7	18,9 % ^m
(Mn, mg am s)	2013	66,0	94,9	90,0	143,0	21,2	22,4 % ^a
Elevação (Elev,	2013	651,3	663,6	662,3	676,4	7,0	1,1 % ^b
Condutividade	2011	205,0	233,2	233,0	256,0	13,3	5,7 % ^b
Aparente do solo	2012	232,0	257,6	256,0	290,0	13,3	5,2 % ^b
(CEAS, mS)	2013	200,0	254,3	255,0	291,0	20,7	8,1 % ^b

Tabela 3 Análise descritiva dos atributos com correlação global de Moram significativa por três anos consecutivos

N – nº de amostras; Mín – Mínimo; Med – Mediana; Máx – Máximo; DP – desvio padrão; CV – coeficiente de variação: b – baixo, m – médio, a – alto, classificado de acordo com Pimentel-Gomes e Garcia (2002).

No caso de mapas temáticos de dados quantitativos, faz-se inicialmente a interpolação dos dados de campo em busca de maior detalhamento dos atributos estudados para posterior geração do mapa. Os interpoladores mais utilizados são o inverso da distância (ID), inverso do quadrado da distância (IQD) e krigagem ordinária (KRI) e cokrigagem (COKRI), porém, geralmente, IQD e KRI são os mais vantajosos (MELLO et al., 2003; SOUZA et al., 2010; PARK e JANG, 2014).

Neste trabalho, todas as combinações possíveis foram abordadas entre os métodos ID, IQD, KRI e COKRI, a fim de determinar a matriz de confusão para cada par de interpoladores, considerando de duas até dez classes, igualmente distribuídas. A Figura 2 apresenta a distribuição para o par comparado IQD x KRI.

O índice Kappa de Cohen foi utilizado para comparação das combinações entre distribuições geradas pelos interpoladores. O número de classes interferiu significativamente no índice K em todos os casos analisados, o mesmo observado por De Mast (2007) e Warrens (2010). Um número reduzido de classes e, portanto, de maior amplitude em uma única classe, permite que sejam obtidos maiores valores de K por diminuir a probabilidade do erro ao acaso (BRENNER; KLIEBSCH, 1996) e sempre que uma classificação se faz necessária o processo pode acarretar enviesamentos (FONSECA; SILVA; SILVA; 2007).

FIGURA 2 Índice Kappa e intervalo de 95% de confiança dos métodos de interpolação IQD e KRI, para número de classes variando de dois até dez.
 Legenda: e – concordância excelente; mb – muito bom; b – bom (LANDIS e KOCH, 1977).

De modo geral, a concordância de IQD com KRI foi classificada como muito boa, ou excelente (segundo LANDIS e KOCH, 1977). Dependendo do atributo (Cu 2012, Mn 2013), a diminuição da concordância (K) com um número maior de classes é mais aparente. Aqui está a principal vantagem do uso do K equivalente (calculado a partir do CDR) ao invés do K, por se dispensar o uso da matriz de confusão e a possibilidade de múltiplas classificações.

Na faixa de quatro a seis classes, verificou-se a tendência à estabilização do potássio (K⁺⁺). Optou-se então por trabalhar com cinco classes, por pertencer ao referido intervalo e também por ser comumente utilizada (GALVÃO, FORMAGGIO e TISOT, 2005; TARR et al., 2005; BAZZI et al., 2008; SPEZIA et al., 2012).

O índice T apresentou comportamento similar em função do número de classes (variando de duas até dez). Isto já era esperado devido à estreita correlação entre os índices K e T (Figura 3), apresentando um coeficiente de correlação linear positiva (R² = 0,96). A diferença de K com T diminui à medida que os valores de K aumentam, pois diferente do potássio, o índice T utiliza em sua formulação as probabilidades iniciais de cada classe (DALPOSSO ET AL., 2012; ROSSITER, 2014), o que explica variações maiores entre K e T para índices menores de concordância.

FIGURA 3 Relação linear existente entre os índices Tau e Kappa para 5 classes dos dados interpolados na comparação dos métodos de interpolação inverso da distância, inverso do quadrado da distância, krigagem e cokrigagem, dois a dois, entre si.

Em média, os índices K (Tabela 4) foram classificados como muito bons (0,60< K <0,80) exceto entre krigagem e cokrigagem que foi excelente. Enquanto os valores de K e T apresentamse em faixas próximas à média e, proporcionalmente, os coeficientes CDR e DAM não seguem o mesmo padrão.

		Atribut	0							
INT	Estatística	Arg	Cu11	Cu12	Cu13	Elev	Mn11	Mn12	Mn13	Média
П	K	0,67 ^{mb}	0,62 ^{mb}	0,7 ^{mb}	0,71 ^{mb}	0,77 ^{mb}	0,66 ^{mb}	0,65 ^{mb}	0,54 ^b	0,67 ^{mb}
ID V	Т	0,72	0,71	0,76	0,77	0,78	0,71	0,69	0,60	0,72
ÎQD	CDR	0,95%	2,90%	3,51%	4,04%	0,14%	3,81%	3,79%	5,00%	3,02%
	DAM	6,38 ¹	0,31 ²	0,40 ²	0,28 ²	0,96 ³	6,03 ²	4,13 ²	4,66 ²	-
	K	0,85 ^e	0,53 ^b	0,82 ^e	0,8 ^{mb}	0,6 ^b	0,55 ^b	0,69 ^{mb}	0,80 ^{mb}	0,71 ^{mb}
ID Y	Т	0,89	0,63	0,86	0,84	0,60	0,60	0,73	0,84	0,75
KRI	CDR	0,44%	4,00%	1,65%	2,49%	0,24%	5,29%	3,54%	2,37%	2,50%
	DAM	2,96 ¹	0,42 ²	0,19 ²	0,17 ²	1,60 ³	8,37 ²	3,95 ²	2,17 ²	NC
	K	0,73 ^{mb}	0,5 ^b	0,6 ^b	0,64 ^{mb}	0,54 ^b	0,65 ^{mb}	0,56 ^b	0,72 ^{mb}	0,62 ^{mb}
ID V	Т	0,79	0,61	0,67	0,70	0,54	0,70	0,60	0,77	0,67
COKRI	CDR	0,65%	4,53%	5,14%	5,79%	0,28%	3,99%	5,19%	3,25%	3,60%
	DAM	4,41 ¹	0,47 ²	0,57 ²	0,38 ²	1,88 ³	6,35 ²	5,69 ²	3,00 ²	NC
	K	0,72 ^{mb}	0,79 ^{mb}	0,67 ^{mb}	0,77 ^{mb}	0,81 ^e	0,82 ^e	0,82 ^e	0,63 ^{mb}	0,75 ^{mb}
IQD V	Т	0,77	0,83	0,73	0,81	0,81	0,84	0,83	0,68	0,79
KRI	CDR	0,80%	1,75%	4,11%	2,95%	0,11%	2,27%	2,13%	4,25%	2,30%
	DAM	5,40 ¹	0,18 ²	0,46 ²	0,21 ²	0,74 ³	3,65 ²	2,37 ²	4,12 ²	NC
100	K	0,59 ^b	0,75 ^{mb}	0,83 ^e	0,83 ^e	0,74 ^{mb}	0,85 ^e	0,82 ^e	0,75 ^{mb}	0,77 ^{mb}
IQD X	Т	0,65	0,80	0,85	0,85	0,75	0,87	0,83	0,78	0,80
COKRI	CDR	1,17 %	2,21 %	2,34 %	2,65 %	0,15 %	2,04 %	2,28 %	2,85 %	1,96 %
	DAM	7,88 ¹	0,22 ²	0,26 ²	0,18 ²	1,00 ^m	3,30 ²	2,56 ²	2,73 ²	NC
	K	0,76 ^{mb}	0,94 ^e	0,6 ^b	0,77 ^{mb}	0,94 ^e	0,87 ^e	0,86 ^e	0,82 ^e	0,82 ^e
KRI X	Т	0,81	0,96	0,67	0,81	0,94	0,88	0,87	0,85	0,85
COKRI	CDR	0,52 %	0,64 %	5,39 %	3,76 %	0,04 %	1,49 %	1,73 %	2,20 %	1,97 %
	DAM	3,50 ¹	0,06 ²	0,60 ²	0,25 ²	0,29 ³	2,41 ²	1,89 ²	2,12 ²	NC

Tabela 4 Valores de Kappa, Tau, CDR e DAM para cada atributo em função de cada par de interpoladores para cinco classes.

Legenda: (I) INT – par de interpoladores comparados na matriz de confusão; ID x IQD - inverso da distância x inverso do quadrado da distância; ID x KRI - inverso da distância x krigagem;ID x COKRI - inverso da distância x cokrigagem; IQD x KRI - inverso do quadrado da distância x krigagem;IQD x COKRI - inverso do quadrado da distância x krigagem;IQD x COKRI - inverso do quadrado da distância x cokrigagem; KRI x COKRI - krigagem x cokrigagem. Classificação do Kappa segundo Landis e Koch (1977): e - excelente; mb - muito bom, b - bom; r - ruim. (1) g kg-1; (2) - mg/dm³; (3) – m; NC – Não calculado (unidades diferentes).

Como o K (e T) é proporcional ao nível de concordância entre mapas e o CDR (e o DAM) é inversamente proporcional, verificou-se comportamento inverso de um contra o outro (Figura 4), como já era esperado. Entretanto, a correlação entre K e CDR foi também influenciada pela média (\bar{X}) e desvio padrão(s) do atributo estudado.

FIGURA 4 Comportamento da relação K x CDR, para cinco classes, por atributo estudado: argila (Arg), Cobre 2011 (Cu11), Cobre 2012 (Cu12), Cobre 2013 (Cu13), elevação (Elev), Manganês 2011 (Mn11), Manganês 2012 (Mn12) e Manganês 2013 (Mn13).

Os índices K e T alternativos foram encontrados utilizando-se modelos de regressão com as variáveis CDR e DAM dos dados interpolados além da média e do desvio padrão dos teores dos atributos coletados em campo (Tabela 6). Os melhores modelos foram encontrados utilizando-se o método de regressão "melhores subconjuntos" (*best subsets*), sendo que os mesmos modelos foram selecionados pelo coeficiente de determinação ajustado (*adjusted* R²) ou pelo Cp de Mallows (FATTAHI; RAVANDI; TAHERI, 2010).

O R^2 para K variou de 0,79 (cinco suportes) a 0,95 (nove ou dez suportes) e para T, de 0,72 (cinco suportes) a 0,97 (nove ou dez suportes), que podem ser considerados bons (COLET et al., 2007). Somente modelos acima de cinco suportes foram reportados por possibilitarem R^2 maior que 0,7.

Além dos melhores modelos para cada número de suportes (Tabela 6), foi incluído o modelo para cinco suportes que não apresentava produto entre variáveis independentes visando analisar a influência de cada variável. Enquanto o *desvio padrão* propiciou influência direta na variável dependente (K ou T), o CDR, DAM e a média do teor do atributo propiciaram influência inversa.

С	R²	R²aj	Ср	NS	I	CDR	\bar{X}	S	DAM	CDR. \overline{X}	CDR. DAM	$ar{X}$. Dam	s. DAM	CDR. $ar{X}.$ s	CDR. \overline{X} .dam	CDR.s .DAM	\overline{X} .s .DAM	CDR. \overline{X} .s.DA M
	0,952	0,941	5,9	10	0,9483	-5,98E- 02	3,87E-05		-4,57	4,46E-02	-0,02,69	-2,22E- 04	2,08E-01	-2,01E- 03		1,06E-03		
	0,951	0,941	4,9	9	0,9601	-6,33E- 02	-4,48E+00		0,04,37	-2,60E- 02		-2,10E- 04	2,03E-01	-1,97E- 03		1,03E-03		
~	0,939	0,928	11,2	8	0,9736	-6,40E- 02			-4,90	4,65E-02			2,24E-01	-2,13E- 03			-8,26E- 06	8,64E-07
К	0,931 *	0,921	14,9	7	0,9738	-7,09E- 02			-3,19	3,06E-02		-2,01E- 04	1,39E-01	-1,32E- 03				
	0,835	0,816	80,6	6	0,9511	-7,14E- 02		2,66E-03				-3,81E- 04					8,19E-06	4,11E-07
	0,790	0,682	5,0	5	0,9148	-5,88E- 02	-2,94E-04	6,61E-03	-0,0335									
	0,968	0,961	7,4	10	0,9719	-5,02E- 02	7,97E-06		-3,46	3,32E-02	-0,01,22	-1,88E- 04	1,58E-01	-1,52E- 03		5,02E-04		
	0,965	0,958	8,9	9	0,9832	-5,77E- 02			-3,12	3,00E-02		-2,03E- 04	1,40E-01	-1,34E- 03	-6,36E- 05			2,47E-06
т	0,963	0,956	9,5	8	0,9901	-5,75E- 02			-3,01	2,87E-02		-1,95E- 04	1,36E-01	-1,30E- 03				5,37E-07
•	0,958 *	0,952	12,2	7	0,0082	2,53E-03			0,2,18	2,15E-03		8,49E-06	8,47E-03	8,31E-05				
	0,891	0,878	85,0	6	0,9683	-5,95E- 02		1,88E-03				-4,01E- 04					9,26E-06	2,74E-07
	0,720	0,694	5,0	5	0,9214	-4,65E- 02	-2,69E-04	6,59E-03	-3,49E-02									

Tabela 5 Índices de ajuste e coeficientes de regressão para Kappa e Tau, de acordo com os efeitos considerados

Legenda: C – Coeficiente; R² aj – Coeficiente R² ajustado; Cp – Cp de Malows; NS – número de suportes; I – Intercepto: constante da regressão; * - Modelo mais simples considerado satisfatório; CDR – Coeficiente de desvio relativo; X – média original do atributo; s –Desvio padrão amostral original do atributo; DAM – Desvio absoluto médio.

Os coeficientes $R^2_{ajustado}$ apresentaram valores acima de 0,9, com sete suportes e acima. Esse dado pode ser considerado, para aplicações agrícolas, como excelente resultado (NAU, 2014). Os modelos escolhidos para o índice K alternativo (\hat{K}) e T alternativo (\hat{T}) tiveram sete suportes por serem os modelos que melhor se ajustaram com menos suportes apresentando o coeficiente R^2 ajustado acima de 0,90.

$$\hat{K} = 0,97381 - 0,07091 CDR - 3,19307 DAM +$$

$$0,03056 CDR.\bar{X} - 0,0002 \bar{X}.DAM + 0,13886.s.DAM - 0,00132 CDR.\bar{X}.s$$

$$\hat{T} = 0,97855 - 0,05404CDR - 2,79658DAM + 0,02650CDR,\bar{X} - 0,00018 \bar{X},DAM +$$
(8)

 $0,12499 \ s. DAM - 0,00118 \ CDR. \overline{X}. s$ (9)

Tomou-se o atributo argila (\bar{X} =678,8 kg kg⁻¹; s_x=35,6 kg kg⁻¹; CDR = 0,8 %; DAM = 5,4 kg kg⁻¹) a fim de exemplificar a aplicação dessas equações e compararam-se os métodos IQD com KRI (para 5 classes) e obteve-se \hat{K} = 0,71 e K = 0,72. Considerando o intervalo de 95% confiança (IC_{95%}, 0,71; 0,74), os dois índices se mostraram idênticos. Isso indica que a comparação de um mapa com outro pode ser avaliada pela média (\bar{X}) e o desvio padrão (s) dos dados originais e o CDR e DAM dos mapas interpolados, possibilitando o uso da classificação de Landis e Koch (1977). Seguindo o mesmo raciocínio para o índice T, rejeitou-se a hipótese de que o coeficiente \hat{T} = 0,78, seja diferente do valor medido de T = 0,77.

CONCLUSÕES

Os índices Kappa e Tau alternativos, propostos neste trabalho, mostraram-se como boa alternativa às métricas Kappa e Tau originais, baseadas na matriz de confusão, por serem independentes do número de classes e de cálculo mais simples. O resultado matemático obtido foi considerado excelente por apresentar R² maior que 0,92 para os modelos com sete ou mais suportes.

Na avaliação dos mapas temáticos gerados para os atributos argila, cobre, manganês e elevação do terreno, interpolados pelo inverso da distância, inverso do quadrado da distância, krigagem ordinária e cokrigagem, verificou-se concordância muito boa entre os métodos obtendo ainda classificação excelente para a comparação krigagem e cokrigagem.

REFERÊNCIAS

AGRESTI, A. An introduction to categorical data analysis. **Wiley- Interscience**, New York, 2 ed. 2007.

ALTMAN, D. G. Practical Statistics for Medical Research. Chapman & Hal, London. 1991.

BASTIANI, F. de; URIBE-OPAZO, M. A.; DALPOSSO, G. H. Comparison of maps of spatial variability of soil resistance to penetration constructed with and without covariables using a spatial linear model. **Engenharia Agrícola** [online], v. 32, n. 2. 2012.

BAZZI, C. L.; SOUZA, E. G.; URIBE-OPAZO, NOBREGA, L. H. P. Influência da distância entre passadas de colhedora equipada com monitor de colheita na precisão dos mapas de produtividade na cultura do milho. **Engenharia Agrícola.** Jaboticabal, v. 28, n. 2, p. 355-363. 2008.

BAZZI, C. L.; SOUZA, E. G.; OPAZZO, M. O.; NOBREGA, L. H. P.; ROCHA, D. M. Management zones definition using soil chemical and physical attributes in a soybean area. **Engenharia Agrícola**, Jaboticabal, v. 34, n.5, p. 952-964. 2013.

BONHAM, C. D.; REICH, R. M.; LEADER, K. K. Spatial cross correlation of Boutelou a gracilis with site factors. **Grassland Science**, v. 41, p. 196-201. 1995.

BOTTEGA, E. L.; SILVA, S. A.; COSTA, M. M.; BOTTEGA, S. P. Cokrigagem na estimativa dos teores de Ca e Mg em um Latossolo Vermelho distroférrico. **Revista Ciência Agronômica**, v. 42, n. 4, p. 821-828. 2011.

BRENNER, H.; KLIEBSCH, U. Dependence of weighted Kappa coefficients on the number of categories. **Epidemiology**, v. 7, p. 199–202. 1996.

CAMPOS, S.; GRANATO, M.; SOARES, M. C. E. S.; CAVASINI, R.; ARAÚJO, D. M.; MASHIKI M. Y. RUGGIERO, J.; PIZA, M. W. de T. Geoprocessamento aplicado na espacialização das áreas de preservação permanente e áreas de conflitos na sub-bacia Ribeirão Hortelã. **Revista científica eletrônica de Agronomia**, v. 17,n. 2,p. 59-69. 2010.

CAON, D.; GENU, A. M. Mapeamento de atributos químicos em diferentes densidades amostrais e influência na adubação e calagem. **Revista brasileira de engenharia agrícola e ambiental** [online],v. 17,n. 6,p. 629-639. 2013.

COELHO, E. C.; SOUZA, E. G.; URIBE-OPAZO, M. A. ; PINHEIRO NETO, R. Influência da densidade amostral e do tipo de interpolador na elaboração de mapas temáticos. Acta Scientiarum (UEM), v. 31, p. 165-174. 2009.

COHEN J. A coefficient of agreement for nominal scales. **Educational and Psychological Measurement**, v. 20, p.37-46.1960.

COLET, M. J.; WEIRICH NETO, P. H.; GARBUIO, P. W.; SCHIMANDEIRO, A. Processo de semeadura e o rendimento do milho na região dos Campos Gerais do Paraná. **Ciência Rural**, v. 37, n. 4, p. 994-999. 2007.

CONGALTON, R. G. A review of assessing the accuracy of classifications of remotely sensed data. **Remote Sensing of Environment**, v. 37, n. 1, p. 35-46.1991.

CONGALTON, R. G.; GREEN, K. Assessing the accuracy of remotely sensed data: Principles and practices (Mapping Science), New York: CRC Press, 2. ed., 183 p. 2009.

CORWIN, D. L.;LESCH S. M. Characterizing soil spatial variability with apparent soil electrical conductivity I. Survey protocols. **Computers and Electronics in Agriculture**, Elsevier, v. 46, p. 103–133. 2005.

COSTA, M. M.; QUEIROZ, D. M.; PINTO, F. A. C.; REIS; E. F.; TERRA, N. S. *Moisture content effect in the relationship between apparent electrical conductivity and soil attributes*. Acta Scientiarum. Agronomy[online], v. 36, n. 4, p. 395-401. 2014.

COUTO, P. Assessing the accuracy of spatial simulation models. **Ecological Modeling,** n. 167, p. 181–198. 2003.

CRESSIE, N. Statistics for spatial data, Wiley Interscience, 928 p. 1993.

DA SILVEIRA, G. R. P.; CAMPOS, S.; GARCIA, Y. M.; SILVA, H. A. S.; DE CAMPOS, M.; NARDINI, R. C.; FELIPE, A. C. Geoprocessamento aplicado na espacialização da capacidade de uso do solo para fins de planejamento conservacionista da micro-bacia do Córrego São Caetano-Botucatu (SP). **Comunicata Scientiae**, v. 4, n. 4, p. 330-336. 2013.

DE MAST, J. Agreement and Kappa-type indices. American Statistician, n. 61, p.148–153. 2007.

DALPOSSO, G. H.; URIBE-OPAZO, M. A.; MERCANTE, E.; JOHANN, J. A.; BORSSOI, J. A. *Comparison measures of maps generated by geostatistical methods.* **Engenharia Agrícola** [online], v. 32, n. 1, p. 174-183. 2012.

DALPOSSO, G. H.; URIBE-OPAZO, M. A.; MERCANTE, E.; LAMPARELLI, R. A. C. Spatial autocorrelation of NDVI and GVI indices derived from LANDSAT/TM images for soybean crops in the western of the state of Paraná in 2004/2005 crop season. Engenharia Agrícola [online], v. 33, n. 3, p. 525-537. 2013.

EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Manual de métodos de análise de solo, plantas e fertilizantes. Editor técnico Fábio Cesar da Silva. Brasília, DF, 2 ed. rev. ampl., 627 p. 2009.

EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Serviço Nacional de Levantamento e Conservação de Solos. **Sistema Brasileiro de classificação de solos**. Rio de Janeiro: EMBRAPA-SPI. 2006,

FATTAHI, S.; RAVANDI, S. A. H.; TAHERI, S. M. Cotton yarn engineering using robust regression and criteria of mallow's cp. **Fibers and Polymers**, n.11, p. 1075-1082. 2010.

FLEISS, J. Statistical methods for rates and proportions. 2 ed., New York: John Wiley and sons. 1981.

FONSECA, R; SILVA, P; SILVA, R. Acordo inter-juízes: O caso do coeficiente Kappa. **Revista** Laboratório de Psicologia - Instituto Universitário. Portugal, v. 5, n. 1, p. 81-90. 2007.

FOODY, G. M. Assessing the accuracy of land cover change with imperfect ground reference data. **Remote Sensing of Environment**, v. 114, n. 10, p.2271-2285. 2010.

FOODY, G. M. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. **Remote Sensing of Environment**, v. 113, N. 8, p.1658-1663. 2009.

FOODY, G. M. Impacts of imperfect reference data on the apparent accuracy of species presence-absence models and their predictions. **Global Ecology and Biogeography**, v. 20, n. 3,

p.498-508. 2011.

FOODY, G. M. On the compensation for chance agreement in image classification accuracy assessment. **Photogrametric Engineering and Remote Sensing**, v. 58, n. 10, p. 1459-1460. 1992.

FOODY, G. M. Status of land cover classification accuracy assessment. **Remote Sensing of Environment**, v. 80, p. 185–201. 2002.

FOODY, G. M. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. **Photogrammetric engineering and remote sensing**, v. 70, n. 5, p. 627–633. 2004.

GALLICHAND, J.; MARCOTTE, D. Mapping clay content for subsurface drainage in the Nile Delta. **Geoderma - Elsevier Science Publishers**, n. 58, p 165-179. 1993.

GALVÃO, L. S.; FORMAGGIO, A. R.; TISOT, D. A. Discriminação de variedades de cana-deaçúcar com dados hiperespectrais do sensor hyperion/EO-1. **Revista Brasileira de Cartografia**, v. 1, n. 57, p. 7-14. 2005.

GOMES, P. F. Curso de estatística experimental. 15 ed., Piracicaba: De Gaspari, 451 p. 2009.

GWET, K. L. Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement Among Multiple Raters. Advanced Analytics Press, 3 ed. 2012.

JANSSEN, L. L. F.; VAN DER WEL, F. J. M. Accuracy assessment of satellite derived land-cover data: A review. **Photogrammetric Engineering & Remote Sensing**, n. 60, p. 419–426. 1994.

HE, Y.; HU, K. L.; CHEN, D. L.; SUTER; H. C.; LI, Y.; LI, B. G.; YUAN, X.Y.; HUANG, Y.F. Three dimensional spatial distribution modeling of soil texture under agricultural systems using a sequence indicator simulation algorithm. **Computers and Electronics in Agriculture,** n. 71, p. 24–31. 2010.

HU, L; BENTLER, P. M. Cutoff criteria for fit Indexes in covariance structure analysis: Conventional criteria versus new alternatives. **Structural Equation Modeling: A Multidisciplinary Journal**, v. 6. 1999.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. **Biometrics**, v. 33, n. 1, p.159-174. 1977.

MA, Z., REDMOND, R.L. Tau coefficients for accuracy assessment of classification of remote sensing data. **Photogrammetric Engineering and Remote Sensing**, Bethesda, n. 61, v. 4, p. 453 – 439, 1995.

LI, H.; CALDER, C. A.; CRESSIE, N. Beyond Moran's I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model. **Geographical Analysis**, n. 39, p. 357–375. 2007.

LORESTANI, E. Z.; KAMKAR, B.; RAZAVI, S. E.; SILVA, J. A. T. Modeling and mapping diversity of pathogenic fungi of wheat fields using geographic information systems (GIS). **Crop Protection**, n. 54, p. 74-83. 2013.

LÜCK, E.; RÜHLMANN, J.; SPANGENBERG, U. Physical background of soil EC mapping: laboratory, theoretical and field studies. **Precision agriculture'05**, J. V. Stafford (Ed.), p. 417–424. 2005.

MALLOWS, C. L. Some Comments on CP. Technometrics, v. 15, n. 4. p. 661–675. 1973.

McBRATNEY, A. B.; MINASNY, B. ; WHELAN, B. M. Obtaining 'useful' high-resolution soil data from proximally-sensed electrical conductivity/resistivity (PSEC/R) surveys. **Precision Agriculture** '**05**. J. V. Stanford (Ed.), p. 503-511. 2005.

MELLO, C. D.; LIMA, J. M.; SILVA, A. M.; MELLO, J. M.; OLIVEIRA, M. S. Krigagem e inverso do quadrado da distância para interpolação dos parâmetros da equação de chuvas intensas. **Revista Brasileira de Ciência do Solo**, v. 27, n. 5, p. 925-933. 2003.

MOLIN, J. P.; CASTRO, C. N. Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique. **Scientia Agricola**, Piracicaba, v. 65, p. 567-573. 2008.

MOLIN, J. P.; SILVA JÚNIOR, R. L. Variabilidade espacial do índice de cone, correlacionada com textura e produtividade. **Engenharia Rural**, Piracicaba, v.14, p. 49-57. 2003.

MONTGOMERY, D. C. PECK, E. A. VINING, G. G. Introduction to linear regression analysis. Wiley, 5 ed., 672 p. 2012.

MORAL, F. J.; TERRÓN, J. M.; SILVA, J. M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. **Soil & Tillage Research**, v. 106, n. 2, p. 335-343. 2010.

MORARI, F.; CASTRIGNANÒ, A.; PAGLIARINA, B, C.; Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. **Computers and Electronics in Agriculture**, v. 68, n. 1, p. 97-107. 2009.

NAU, R. What's a good value for R-squared?. **Statistical forecasting: notes on regression and time series analysis. Fuqua School of Business.** Duke University. Disponível em: http://people.duke.edu/~rnau/rsquared.htm. Acesso em: 03/12/2014.

NERY, C. V. M.; OLIVEIRA, D. B.; ABREU, L. H. G. Estudo comparativo entre os índices NDVI obtidos a partir dos sensores LANDSAT 5 - TM e RESOURCESAT - LISS III. **Revista Caminhos de Geografia.** Uberlândia, v. 14, n. 46,p. 160–167. 2013.

PIMENTEL GOMES, F; GARCIA, CH. Estatística aplicada a experimentos agronômicos e florestais, exposição com exemplos e orientações para uso de aplicativos. Biblioteca de Ciências Agrárias Luiz de Queiroz. Piracicaba: FEALQ. 2002.

ROSSITER, D. G. **Statistical methods for accuracy assessment of classified thematic maps**. Department of Earth Systems Analysis. University of Twente, Faculty of Geo-Information Science & Earth Observation (ITC), Enschede (NL). 2014.

PARK, NW JANG, DH. Comparison of geostatistical kriging algorithms for intertidal surface sediment facies mapping with grain size data. **The Scientific World Journal**, v. 1, 11 p. 2014.

QUARTEZANI, W. Z. ZIMBACK, C. R. L, LANDIM, P. M. B.; OLIVEIRA, R. B. Validação da estimativa por cokrigagem e krigagem para produtividade do café conilon. **Revista Energia na Agricultura**, Botucatu, v. 26, n. 1, p.113-125. 2011.

SANTOS, D.; SOUZA, E. G.; NÓBREGA, L. H. P.; BAZZI, C L.; GONÇAVES Jr, A. C. Variabilidade espacial de atributos físicos de um Latossolo Vermelho após cultivo de soja. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 16, n. 8, p. 843-848. 2012.

SERRANO; SHAHIDIAN e SILVA. Apparent electrical conductivity in dry versus wet soil conditions in a shallow soil. **Precision Agriculture**, n. 14, p. 99–114. 2013.

SERRANO, J. M.; PEÇA, J. O.; SILVA, J. R. M.; SHAIDIAN, S. Mapping soil and pasture variability with an electromagnetic induction sensor. **Computers and Electronics in Agriculture,** n. 73, p. 7–16. 2010.

SILVA, J. R. M.; PEÇA, J. O.; SERRANO, J. M.; CARVALHO, M. J.; PALMA, P. M. Evaluation of spatial and temporal variability of pasture based on topography and the quality of the rainy season. **Precision Agriculture**, n. 9,p. 209–229. 2008.

SINHA, B.K.; YIMPRAYOON, P; TIENSUWAN M. Cohen's Kappa statistic: A critical appraisal and some modifications. **Calcutta Statistical Association Bulletin**, n. 58, p. 151-169. 2006.

SOARES, M. C. E.; CAMPOS, S.; CAVASINI, R.; GRANATO, M. e SILVA, M. G. da. Avaliação da exatidão de mapa de uso do solo através do índice Kappa. São José do Rio Preto. 2009.

SOHN, Y.; REBELLO, N. S. Supervised and unsupervised spectral angle classifiers. **Photogrammetric engineering and remote sensing**, n. 6, p. 1271–1280. 2002.

SOUZA, E. G.; BAZZI, C. L.; URIBE-OPAZO, M. A. **Thematic and profitability maps for precision agriculture**. In: 10th International Conference on Precision Agriculture, 2010, Denver. Proceedings of the 10th International Conference on Precision Agriculture, v. 1. 2010.

SOUZA, G. S.; LIMA, J. S. S.; XAVIER, A. C.; ROCHA, W. S. D. Krigagem ordinária e inverso do quadrado da distância aplicados na espacialização de atributos químicos de um argissolo. **Scientia Agraria**, v. 11, n. 1, p. 073-081. 2010.

SPEZIA, G. R.; SOUZA, E. G.; NÓBREGA, L. H. P.; URIBE-OPAZO, M. A.; MILAN, M.; BAZZI, C. L.Model to estimate the sampling density for establishment of yield mapping. **Revista Brasileira de Engenharia Agrícola Ambiental** [online], v. 16, n. 4, p. 449-457. 2012.

STATSOFT. Statistica for Windows. Versão 12.0. **Tulsa: StatSoft**. Disponível em: http://www.statsoft.com. Acesso em: 10/05/2014.

STEHMAN, S. V. Estimating the Kappa Coefficient and its Variance under Stratified Random Sampling. **Photogrammetric Engineering & Remote Sensing**. v. 62. n. 4, p. 401-402. 1996.

STEHMAN, S. V.; CZAPLEWSKI, R. L. Design and analysis of thematic map accuracy assessment: fundamental principles. **Remote Sensing of Environment**, n. 64, p. 331-344. 1998.

SUDDUTH, K. A.; KITCHEN, N. R.; WIEBOLD, W. J.; BATCHELOR, W. D.; BOLLERO, G. A.; BULLOC/1K, D. G.; CLAY, D. E.; PALM, H. L.; PIERCE, F. J.; SCHULER, R. T.; THELEN, K. D. Relating apparent electrical conductivity to soil properties across the north-central USA. **Computers and Electronics in Agriculture**, n. 46, p. 263–283. 2005.

TARR, A. B.; MOORE, K. J.; Bullock D. G., Dixon, P. M. Improving map accuracy of soil variables using soil electrical conductivity as a covariate. **Precision Agriculture**, v. 6, p. 255–270. 2005.

TEIXEIRA, M. B. R.; SCALON, J. D. Comparação entre estimadores de semivariância, **Revista Brasileira de Biometria**, v. 31, n. 2, 23 p., 2013.

THOMAS, I. L.; ALLCOCK, G. M. Determining the confidence level for a classification, **Photogrammetric Engineering & Remote Sensing**, n. 50, p.1491–1496. 1984.

VALENTE, D. S. M. The relationship between apparent soil electrical conductivity and soil properties. Revista Ciência Agronômica [online], v. 43, n. 4, p. 683-690. 2012.

VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. Tópicos em ciência do solo. Viçosa. **Sociedade Brasileira de Ciência do Solo**, v.1, p.1-54, 2000

VIERA, A. J.; GARRETT, J. M. Understanding interobserver agreement: the Kappa statistic. **Family Medicine**, v. 37, p. 360–363. 2005.

VON EYE A.; VON EYE M. On the marginal dependency of Cohen's κ. **European Psychologist**, v. 13, n. 4, p. 305 - 315. 2008.

WARRENS, M. J. Inequalities between multi-rater Kappas. Advances in Data Analysis and Classification, n. 4, p. 271–286. 2010.

WOLLENHAUPT, N. C.; WOLKOWSKI. R. P.; CLAYTON. M. K. Mapping soil test phosphorus and potassium for variable-rate fertilizer application. **Journal of Production Agriculture**, v. 7, p. 441-448. 1994.

YAMAMOTO, J. K., MAO, X. M., KOIKE, K., CROSTA, A. P., LANDIM, P. M. B., HU, H. Z., WANG, C. Y., E YAO, L. Q. Mapping an uncertainty zone between interpolated types of acategorical variable. **Computers and Geosciences**, v. 31, n. 7, p. 146–152. 2012.

YIMPRAYOON, P. Sample Size Determination and Power Analysis for Modified Cohen's Kappa Statistic. **Applied Mathematical Sciences**. v. 7, n. 124, p. 6153 – 6166. 2013.

APÊNDICE 1Figuras extras do artigo 1

Figura 1 Semivariogramas da elevação do terreno na área do experimento, segundo o modelo.

Figura 1 Semivariogramas do teor de argila coletado na área do experimento, segundo o modelo.

Figura 3 Semivariogramas do teor de cobre coletado em 2011 na área do experimento, segundo o modelo.

Figura 4 Semivariogramas do teor de cobre coletado em 2012 na área do experimento, segundo o modelo.

Figura 5 Semivariogramas do teor de cobre coletado em 2013 na área do experimento, segundo o modelo.

a) Krigagem, modelo exponencialb) Cokrigagem (CEAS11), modelo exponencialFigura 6 Semivariogramas do teor de manganês coletado no ano de 2011 na área do experimento.

Figura 7 Semivariogramas do teor de manganês coletado no ano de 2012 na área do experimento, segundo o modelo.

Figura 8 Semivariogramas do teor de manganês coletado no ano de 2013 na área do experimento, segundo o modelo.

Figura 9 Mapas temáticos dos valores dos atributos medidos no experimento, segundo o ano de coleta e interpolador utilizado.

APÊNDICE2 - Figuras extras do artigo 2

Figura 1 Média dos índices normalizados Kappa (Knm), Tau (Tnm), coeficiente de desvio relativo (CDRnm) e desvio absoluto da média (DAMnm) calculados após interpolação por inverso da distância, inverso do quadrado da distância, krigagem ordinária e cokrigagem dos atributos do experimento coletados em campo de acordo com o número de classes considerado.

Figura 2 Estatística descritiva dos 100 valores variável V (ISAAKS e SRIVASTAVA, 1989) utilizados na validação das equações de Kappa e Tau estimados.

Figura 3 Estatística descritiva dos 50 valores variável V (linhas ímpares da Tabela original de ISAAKS e SRIVASTAVA, 1989), utilizados na validação das equações de Kappa e Tau estimados.

Figura 4 Estatística descritiva dos 50 valores variável V (linhas pares da tabela original de ISAAKS e SRIVASTAVA, 1989), utilizados na validação das equações de Kappa e Tau estimados.

c) Variável Vp, modelo exponencial

Figura 5 Semivariogramas dos melhores modelos de ajuste por krigagem ordinária considerando, (a) todos os valores variável V distribuída em um grid de 1 m², (b) por valores da variável V considerando somente linhas ímpares da distribuição e (c) por valores da variável V considerando somente linhas pares da distribuição (ISAAKS e SRIVASTAVA, 1989).

c) pH (4 classes, ID, IQD e KRI)

d) Teor de pH (4 classes, IQD e KRI)

Figura 5 Relação Kappa estimado e K calculado para potássio e pH da área de estudo, segundo os interpoladores inverso da distância (ID), inverso do quadrado da distância (IQD) e krigagem ordinária (KRI), para os anos de 2011, 2012 e 2013.

c) pH (5 classes, ID, IQD e KRI)

d) Teor de pH (5 classes, IQD e KRI)

Figura 6 Relação Kappa estimado (K est) e K calculado (K calc) para potássio e pH da área de estudo, segundo os interpoladores inverso da distância (ID), inverso do quadrado da distância (IQD) e krigagem ordinária (KRI), para os anos de 2011, 2012 e 2013.

APÊNDICE 3 Tabelas do artigo 1

ARG	0,092	0,085	-0,080			
	0.000	0.005	0.000	0 1 2 0	0 405	
Mn	-0,080	-0,050	0,070	0,116		
Cu	-0,107	-0,100	0,097			
elev	0,154	0,183				
CEAS	0,147					
colciados cilí zo		10103				

Tabela 1 Matriz das correlações globais de Moran significativas (5%), de atributos da área do experimento, coletados em 2011, em valores absolutos

Legenda: CEAS - Condutividade elétrica aparente do solo (0 – 0,38 m); elev - elevação do terreno; Cu - cobre, Mn - manganês; ARG - argila.

Tabela 2 Matriz das correlações globais de Moran significativas (5%), de atributos da área do experimento, coletados em 2012, em valores absolutos

	CEAS	elev	arg	Cu	Mn
Mn	-0,081*	-0,101*	-0,107*	0,0696*	0,0992*
Cu	-0,086*	-0,124*	-0,076*	0,0503*	
ARG	0,0660*	0,0851*	0,1051*		
elev	0,1175*	0,1832*			
CEAS	0,0742*				

Legenda: CEAS - Condutividade elétrica aparente do solo (0 – 0,38 m); elev - elevação do terreno; Cu: cobre, Mn: manganês; ARG: argila.

Tabela 3 Matriz das correlações globais de Moran significativas (5%), de atributos da área do experimento, coletados em 2013, em valores absolutos

	CEAS	Elevação	ARG	Cu	Mn
Mn	-0,054*	-0,061*	-0,110*	0,0449	0,0577*
Cu	-0,030	-0,114*	-0,099*	0,0527*	
ARG	0,049*	0,0851*	0,1051*		
elev	-0,018	0,1832*			
CEAS	0,058*				

Legenda: CEAS - Condutividade elétrica aparente do solo (0 – 0,38 m); elev - elevação do terreno; Cu - cobre; Mn - manganês; ARG - argila.

<u></u> , i aid	ana								
arg	0,105*								
CEAS	0,092*	0,147*							
Cu11	-0,080*	-0,107*	0,097*						
Cu12	-0,076*	-0,086*	na	0,050*					
Cu13	-0,099*	-0,030	na	na	0,053*				
elev	0,085*	0,154*	-0,100*	-0,124*	-0,114*	0,183*			
Mn11	-0,120*	-0,080*	0,070*	na	na	-0,050*	0,116*		
Mn12	-0,107*	-0,081*	na	0,070*	na	-0,101*	na	0,099*	
Mn13	-0,110*	0,054	na	na	0,045	-0,061*	na	na	0,058*
	Arg	Ceas	Cu11	Cu12	Cu13	elev	Mn11	Mn12	Mn13

Tabela 5 Índices de correlação cruzada das medidas dos atributos que apresentaram correlação por três anos (2011, 2012 e 2013), coletados no local do experimento numa área experimental de 25 ha, em Céu Azul, Paraná

Legenda: arg – teor de argila; CEAS – Condutividade elétrica aparente do solo (0 - 0.38 m); Cu11, Cu12 e Cu 13 – teores de cobre coletados nos anos de 2011, 2012 e 2013, respectivamente; elev - elevação do terreno; Mn11,Mn12 e Mn13 – teores de manganês coletados nos anos de 2011, 2012 e 2013, respectivamente; * - significativo ao nível de 95% de confiança; na – não avaliado.

APÊNDICE 4 Tabelas extras do artigo 2

Tabela 1 Coeficientes CDR, DAM, Kappa e Tau, desvio padrãoe intervalo de 95% de confiança e classificação para o coeficiente Kappa (sk), para todas as comparações entre si dos tores de cobre (Cu), manganês (Mn) coletados nos anos de 2011, 2012 e 2013, teor de argila (arg) e a elevação do terreno (elev), coletados em 2011, interpolados pelos métodos inverso da distância (ID), inverso do quadrado da distância (IQD), krigagem (KRI) e cokrigagem (Cokri), segundo o número de classes

Classes	Comparação	CDR (%)	DAM	Карра	Tau
2	Arg_ID x Arg_IQD	0,95	6,38	0,861 e	0,868
3	Arg_ID x Arg_IQD	0,95	6,38	0,720 mb	0,769
4	Arg_ID x Arg_IQD	0,95	6,38	0,717 mb	0,763
5	Arg_ID x Arg_IQD	0,95	6,38	0,670 mb	0,723
6	Arg_ID x Arg_IQD	0,95	6,38	0,602 mb	0,652
7	Arg_ID x Arg_IQD	0,95	6,38	0,597 b	0,637
8	Arg_ID x Arg_IQD	0,95	6,38	0,579 b	0,625
9	Arg_ID x Arg_IQD	0,95	6,38	0,549 b	0,588
10	Arg_ID x Arg_IQD	0,95	6,38	0,479 b	0,522
2	Arg_ID x Arg_KRI	0,44	2,96	0,952 e	0,954
3	Arg_ID x Arg_KRI	0,44	2,96	0,807 e	0,849
4	Arg_ID x Arg_KRI	0,44	2,96	0,882 e	0,906
5	Arg_ID x Arg_KRI	0,44	2,96	0,853 e	0,885
6	Arg_ID x Arg_KRI	0,44	2,96	0,811 e	0,842
7	Arg_ID x Arg_KRI	0,44	2,96	0,790 mb	0,817
8	Arg_ID x Arg_KRI	0,44	2,96	0,803 e	0,830
9	Arg_ID x Arg_KRI	0,44	2,96	0,742 mb	0,769
10	Arg_ID x Arg_KRI	0,44	2,96	0,766 mb	0,792
2	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,913 e	0,918
3	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,764 mb	0,820
4	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,809 e	0,847
5	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,735 mb	0,789
6	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,758 mb	0,797
7	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,697 mb	0,736
8	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,665 mb	0,707
9	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,647 mb	0,683
10	Arg_ID x Arg_CoKri(elev)	0,65	4,41	0,619 mb	0,658
2	Arg_IQD x Arg_KRI	0,80	5,40	0,876 e	0,882
3	Arg_IQD x Arg_KRI	0,80	5,40	0,768 mb	0,804
4	Arg_IQD x Arg_KRI	0,80	5,40	0,732 mb	0,774
5	Arg_IQD x Arg_KRI	0,80	5,40	0,721 mb	0,767
6	Arg_IQD x Arg_KRI	0,80	5,40	0,635 mb	0,683
7	Arg_IQD x Arg_KRI	0,80	5,40	0,688 mb	0,719
8	Arg_IQD x Arg_KRI	0,80	5,40	0,644 mb	0,682
9	Arg_IQD x Arg_KRI	0,80	5,40	0,626 mb	0,660
10	Arg_IQD x Arg_KRI	0,80	5,40	0,562 b	0,598
2	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,844 e	0,853
3	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,666 mb	0,721
4	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,678 mb	0,728
5	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,585 b	0,649
6	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,555 b	0,611
7	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,508 b	0,556
8	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,507 b	0,555
9	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,479 b	0,521
10	Arg_IQD x Arg_CoKri(elev)	1,17	7,88	0,421 b	0,466

con	tinua	ção

2	Arg_KRI x Arg_CoKri(elev)	0,52	3,50	0,926	е	0,930	
3	Arg_KRI x Arg_CoKri(elev)	0,52	3,50	0,830	е	0,864	
4	Arg_KRI x Arg_CoKri(elev)	0,52	3,50	0,886	е	0,908	
5	Arg_KRI x Arg_CoKri(elev)	0,52	3,50	0,757	mb	0,808	
6	Arg_KRI x Arg_CoKri(elev)	0,52	3,50	0,817	е	0,847	
7	Arg_KRI x Arg_CoKri(elev)	0,52	3,50	0,744	mb	0,776	
8	Arg KRI x Arg CoKri(elev)	0,52	3,50	0,771	mb	0,799	
9	Arg KRI x Arg CoKri(elev)	0,52	3,50	0,703	mb	0,732	
10	Arg KRI x Arg CoKri(elev)	0,52	3,50	0,688	mb	0,720	
2	C_{u11} ID x C_{u11} IQD	2,90	0,31	0,944	е	0,983	
3	Cu11 ID x Cu11 IQD	2,90	0.31	0,685	mb	0,847	
4	Cu11 ID x Cu11 IQD	2,90	0.31	0,733	mb	0,813	
5	Cu11 ID x $Cu11$ IQD	2.90	0.31	0.617	mb	0.712	
6	Cu11 ID x $Cu11$ IQD	2.90	0.31	0.619	mb	0.728	
7		2.90	0.31	0.567	b	0.689	
8		2.90	0.31	0.549	b	0.662	
9		2,90	0.31	0.551	b	0.644	
10		2,00	0.31	0 450	b	0.553	
2		4 00	0.42	0 921	ē	0.975	
2		4 00	0.42	0.621	mh	0.811	
3		4,00	0,42	0,665	mb	0,762	
4		4,00	0,42	0,000	h	0,702	
5		4,00	0,42	0,525	b	0,032	
0		4,00	0,42	0,510	b	0,030	
/		4,00	0,42	0,405	b	0,599	
0		4,00	0,42	0,431	b h	0,551	
9		4,00	0,42	0,422	D 17	0,525	
10		4,00	0,42	0,334	12	0,440	
2	Cutt_ID x Cutt_Cokri(elev)	4,00	0,47	0,910	e mh	0,974	
3		4,00	0,47	0,009	mb	0,003	
4		4,00	0,47	0,660	nno h	0,758	
5		4,00	0,47	0,501	D 6	0,608	
6		4,00	0,47	0,471	D 6	0,592	
7	Cu11_ID x Cu11_CoKri(elev)	4,53	0,47	0,428	D L	0,558	
8	Cu11_ID x Cu11_CoKri(elev)	4,53	0,47	0,400	D	0,519	
9	Cu11_ID x Cu11_CoKri(elev)	4,53	0,47	0,379	rz	0,482	
10	Cu11_ID x Cu11_CoKri(elev)	4,53	0,47	0,302	rz	0,404	
2	Cu11_IQD x Cu11_Kri	1,75	0,18	0,949	е	0,983	
3	Cu11_IQD x Cu11_Kri	1,75	0,18	0,899	е	0,945	
4	Cu11_IQD x Cu11_Kri	1,75	0,18	0,888	е.	0,921	
5	Cu11_IQD x Cu11_Kri	1,75	0,18	0,787	mb	0,834	
6	Cu11_IQD x Cu11_Kri	1,75	0,18	0,782	mb	0,829	
7	Cu11_IQD x Cu11_Kri	1,75	0,18	0,778	mb	0,824	
8	Cu11_IQD x Cu11_Kri	1,75	0,18	0,741	mb	0,791	
9	Cu11_IQD x Cu11_Kri	1,75	0,18	0,710	mb	0,758	
10	Cu11_IQD x Cu11_Kri	1,75	0,18	0,671	mb	0,717	
2	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,943	е	0,981	
3	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,880	е	0,934	
4	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,879	е	0,915	
5	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,751	mb	0,805	
6	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,721	mb	0,777	
7	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,719	mb	0,774	
8	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,695	mb	0,750	
9	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,653	mb	0,708	
10	Cu11_IQD x Cu11_CoKri(elev)	2,21	0,22	0,606	mb	0,659	

		~
000	tinin	~~~
(.()))		(.a()
	maa	çuo
		2

2	Cu11_Kri x Cu11_CoKri(elev)	0,64	0,06	0,994	е	0,998	
3	Cu11_Kri x Cu11_CoKri(elev)	0,64	0,06	0,979	е	0,988	
4	Cu11_Kri x Cu11_CoKri(elev)	0,64	0,06	0,976	е	0,983	
5	Cu11_Kri x Cu11_CoKri(elev)	0,64	0,06	0,944	е	0,956	
6	Cu11 Kri x Cu11 CoKri(elev)	0,64	0,06	0,915	е	0,932	
7	Cu11 Kri x Cu11 CoKri(elev)	0,64	0,06	0,922	е	0,936	
8	Cu11 Kri x Cu11 CoKri(elev)	0,64	0,06	0,924	е	0,936	
9	Cu11 Kri x Cu11 CoKri(elev)	0.64	0.06	0.917	е	0.929	
10	Cu11 Krix Cu11 CoKri(elev)	0.64	0.06	0.902	e	0.914	
2	C_{μ} 12 $ID \times C_{\mu}$ 12 IQD	3.51	0.40	0.822	e	0.881	
2		3 51	0.40	0,606	mb	0,694	
4		3 51	0.40	0,260	mb	0.816	
5		3 51	0.40	0,705	mb	0 764	
5		3 51	0,40	0,700	h	0,704	
7		3,51	0,40	0,500	mh	0,022	
0		3,51	0,40	0,005	h	0,000	
0		2,51	0,40	0,343	b h	0,002	
9		3,51	0,40	0,407	b h	0,542	
10		3,51	0,40	0,558	D	0,609	
2		1,05	0,19	0,861	e	0,915	
3	Cu12_ID x Cu12_Kri	1,65	0,19	0,837	е	0,891	
4	Cu12_ID x Cu12_Kri	1,65	0,19	0,874	е	0,913	
5	Cu12_ID x Cu12_Kri	1,65	0,19	0,820	e	0,865	
6	Cu12_ID x Cu12_Kri	1,65	0,19	0,759	mb	0,812	
7	Cu12_ID x Cu12_Kri	1,65	0,19	0,819	е	0,858	
8	Cu12_ID x Cu12_Kri	1,65	0,19	0,786	mb	0,823	
9	Cu12_ID x Cu12_Kri	1,65	0,19	0,771	mb	0,808	
10	Cu12_ID x Cu12_Kri	1,65	0,19	0,765	mb	0,803	
2	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,759	mb	0,831	
3	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,484	b	0,587	
4	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,668	mb	0,733	
5	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,602	mb	0,670	
6	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,408	b	0,476	
7	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,444	b	0,506	
8	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,403	b	0,466	
9	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,322	rz	0,380	
10	Cu12_ID x Cu12_CoKri(elev)	5,14	0,57	0,331	rz	0,385	
2	Cu12_IQD x Cu12_Kri	4,11	0,46	0,790	mb	0,856	
3	Cu12_IQD x Cu12_Kri	4,11	0,46	0,599	b	0,690	
4	Cu12 IQD x Cu12 Kri	4,11	0,46	0,759	mb	0,814	
5	Cu12 IQD x Cu12 Kri	4,11	0,46	0,670	mb	0,734	
6	Cu12 IQD x Cu12 Kri	4,11	0,46	0,515	b	0,586	
7	Cu12 IQD x Cu12 Kri	4,11	0,46	0,541	b	0,612	
8	$Cu12 IQD \times Cu12 Kri$	4.11	0.46	0.488	b	0.553	
9	$Cu12 IQD \times Cu12 Kri$	4.11	0.46	0.491	b	0.545	
10	$Cu12 IOD \times Cu12 Kri$	4.11	0.46	0.543	b	0.596	
2	$Cu12 IOD \times Cu12 CoKri(elev)$	2.34	0.26	0.912	e	0.933	
2	$Cu12 IOD \times Cu12 CoKri(elev)$	2.34	0.26	0,806	ē	0,839	
1		2.34	0.26	0.852	e	0.875	
4 5		2,07	0.26	0,002	ē	0.851	
ວ ເ		2,07	0.26	0,020	mh	0.780	
0		2,0 4 2 2/	0,20	0,700	mb	0,759	
1		∠,34 2.24	0,20	0,730	mb	0,759	
ð		2,34	0,20	0,722	mb	0,740	
9		∠,34	0,20	0,709	mb	0,731	
10	Cu12_IQD x Cu12_CoKri(elev)	∠,34	0,26	0,646	mD	0,070	

57

					continuação
2	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,774 mb	0,839
3	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,504 b	0,605
4	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,703 mb	0,759
5	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,603 mb	0,669
6	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,403 b	0,474
7	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,387 rz	0,458
8	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,396 rz	0,461
9	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,363 rz	0,415
10	Cu12_Kri x Cu12_CoKri(elev)	5,39	0,60	0,367 rz	0,417
2	Cu13_ID x Cu13_IQD	4,04	0,28	0,810 e	0,850
3	Cu13_ID x Cu13_IQD	4,04	0,28	0,696 mb	0,795
4	Cu13_ID x Cu13_IQD	4,04	0,28	0,709 mb	0,787
5	Cu13 ID x Cu13 IQD	4,04	0,28	0,712 mb	0,768
6	Cu13 ID x Cu13 IQD	4,04	0,28	0,579 b	0,655
7	Cu13 ID x Cu13 IQD	4,04	0,28	0,653 mb	0,713
8	Cu13 ID x Cu13 IQD	4,04	0,28	0,601 mb	0,654
9	Cu13 ID x Cu13 IQD	4,04	0,28	0,562 b	0,616
10	Cu13 ID x Cu13 IQD	4,04	0,28	0,553 b	0,605
2	Cu13 ID x Cu13 Kri	2,49	0,17	0.834 e	0,870
3	Cu13 ID x Cu13 Kri	2,49	0,17	0,779 mb	0,856
4	Cu13 ID x Cu13 Kri	2,49	0,17	0,793 mb	0,854
5	Cu13 ID x Cu13 Kri	2,49	0,17	0,798 mb	0,841
6	Cu13 ID x Cu13 Kri	2,49	0,17	0,712 mb	0,769
7	Cu13 ID x Cu13 Kri	2,49	0,17	0.821 e	0,856
8	Cu13 ID x Cu13 Kri	2,49	0,17	0,721 mb	0,760
9	Cu13 ID x Cu13 Kri	2.49	0.17	0.717 mb	0.755
10	Cu13 ID x Cu13 Kri	2.49	0.17	0.698 mb	0.738
2	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.758 mb	0.807
3	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.598 b	0.717
4	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.647 mb	0.735
5	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.638 mb	0.703
6	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.453 b	0.539
7	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.477 b	0.557
8	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.482 b	0.543
9	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.389 rz	0.458
10	Cu13 ID x Cu13 CoKri(elev)	5.79	0.38	0.422 b	0.480
2	Cu13 IQD x Cu13 Kri	2.95	0.21	0.920 e	0.934
3	Cu13 IQD x Cu13 Kri	2.95	0.21	0.804 e	0.859
4	Cu13 IQD x Cu13 Kri	2.95	0.21	0.838 e	0.875
5	Cu13 IQD x Cu13 Kri	2.95	0.21	0.774 mb	0.814
6	Cu13 IQD x Cu13 Kri	2.95	0.21	0.748 mb	0.786
7	Cu13 IQD x Cu13 Kri	2.95	0.21	0.712 mb	0.758
8	Cu13 IQD x Cu13 Kri	2.95	0.21	0.703 mb	0.738
9	Cu13 IQD x Cu13 Kri	2.95	0.21	0.658 mb	0.696
10	$Cu13 IQD \times Cu13 Kri$	2.95	0.21	0.651 mb	0.690
2	Cu13 IQD x Cu13 CoKri(elev)	2.65	0.18	0.921 e	0.934
- 3	Cu13 IQD x Cu13 CoKri(elev)	2.65	0,18	0.838 e	0.877
4	$Cu13 IQD \times Cu13 CoKri(elev)$	2.65	0.18	0.892 e	0.913
5	Cu13 IQD x Cu13 CoKri(elev)	2.65	0.18	0,825 e	0,852
6	Cu13 IQD x Cu13 CoKri(elev)	2.65	0.18	0,795 mb	0,820
7	Cu13 IQD x Cu13 CoKri(elev)	2,65	0.18	0,735 mb	0,768
8	Cu13 IQD x Cu13 CoKri(elev)	2,65	0.18	0,774 mb	0,797
9	Cu13 IQD x Cu13 CoKri(elev)	2.65	0,18	0,709 mb	0,736
10	Cu13 IQD x Cu13 CoKri(elev)	2,65	0,18	0,700 mb	0,726
-					

2	Cu13 Kri x Cu13 CoKri(elev)	3.76	0.25	0.909 e	0.924
3	Cu13 Kri x Cu13 CoKri(elev)	3.76	0.25	0.766 mb	0.826
4	Cu13 Krix Cu13 CoKri(elev)	3.76	0.25	0.831 e	0.867
5	Cu13 Kri x $Cu13$ CoKri(elev)	3 76	0.25	0.774 mb	0.811
6	Cu13 Kri v Cu13 CoKri(elev)	3 76	0.25	0.685 mb	0.726
7	Cu13 Kri x Cu13 CoKri(elev)	3,76	0,25	0,000 hib	0,720
0	Cu13 Kri x Cu13 CoKri(elev)	3,76	0,25	0,682 mb	0,000
0	Cu13_Kit x Cu13_CoKri(elev)	3,70	0,25	0,002 mb	0,710
9	Cut3_Kit x Cut3_CoKri(elev)	3,70	0,25	0,377 D	0,020
10		3,70	0,25	0,560 0	0,021
2		0,14	0,96	0,957 e	0,957
3	Elev_ID x Elev_IQD	0,14	0,96	0,831 e	0,834
4	Elev_ID x Elev_IQD	0,14	0,96	0,814 e	0,825
5	Elev_ID x Elev_IQD	0,14	0,96	0,766 mb	0,776
6	Elev_ID x Elev_IQD	0,14	0,96	0,672 mb	0,685
7	Elev_ID x Elev_IQD	0,14	0,96	0,611 mb	0,626
8	Elev_ID x Elev_IQD	0,14	0,96	0,694 mb	0,705
9	Elev_ID x Elev_IQD	0,14	0,96	0,623 mb	0,635
0	Elev_ID x Elev_IQD	0,14	0,96	0,556 b	0,566
2	Elev_ID x Elev_KRI	0,24	1,60	0,909 e	0,909
3	Elev_ID x Elev_KRI	0,24	1,60	0,761 mb	0,762
4	Elev_ID x Elev_KRI	0,24	1,60	0,629 mb	0,634
5	Elev_ID x Elev_KRI	0,24	1,60	0,598 b	0,604
6	Elev ID x Elev KRI	0,24	1,60	0,506 b	0,515
7	Elev ID x Elev KRI	0,24	1,60	0,415 b	0,427
R		0.24	1.60	0.439 b	0.451
9		0.24	1,60	0.392 rz	0.402
0		0.24	1,60	0.322 rz	0.331
2	Elev ID x elev Cokri(CEAS12)	0.28	1 88	0,905 e	0,905
2 ~	Elev_ID x elev_Col(ri(CEAS12)	0.28	1,88	0,000 0 0,739 mb	0,000
о л		0.28	1,88	0,700 h	0,750
+ c	Elev_ID x elev_CoKri(CEAS12)	0,20	1,00	0,530 b	0,531
5		0,20	1,00	0,341 D	0,545
5	Elev_ID x elev_CoKri(CEAS12)	0,28	1,88	0,436 D	0,440
1	Elev_ID x elev_CoKri(CEAS12)	0,28	1,88	0,334 rz	0,339
5	Elev_ID x elev_CoKri(CEAS12)	0,28	1,88	0,341 rz	0,347
9	Elev_ID x elev_CoKri(CEAS12)	0,28	1,88	0,308 rz	0,314
0	Elev_ID x elev_CoKri(CEAS12)	0,28	1,88	0,255 rz	0,260
2	Elev_IQD x Elev_KRI	0,11	0,74	0,946 e	0,947
3	Elev_IQD x Elev_KRI	0,11	0,74	0,916 e	0,916
4	Elev_IQD x Elev_KRI	0,11	0,74	0,799 mb	0,801
5	Elev_IQD x Elev_KRI	0,11	0,74	0,805 e	0,808
6	Elev_IQD x Elev_KRI	0,11	0,74	0,809 e	0,812
7	Elev_IQD x Elev_KRI	0,11	0,74	0,732 mb	0,736
8	Elev_IQD x Elev_KRI	0,11	0,74	0,702 mb	0,708
9	Elev_IQD x Elev_KRI	0,11	0,74	0,706 mb	0,712
0	Elev IQD x Elev KRI	0,11	0,74	0,696 mb	0,701
2	Elev IQD x elev CoKri(CFAS12)	0,15	1,00	0,943 e	0,944
3	Elev IQD x elev CoKri(CEAS12)	0.15	1,00	0,895 e	0.895
4	Elev IQD x elev $CoKri(CEAS12)$	0.15	1.00	0.759 mb	0.760
5		0.15	1,00	0.745 mb	0 746
6		0.15	1 00	0.742 mh	0 744
7		0.15	1,00	$0,7 \pm 2$ mb	0.656
۱ ٥		0,15	1,00		0,504
ð	Elev_IQD x elev_CoKri(CEAS12)	0,10	1,00	0,090 0	0,094
9	Elev_IQD x elev_CoKri(CEAS12)	0,15	1,00	0,590 0	0,595
10	Elev_IQD x elev_CoKri(CEAS12)	0,15	1,00	0,580 b	0,586

2	Elev_KRI x elev_CoKri(CEAS12)	0,04	0,29	0,996	е	0,996
3	Elev_KRI x elev_CoKri(CEAS12)	0,04	0,29	0,974	е	0,974
4	Elev_KRI x elev_CoKri(CEAS12)	0,04	0,29	0,956	е	0,956
5	Elev_KRI x elev_CoKri(CEAS12)	0,04	0,29	0,936	е	0,936
6	Elev_KRI x elev_CoKri(CEAS12)	0,04	0,29	0,923	е	0,924
7	Elev_KRI x elev_CoKri(CEAS12)	0,04	0,29	0,899	е	0,900
8	Elev_KRI x elev_CoKri(CEAS12)	0,04	0,29	0,870	е	0,872
9	Elev KRI x elev CoKri(CEAS12)	0,04	0,29	0,866	е	0,868
10	Elev KRI x elev CoKri(CEAS12)	0,04	0,29	0,867	е	0,869
2	Mn11 ID x Mn11 IQD	3,81	6,03	0,879	е	0,880
3	Mn11 ID x Mn11 IQD	3,81	6,03	0,719	mb	0,769
4	Mn11 ID x Mn11 IQD	3.81	6.03	0.665	mb	0.737
5	Mn11 ID x Mn11 IQD	3.81	6.03	0.662	mb	0.706
6	Mn11 ID x $Mn11$ IOD	3.81	6.03	0.641	mb	0.679
7	Mn11 ID x $Mn11$ IOD	3.81	6.03	0.507	b	0.562
, 8	$Mn11 ID \times Mn11 IOD$	3 81	6.03	0.534	ə b	0.579
a	$Mn11 ID \times Mn11 IOD$	3 81	6.03	0.534	ə h	0.571
9 10		3,81	6.03	0,004	b	0,071
2		3 99	6 35	0,427	0	0,472
2	Mn11_ID x Mn11_CoKri(CEAS11)	3,00	6 35	0,000	mh	0,001
3	Mn11_ID x Mn11_COKII(CEAS11)	3,99	0,35 6 35	0,000	mb	0,711
4	Minit_ID X MinitI_COKII(CEASII)	3,99	6.35	0,034	mb	0,709
5	Minit_ID X Minit_Cokri(CEAS11)	3,99	0,33	0,004	mb	0,702
6		3,99	0,35	0,017		0,657
1		3,99	0,35	0,494	D	0,543
8	Mn11_ID x Mn11_CoKri(CEAS11)	3,99	6,35	0,484	D	0,531
9	Mn11_ID x Mn11_CoKri(CEAS11)	3,99	6,35	0,479	D	0,517
10	Mn11_ID x Mn11_CoKri(CEAS11)	3,99	6,35	0,377	rz	0,420
2	Mn11_ID x Mn11KRI	5,29	8,37	0,830	e	0,831
3	Mn11_ID x Mn11KRI	5,29	8,37	0,614	mb	0,664
4	Mn11_ID x Mn11KRI	5,29	8,37	0,498	b	0,574
5	Mn11_ID x Mn11KRI	5,29	8,37	0,552	b	0,601
6	Mn11_ID x Mn11KRI	5,29	8,37	0,508	b	0,550
7	Mn11_ID x Mn11KRI	5,29	8,37	0,370	rz	0,419
8	Mn11_ID x Mn11KRI	5,29	8,37	0,352	rz	0,394
9	Mn11_ID x Mn11KRI	5,29	8,37	0,328	rz	0,366
10	Mn11_ID x Mn11KRI	5,29	8,37	0,269	rz	0,308
2	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,930	е	0,930
3	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,847	е	0,863
4	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,830	е	0,854
5	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,852	е	0,868
6	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,796	mb	0,812
7	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,767	mb	0,784
8	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,728	mb	0,747
9	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,709	mb	0,726
10	Mn11_IQD x Mn11_CoKri(CEAS11)	2,04	3,30	0,707	mb	0,723
2	Mn11_IQD x Mn11KRI	2,27	3,65	0,922	е	0,923
3	Mn11_IQD x Mn11KRI	2,27	3,65	0,842	е	0,855
4	Mn11_IQD x Mn11KRI	2,27	3,65	0,776	mb	0,800
5	Mn11_IQD x Mn11KRI	2,27	3,65	0,821	е	0,837
6	Mn11_IQD x Mn11KRI	2,27	3,65	0,795	mb	0,809
7	Mn11_IQD x Mn11KRI	2,27	3,65	0,754	mb	0,769
8	Mn11_IQD x Mn11KRI	2,27	3,65	0,702	mb	0,718
9	Mn11_IQD x Mn11KRI	2,27	3,65	0,670	mb	0,685
10	Mn11_IQD x Mn11KRI	2,27	3,65	0,676	mb	0,689

10 Mn11_IQD x Mn11KRI

continua...

...continuação
					continuação
2	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,957 e	0,957
3	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,922 e	0,928
4	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,839 e	0,855
5	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,872 e	0,884
6	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,853 e	0,864
7	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,847 e	0,857
8	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,801 e	0,812
9	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,783 mb	0,794
10	Mn11KRI x Mn11_CoKri(CEAS11)	1,49	2,41	0,789 mb	0,798
2	Mn12_ID x Mn12_IQD	3,79	4,13	0,868 e	0,870
3	Mn12_ID x Mn12_IQD	3,79	4,13	0,739 mb	0,782
4	Mn12_ID x Mn12_IQD	3,79	4,13	0,667 mb	0,720
5	Mn12_ID x Mn12_IQD	3,79	4,13	0,651 mb	0,689
6	Mn12_ID x Mn12_IQD	3,79	4,13	0,598 b	0,634
7	Mn12 ID x Mn12 IQD	3,79	4,13	0,517 b	0,554
8	Mn12 ID x Mn12 IQD	3,79	4,13	0,539 b	0,572
9	Mn12 ID x Mn12 IQD	3,79	4,13	0,488 b	0,521
10	Mn12 ID x Mn12 IQD	3,79	4,13	0,453 b	0,483
2	Mn12 ID x Mn12 Kri	3,54	3,95	0,871 e	0,872
3	Mn12 ID x $Mn12$ Kri	3.54	3.95	0.719 mb	0.759
4	Mn12 ID x $Mn12$ Kri	3.54	3.95	0.649 mb	0.701
5	Mn12 ID x $Mn12$ Kri	3.54	3.95	0.691 mb	0.726
6	Mn12 ID x $Mn12$ Kri	3.54	3.95	0.612 mb	0.646
7	Mn12 ID x $Mn12$ Kri	3.54	3.95	0.541 b	0.576
8	Mn12 ID x $Mn12$ Kri	3.54	3.95	0.509 b	0.542
9	Mn12 ID x $Mn12$ Kri	3.54	3.95	0.505 b	0.536
10	Mn12 ID x $Mn12$ Kri	3.54	3.95	0.465 b	0.494
2	Mn12 ID x $Mn12$ CoKri(CEAS12)	5.19	5.69	0.821 e	0.823
3	Mn12 ID x $Mn12$ CoKri(CEAS12)	5.19	5.69	0.647 mb	0.686
4	Mn12 ID x $Mn12$ CoKri(CEAS12)	5.19	5.69	0.520 b	0.571
5	Mn12 ID x $Mn12$ CoKri(CEAS12)	5,19	5,69	0.559 b	0.599
6	Mn12 ID x $Mn12$ CoKri(CEAS12)	5,19	5,69	0.468 b	0.504
7	Mn12 ID x $Mn12$ CoKri(CEAS12)	5,19	5,69	0.398 rz	0.433
, 8	Mn12 ID x $Mn12$ CoKri(CEAS12)	5,19	5,69	0.340 rz	0.372
q	Mn12 ID x $Mn12$ CoKri(CEAS12)	5,19	5,69	0.352 rz	0.384
10	Mn12 ID x $Mn12$ CoKri(CEAS12)	5,19	5,69	0.316 rz	0.345
2	$Mn12 IOD \times Mn12 Kri$	2 13	2 37	0.895 e	0.896
3	$Mn12 IOD \times Mn12 Kri$	2.13	2.37	0.862 e	0.875
4	$Mn12 IOD \times Mn12 Kri$	2.13	2.37	0.807 e	0.826
5	$Mn12 IQD \times Mn12 Kri$	2.13	2.37	0.819 e	0.833
6	$Mn12 IOD \times Mn12 Kri$	2.13	2.37	0.770 mb	0.784
7	$Mn12 IOD \times Mn12 Kri$	2.13	2.37	0.762 mb	0.774
8	Mn12 IOD x Mn12 Kri	2 13	2.37	0.682 mb	0.697
9	Mn12 IOD x Mn12 Kri	2 13	2,37	0.695 mb	0 708
10	Mn12 IOD x Mn12 Kri	2 13	2.37	0.665 mb	0.678
2	$Mn12 IOD \times Mn12 CoKri(CEAS12)$	2 28	2 56	0,000 mis	0,902
2	$Mn12 IOD \times Mn12 CoKri(CEAS12)$	2 28	2,56	0.849 e	0.860
4	$Mn12 IOD \times Mn12 CoKri(CEAS12)$	2.28	2.56	0.778 mb	0.793
- 5	$Mn12 IOD \times Mn12 CoKri(CEAS12)$	2.28	2,56	0.818 e	0.829
6	$Mn12 IOD \times Mn12 CoKri(CEAS12)$	2.28	2,56	0.766 mb	0.777
7	$Mn12 OD \times Mn12 CoKri(CEAS12)$	2 28	2.56	0.748 mh	0.758
r R	$Mn12 OD \times Mn12 CoKri(CEAS12)$	2,20	2.56	0.653 mb	0.666
0 0	$Mn12 OD \times Mn12 CoKri(CEAS12)$	2,20	2,56	0.680 mb	0.691
9 10	$Mn12 OD \times Mn12 OK Ki(CEAS12)$	2,20	2,56	0.642 mb	0.653
10		2,20	2,00	0,072 110	

continua...

2	Mn12_Kri x Mn12_CoKri(CEAS12)	1,73	1,89	0,942 e	0,942
3	Mn12_Kri x Mn12_CoKri(CEAS12)	1,73	1,89	0,903 e	0,909
4	Mn12_Kri x Mn12_CoKri(CEAS12)	1,73	1,89	0,852 e	0,862
5	Mn12_Kri x Mn12_CoKri(CEAS12)	1,73	1,89	0,858 e	0,868
6	Mn12_Kri x Mn12_CoKri(CEAS12)	1,73	1,89	0,822 e	0,831
7	Mn12 Kri x Mn12 CoKri(CEAS12)	1,73	1,89	0,812 e	0,820
8	Mn12 Kri x Mn12 CoKri(CEAS12)	1,73	1,89	0,774 mb	0,782
9	Mn12 Kri x Mn12 CoKri(CEAS12)	1,73	1,89	0,758 mb	0,767
10	Mn12 Kri x Mn12 CoKri(CEAS12)	1.73	1.89	0.743 mb	0.751
2	Mn13 ID x Mn13 IQD	5.00	4.66	0.812 e	0.843
3	Mn13 ID x Mn13 IQD	5.00	4.66	0.679 mb	0.740
4	Mn13 ID x $Mn13$ IOD	5.00	4.66	0.641 mb	0.686
5	Mn13 ID x $Mn13$ IOD	5.00	4.66	0.542 b	0.604
6	Mn13 ID x $Mn13$ IOD	5,00	4 66	0.484 b	0.542
7	$Mn13 ID \times Mn13 IOD$	5,00	4 66	0.472 b	0.526
י 8	$Mn13 ID \times Mn13 IOD$	5,00	4 66	0,444 b	0,493
0		5,00	4,00	0,396 rz	0,400
9 10		5,00	4,00	0,330 1Z	0,441
10		2 37	4,00	0,004	0,415
2		2,37	2,17	0,904 6	0,921
3		2,37	2,17	0,000 e	0,094
4		2,37	2,17		0,826
5	Mn13_ID x Mn13_Kri	2,37	2,17	0,804 e	0,844
6	Mn13_ID x Mn13_Kri	2,37	2,17	0,742 mb	0,784
7	Mn13_ID x Mn13_Kri	2,37	2,17	0,712 mb	0,752
8	Mn13_ID x Mn13_Kri	2,37	2,17	0,744 mb	0,777
9	Mn13_ID x Mn13_Kri	2,37	2,17	0,664 mb	0,701
10	Mn13_ID x Mn13_Kri	2,37	2,17	0,713 mb	0,743
2	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,838 e	0,868
3	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,786 mb	0,834
4	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,692 mb	0,738
5	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,723 mb	0,771
6	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,633 mb	0,686
7	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,661 mb	0,706
8	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,613 mb	0,656
9	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,553 b	0,595
10	Mn13_ID x Mn13_CoKri(CEAS13)	3,25	3,00	0,588 b	0,626
2	Mn13_IQD x Mn13_Kri	4,25	4,12	0,791 mb	0,826
3	Mn13_IQD x Mn13_Kri	4,25	4,12	0,696 mb	0,756
4	Mn13_IQD x Mn13_Kri	4,25	4,12	0,703 mb	0,738
5	Mn13_IQD x Mn13_Kri	4,25	4,12	0,632 mb	0,678
6	Mn13_IQD x Mn13_Kri	4,25	4,12	0,582 b	0,625
7	Mn13_IQD x Mn13_Kri	4,25	4,12	0,533 b	0,579
8	Mn13_IQD x Mn13_Kri	4,25	4,12	0,519 b	0,563
9	Mn13_IQD x Mn13_Kri	4,25	4,12	0,484 b	0,523
10	Mn13_IQD x Mn13_Kri	4,25	4,12	0,474 b	0,511
2	Mn13_IQD x Mn13_CoKri(CEAS13)	2,85	2,73	0,886 e	0,906
3	Mn13 IQD x Mn13 CoKri(CEAS13)	2,85	2,73	0,831 e	0,860
4	Mn13 IQD x Mn13 CoKri(CEAS13)	2,85	2,73	0,801 e	0,824
5	Mn13 IQD x Mn13 CoKri(CEAS13)	2,85	2,73	0,749 mb	0,777
6	Mn13 IQD x Mn13 CoKri(CEAS13)	2,85	2,73	0,727 mb	0,753
7	Mn13 IQD x Mn13 CoKri(CEAS13)	2,85	2,73	0,674 mb	0,706
8	Mn13 IQD x Mn13 CoKri(CEAS13)	2.85	2,73	0,653 mb	0,683
9	Mn13 IQD x Mn13 CoKri(CEAS13)	2,85	2,73	0,639 mb	0,665
10	Mn13 $IQD \times Mn13 CoKri(CEAS13)$	2,85	2,73	0,601 mb	0,628
. 🗸		, ·	· ·		

...continuação

continua...

					continuação
2	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,844 e	0,874
3	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,844 e	0,879
4	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,804 e	0,831
5	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,823 e	0,851
6	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,748 mb	0,781
7	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,734 mb	0,768
8	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,726 mb	0,757
9	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,671 mb	0,702
10	Mn13_Kri x Mn13_CoKri(CEAS13)	2,20	2,12	0,713 mb	0,738

Nota: Classificação de concordância entre valores interpolados (LANDIS e KOCH, 1977; CAON e GENÚ, 2013). Legenda: e – excelente; mb – muito bom; b – bom; rz – razoável,

81	77	103	112	123	19	40	111	114	120
82	61	110	121	119	77	52	111	117	124
82	74	97	105	112	91	73	115	118	129
88	70	103	111	122	64	84	105	113	123
89	88	94	110	116	108	73	107	118	127
77	82	86	101	109	113	79	102	120	121
74	80	85	90	97	101	96	72	128	130
75	80	83	87	94	99	95	48	139	145
77	84	74	108	121	143	91	52	136	144
 87	100	47	111	124	109	0	98	134	144

Tabela 2 Localização de 100 valores da variável V distribuída em um grid de 1m² (ISAAKS e SRIVASTAVA, 1989)

Tabela 3 Localização de 50 valores da variável V distribuída em um grid de x = 1 m por y = 2 m (ISAAKS e SRIVASTAVA, 1989)

82	61	110	121	119	77	52	111	117	124
88	70	103	111	122	64	84	105	113	123
77	82	86	101	109	113	79	102	120	121
75	80	83	87	94	99	95	48	139	145
87	100	47	111	124	109	0	98	134	144

Nota: Valores das linhas ímpares da tabela original.

Tabela 4 Localização de 50 valores da variável V distribuída em um grid de x = 1 m por y = 2 m (ISAAKS e SRIVASTAVA, 1989)

81	77	103	112	123	19	40	111	114	120
82	74	97	105	112	91	73	115	118	129
89	88	94	110	116	108	73	107	118	127
74	80	85	90	97	101	96	72	128	130
77	84	74	108	121	143	91	52	136	144

Nota: Valores das linhas pares da tabela original.

Variável	Modelo	Co	C ₁	Alcance	IDE		ER	S _{ER}	ICE
	<u>Esf*</u>	0,0	638,5	2,6	0,0%	Fo	<u>0,00</u>	<u>1,05</u>	<u>0,05</u>
V	Exp	0,0	672,1	3,3	0,0%	Fo	19,38	0,00	2,00
	Gau	92,7	546,6	2,2	14,5%	Fo	0,00	1,06	0,06
	Esf*	534,2	157,2	3,4	22,7%	Fo	-0,03	<u>1,03</u>	<u>1,35</u>
Vi	Exp	510,3	176,3	2,8	74,3%	Mo	<u>-0,02</u>	0,92	1,58
	Gau	588,0	102,6	3,1	85,1%	Fr	-0,03	1,04	1,46
Vp	Esf	306,4	287,6	3,4	48,4%	Мо	-0,02	0,96	2,00
	Exp*	205,6	398,4	3,4	34,0%	Mo	-0,02	<u>0,98</u>	<u>1,67</u>
	Gau	380,7	216,8	3,2	63,7%	Mo	-0,02	0,97	1,77

Tabela 5 Coeficientes de ajuste por krigagem ordinária e índice de comparação de erros (ICE) dos modelos para os valores da variável V (ISAAKS E SRIVASTAVA, 1989)

C0 - Efeito pepita; C1 - contribuição; A – Alcance, m; IDE – índice de dependência espacial, classificado segundo CAMBARDELLA et al., (1994) em: Fo – Forte; Mo – Moderada e Fr – Fraca,; ER - erro médio reduzido; SER - desvio padrão dos erros médios reduzido; V – Valores de 100 pontos de coleta da variável V (ISAAKS E SRIVASTAVA, 1989); Vi – Valores de 50 pontos considerando somente linhas ímpares da distribuição da variável V; Vi – Valores de 50 pontos considerando somente linhas pares da distribuição da variável V; Esf - Esférico; Exp – Exponencial; Gau – Gaussiano; Negrito e sublinhado – melhor desempenho; Menor ICE- melhor modelo.

Variável	Interpolador	Modelo	EM	DP _{EM}	ISI
	ID		-0,79	22,36	1,15
V	IQD		-0,44	20,89	0,65
	KRI	Esf*	0,00	18,99	<u>0,00</u>
	ID		-1,01	27,39	1,03
V_Ímpares	IQD		-0,85	26,49	<u>0,84</u>
	KRI	Esf*	-0,96	27,25	0,98
	ID		-0,59	24,09	1,06
V_Pares	IQD		-0,55	22,57	0,94
	KRI	Exp*	-0,53	22,54	0,90

Tabela 6 Erro médio (EM), desvio padrão do erro médio (DPEM) e índice de seleção de interpoladores (ISI) resultados da interpolação dos valores da variável V

Legenda: V – Variável V com 100 valores, distribuídos em grid de 1 m² (ISAAKS E SRIVASTAVA, 1989); V_Ímpares – Variável V com 50 valores, distribuídos em grid de x = 1 m e y = 2m, linhas ímpares da variável V; V_pares – Variável V com 50 valores, distribuídos em grid de x = 1 m e y = 2m, linhas pares da variável V.

Tabela 7 Valores de 40 pontos de coleta de teores de potássio (K) e valores de pH (CaCl₂), coletados em 2011, 2012 e 2013 na área de estudo

Ponto	K		К		K	
de	(cmolc/dm ³ ,	pH (2011)	(cmolc/dm ³ ,	pH (2012)	(cmolc/dm ³ ,	рн (2012)
<u>coleta</u>	0.89	54	0.49	4.6	2013)	52
2	0.31	4.7	0.32	4.0	0.26	5,1
3	1,14	4.7	0.4	3.9	0.38	5.1
4	0.33	5.0	0.25	5,1	0.24	5.6
5	1.14	5.3	0.81	4.8	0.53	5.4
6	1.01	5.0	0.6	4.7	0.26	4.8
7	1,09	5,6	0,49	5,2	0,35	5,5
8	0,73	5,2	0,79	5,1	0,37	5,4
9	1,14	5,6	0,89	5,4	0,50	5,4
10	0,48	5,1	0,73	5,1	0,40	5,1
11	0,5	4,7	0,52	4,8	0,35	5,1
12	0,7	5,0	0,53	4,8	0,28	5.00
13	0,55	5,2	0,53	4,8	0,34	5,2
14	0,27	5,1	0,32	4,7	0,26	5,1
15	0,53	4,6	0,64	4,6	0,48	5,2
16	0,46	4,6	0,43	4,6	0,28	4,8
17	0,54	5,1	0,65	5,0	0,42	5,2
18	1,14	5,3	0,56	4,8	0,55	5,2
19	0,38	5,4	0,46	5,1	0,25	5,4
20	0,86	5,6	0,64	5,2	0,54	5,7
21	0,9	5,4	0,86	5,2	0,48	5,8
22	0,79	5,3	0,68	5,4	0,37	5,5
23	1,11	5,2	0,87	5,3	0,45	5,7
24	0,69	5,2	0,78	5,1	0,6	5,5
25	0,51	5,2	0,53	5,1	0,44	5,4
26	0,56	5,4	0,69	5,5	0,49	5,3
27	1,12	5,3	0,8	5,0	0,56	5,4
28	0,9	5,1	0,85	4,8	0,47	5,2
29	0,65	4,9	0,96	4,8	0,58	5,3
30	1,14	5,3	0,65	4,8	0,37	5,3
31	1.00	5,1	1,01	5,1	0,51	5,3
32	0,47	5,2	0,42	4,8	0,33	5,2
33	0,3	4,8	0,27	4,8	0,2	4,9
34	0,45	5,0	0,38	4,8	0,18	5,5
35	0,77	5,6	0,81	5,5	0,37	5,7
36	1,14	5,3	1,12	5,2	0,63	5,6
37	0,8	5,1	0,81	5,0	0,37	5,4
38	0,88	5,5	0,49	5,2	0,37	5,5
39	0,19	5,1	0,48	4,8	0,23	5,3
40	0,85	5,6	0,85	5,7	0,59	6,1

Atributo		Média	Desvio padrão	Mínimo	Máximo
	2011	0,74	0,296	0,19	1,14
Potássio	2012	0,63	0,214	0,25	1,12
(cmolc/dm ³)	2013	0,40	0,121	0,18	0,63
	2011	5,17	0,278	4,60	5,60
рН	2012	4,96	0,356	3,90	5,70
(CaCl ²)	2013	5,34	0,267	4,80	6,10

Tabela 8 Estatística descritiva dos teores de potássio e valores de pH, coletados em 2011, 2012 e 2013 na

área de estudo