Export iten: EndNote BibTex

Please use this identifier to cite or link to this item: http://tede.unioeste.br/handle/tede/2625
Tipo do documento: Tese
Title: Modelos de predição do coeficiente de sorção no solo de pesticidas não iônicos: diferentes algoritmos de logP e uma abordagem alternativa de logS.
Autor: Reis, Ralpho Rinaldo dos 
Primeiro orientador: Sampaio, Silvio César
Resumo: A coleta de dados relativos aos danos causados pelos pesticidas sobre o meio ambiente e seus ecossistemas é lenta e onerosa. Desta maneira, grandes incentivos têm sido destinados às pesquisas que visam à construção de modelos matemáticos para predição de propriedades físicas, químicas ou biológicas de interesse ambiental. O coeficiente de sorção no solo normalizado para o conteúdo de carbono orgânico (Koc) é um importante parâmetro físico-químico utilizado nas avaliações de riscos ambientais das substâncias lançadas no meio ambiente. Assim, vários modelos para predição de logKoc, utilizando o parâmetro hidrofóbico (logP) ou o logaritmo da solubilidade em água (logS) como descritores, têm sido publicados nas últimas décadas. Muitas vezes, em virtude da ausência de valores experimentais confiáveis de logP ou logS, são usados algoritmos para o cálculo dessas propriedades. Apesar da disponibilidade e facilidade de acesso a diversos algoritmos para tal finalidade, os artigos científicos não descrevem o procedimento adotado para escolha do algoritmo usado nos estudos QSPR. Além disto, a forte correlação entre logP e logS impede que sejam usados em uma mesma equação obtida por regressão linear múltipla. Como o processo de sorção de um composto químico no solo está relacionado tanto com sua solubilidade em água como com sua partição água/matéria orgânica, espera-se que modelos que sejam capazes de combinar essas duas informações possam gerar resultados mais realistas. Este trabalho de tese é constituído de dois artigos. No primeiro artigo, foi feito um estudo para verificar a influência da escolha do algoritmo de logP na modelagem de logKoc. Foram construídos modelos que relacionam logKoc com logP a partir de diferentes algoritmos livres disponíveis. Todos os modelos foram avaliados quanto às suas qualidades estatísticas e poder de predição. Os resultados obtidos mostraram claramente que uma escolha arbitrária deste algoritmo pode não levar ao melhor modelo de predição. Por outro lado, uma boa escolha pode conduzir à obtenção de modelos simples com qualidades estatísticas e poder de predição comparáveis a de modelos mais complexos. No segundo artigo, o objetivo foi a proposição de uma abordagem alternativa para a modelagem de logKoc, utilizando um descritor simples de solubilidade, aqui designado como logaritmo da solubilidade corrigida pela partição octanol/água (logSP). Assim, foram construídos modelos com tal descritor e também com os descritores convencionais logP e logS, isolados ou associados com outras variáveis explicativas de fácil interpretação físico-química. Os modelos obtidos foram validados e comparados com outros modelos publicados anteriormente. Os resultados mostraram que o uso do descritor logSp em substituição aos descritores convencionais conduziu à obtenção de modelos simples com qualidades estatísticas e poder de predição superiores a de outros modelos mais complexos encontrados na literatura.
Abstract: Collecting data on pesticide effects on the environment and several ecosystems is a slow and costly process. Therefore, significant research efforts have been focused on developing mathematical models to predict physical, chemical or biological properties of environmental interest. The soil sorption coefficient normalized to organic carbon content (Koc) is a physicochemical key parameter used in environmental risk assessments of substances released into the environment. Thus, several logKoc prediction models that use hydrophobic parameter (logP) or the logarithm of water solubility (logS) as descriptor have been reported in the last decades. Mostly, due to the lack of reliable experimental values of logP or logS, algorithms are used to calculate such properties. Despite the availability and easiness to access several algorithms for this purpose, scientific studies do not describe the procedure adopted to choose the algorithm used in quantitative structure-property relationship (QSPR) studies. Furthermore, the strong correlation between logP and logS prevents their application in the same mathematical equation obtained by multiple linear regression method. Since the sorption process of a chemical compound in soil is related both to its water solubility and its water/organic matter partition, it is expected models that are able to combine these two properties will can record more realistic results. This doctoral dissertation consists of two scientific papers. In the first one, a study was carried out to check the influence of choosing logP algorithm on logKoc modeling. Models were constructed to relate logKoc with logP according to different freeware algorithms. All models were assessed based on their statistic qualities and predictive power. The obtained results clearly showed that an arbitrary choice of the algorithm may not result in the best prediction model. On the other hand, a good choice can lead to obtaining simple models with statistic qualities and predictive power comparable to more complex models. The second paper aims at proposing an alternative approach for logKoc modeling, using simple descriptor of solubility, here referred as logarithm of corrected solubility by octanol/water partition (logSP). Thus, models were built with this descriptor and also with logP and logS conventional descriptors, which are isolated or associated with other explicative variables of easy physicochemical interpretation. The obtained models were validated and compared to other models previously published. The results showed that the use of logSP descriptor to replace the conventional ones led to obtaining simple models with statistic qualities and predictive power that are higher than other more complex models already found in literature.
Keywords: riscos ambientais
modelagem
parâmetro hidrofóbico
contaminação do solo
solubilidade em água
QSPR
environmental risks
modeling
hydrophobic parameter
soil contamination
water solubility
QSPR
CNPq areas: CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Idioma: por
País: BR
Publisher: Universidade Estadual do Oeste do Parana
Sigla da instituição: UNIOESTE
Departamento: Engenharia
Program: Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola
Citation: REIS, Ralpho Rinaldo dos. Modelos de predição do coeficiente de sorção no solo de pesticidas não iônicos: diferentes algoritmos de logP e uma abordagem alternativa de logS.. 2013. 85 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2013.
Tipo de acesso: Acesso Aberto
URI: http://tede.unioeste.br:8080/tede/handle/tede/2625
Issue Date: 17-May-2013
Appears in Collections:Doutorado em Engenharia Agrícola (CVL)

Files in This Item:
File SizeFormat 
Ralpho.pdf2.15 MBAdobe PDFView/Open Preview


Items in TEDE are protected by copyright, with all rights reserved, unless otherwise indicated.