UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ CÂMPUS DE CASCAVEL CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLA

SIMULAÇÕES HIDROLÓGICAS DE CENÁRIOS DE USO E OCUPAÇÃO DO SOLO NA BACIA DRENADA PELO ALTO VALE DO RIO MARRECAS (PR)

WAGNER DE AGUIAR

CASCAVEL – PARANÁ – BRASIL

2017

WAGNER DE AGUIAR

SIMULAÇÕES HIDROLÓGICAS DE CENÁRIOS DE USO E OCUPAÇÃO DO SOLO NA BACIA DRENADA PELO ALTO VALE DO RIO MARRECAS (PR)

Tese apresentada ao Programa de Pós-Graduação em Engenharia Agrícola como requisito para a obtenção do título de Doutor em Engenharia Agrícola, área de concentração em Recursos Hídricos e Saneamento Ambiental.

Orientador: Prof. Dr. Silvio César Sampaio Co-Orientador: Prof. Dr. Julio Cesar Paisani Co-Orientador: Prof. Dr. Ralpho Rinaldo dos Reis

CASCAVEL – PARANÁ – BRASIL

2017

	Dados Internacionais de Catalogação-na-Publicação (CIP) (Sistema de Bibliotecas – UNIOESTE – Campus Cascavel)						
A233s	Aguiar, Wagner de. Simulações hidrológicas de cenários de uso e ocupação do solo na bacia drenada pelo alto vale do rio Marrecas (PR) / Wagner de Aguiar Cascavel (PR), 2017. 108f.:il.						
	Orientador: Prof. Dr. Silvio César Sampaio Co-Orientador: Prof. Dr. Julio Cesar Paisani Co-Orientador: Prof. Dr. Ralpho Rinaldo dos Reis						
	Tese (Doutorado) – Universidade Estadual do Oeste do Paraná, Campus de Cascavel, 2017. Programa de Pós-Graduação em Engenharia Agrícola. Inclui bibliografia						
	 Cobertura dos solos. 2. Rio Marrecas. 3. Escoamento. 4. Inundações. I. Sampaio, Silvio César. II. Paisani, Julio Cesar. III. Reis, Ralpho Rinaldo. IV. Universidade Estadual do Oeste do Paraná. V. Título. 						
	CDD 632.17						
	Rosângela A. A. Silva – CRB 9ª/1810						

Revisor de Português, Inglês e de normas: Dhandara Capitani, 04 de dezembro de 2017.

WAGNER DE AGUIAR

Simulações Hidrológicas de Cenários de Uso e Ocupação do Solo na Bacia Drenada pelo Alto Vale do Rio Marrecas (PR)

Tese apresentada ao Programa de Pós-Graduação em Engenharia Agríco la em cumprimento parcial aos requisitos para obtenção do título de Doutor em Enge nharia Agrícola, área de concentração Recursos Hídricos e Saneamento Ambiental, I inha de pesquisa Recursos Hídricos, APROVADO pela seguinte banca examinadora

Orientador - Silvio César Sampaio

Universidade Estadual do Oeste do Paraná - Campus de Cascavel (UNIOESTE)

Fernando César Manosso

Universidade Tecnológica Federal do Paraná - Campus Francisco Beltrão (UTFPR)

Universidade Estadual do Oeste do Paraná - Campus de Cascavel (UNIOESTE)

races 4 toma /617

Monica Sarolli Silva de Mendonça Costa

Universidade Estadual do Oeste do Paraná - Campus de Cascavel (UNIOESTE)

Jonathan Dieter Universidade Federal do Paraná - Campus de Palotina (UFPR)

Cascavel, 8 de novembro de 2017

BIOGRAFIA

Wagner de Aguiar, nascido em 25 de novembro de 1980, natural de Francisco Beltrão-PR, é Tecnólogo em Química Industrial pelo Centro Federal de Educação Tecnológica do Paraná (2003); Engenheiro Ambiental pela União de Ensino do Sudoeste do Paraná (2010); Mestre em Geografia pela Universidade Estadual do Oeste do Paraná (2012); Especialista em Gestão Ambiental e Desenvolvimento Sustentável pelo Centro Universitário Internacional (2013). Profissionalmente, atuou como Assessor Ambiental e Responsável Técnico da empresa NUPPEMAFI (2005-2009) e como responsável técnico pelo Setor Ambiental da empresa FOLEM Indústria e Comércio Ltda (2008-2011). Atualmente é Professor do Departamento de Engenharia Ambiental da Universidade Tecnológica Federal do Paraná, Câmpus de Francisco Beltrão (2012-atual).

DEDICATÓRIA

Ao meu filho, Artur Sinhorini de Aguiar, e minha esposa, Marcia Regina Sinhorini, Aos meus pais, Rui Artur de Aguiar e Alcidia Justen de Aguiar, A toda minha família e amigos, Razões e inspirações do meu viver

AGRADECIMENTOS

Ao meu filho Artur Sinhorini de Aguiar e minha esposa Marcia Regina Sinhorini pela compreensão, companheirismo e apoio incondicional nos momentos difíceis;

Aos meus pais Rui Artur de Aguiar e Alcidia Justen de Aguiar pelos ensinamentos de humildade, dignidade e dedicação;

Ao Professor Silvio César Sampaio pela orientação, confiança e pelo compartilhamento dos conhecimentos;

Ao meu grande amigo Edimar Sergio da Silva, sua esposa Gabriela Vieira da Luz e seu filho e meu afiliado Bernardo Vieira da Silva, pelos momentos fantásticos de uma amizade verdadeira e inspiradora;

Ao Professor Julio Cesar Paisani pelo apoio e orientação de mais uma etapa de minha formação profissional;

Ao Professor Eloy Lemos de Mello pela indicação de uso do modelo HEC-HMS para desenvolvimento das simulações hidrológicas;

A Universidade Tecnológica Federal do Paraná, Câmpus de Francisco Beltrão, pela possibilidade de afastamento para capacitação e dedicação integral aos estudos;

Ao Programa de Pós-Graduação em Engenharia Agrícola da Universidade Estadual do Oeste do Paraná pela oportunidade de qualificação;

Ao 3º Subgrupamento de Bombeiros Independente do Corpo de Bombeiros do Paraná, pelo apoio pessoal e logístico às incursões a campo para coleta de informações essenciais para a realização deste trabalho;

Ao Laboratório de Geoprocessamento da Universidade Estadual do Oeste do Paraná, Câmpus de Francisco Beltrão, em especial ao Professor Elvis Rabuske Hendges, pela ajuda nas classificações de usos do solo;

A Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná em parceria com a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de apoio à capacitação docente.

v

SIMULAÇÕES HIDROLÓGICAS DE CENÁRIOS DE USO E OCUPAÇÃO DO SOLO NA BACIA DRENADA PELO ALTO VALE DO RIO MARRECAS (PR)

RESUMO GERAL

As alterações no uso e na ocupação do solo na bacia hidrográfica afetam o ciclo hidrológico, podendo potencializar ou retardar o escoamento superficial das águas pluviais, bem como os impactos inerentes a este processo. Este trabalho objetivou a compreensão da variação do escoamento superficial de duas condições principais de ocupação do solo na bacia que drena o alto vale do rio Marrecas, à montante do perímetro urbano de Francisco Beltrão-PR. A primeira condição avaliou as implicações nos picos de vazão das alterações nos critérios de delimitação das áreas de preservação permanente (APPs) instituídas pelo novo Código Florestal (Lei 12.651/2012), em detrimento das regras da antiga norma (Lei 4.771/1965) e as comparou, ainda, com o atual uso do solo na bacia, no processo de mitigação das inundações. A segunda condição estudou a distribuição temporal dos potenciais de geração de escoamento superficial e dos riscos de inundação decorrentes da dinâmica sazonal do uso do solo agrícola para cada mês do ano. Os efeitos do escoamento superficial foram verificados por meio de picos de vazão simulados pelo modelo HEC-HMS, submetidos a sete probabilidades de ocorrências de precipitações. As alterações no Código Florestal indicaram a redução de APPs de 44,5 para 13,7%, tendo como conseguência o aumento médio nos picos de vazão em 22,1%. A utilização sazonal do solo agrícola delimitou temporalmente os meses de abril e março como os maiores potenciais geradores de escoamento superficial, bem como os menores, janeiro e agosto, permitindo o estabelecimento de taxas de aumento nos picos de vazão do rio Marrecas em função da ocupação do solo na bacia contribuinte, que variaram de 0,78 a 1,64 m³ s⁻¹ para cada km² de solo exposto, dependendo da probabilidade de precipitação. Conclui-se que a instituição do novo Código Florestal comparado ao antigo reduziu em 69.2% as APPs passíveis de recuperação, minimizando as possibilidades legais de mitigação das inundações ao perímetro urbano de Francisco Beltrão, bem como o uso e a ocupação sazonal do solo agrícola estabeleceram forte correlação entre o acréscimo nos picos de vazão e a ocupação por solo exposto.

PALAVRAS-CHAVE: cobertura do solo, escoamento superficial, pico de vazão, inundação, rio Marrecas.

HYDROLOGICAL SIMULATIONS OF SCENARIOS OF USE AND SOIL OCCUPATION IN THE DRAINAGE BASIN OF THE UPPER VALLEY OF THE MARRECAS RIVER (PR)

GENERAL ABSTRACT

Changes in soil use and occupation in watersheds affect the hydrological cycle, which may potentialize or delay the surface runoff of rainwater, as well as the impacts brought about by such process. This work aimed to understand the variation of the surface runoff of two main soil occupation conditions in the basin that drains the high valley of the Marrecas river, upstream of the urban perimeter of Francisco Beltrão-PR. The first condition evaluated the implications of the changes in the criteria for the delimitation of permanent preservation areas (PPAs) established by the new Forest Code (Law 12.651/2012), in detriment of the old standard (Law 4.771/1965), comparing them with the current use of the soil in the basin, in the process of flood mitigation. The second condition studied the temporal distribution generation potentials of surface runoff and the flood risks due to the seasonal dynamics of agricultural land use for each month of the year. The effects of surface runoff were verified by means of HEC-HMS simulated flow peaks, submitted to seven probabilities of precipitation occurrences. The changes in the Forest Code indicated a reduction of PPAs from 44.5 to 13.7%, resulting in a 22.1% increase in average flow peaks. Seasonal use of agricultural land temporarily delimited the months of April and March as the highest potential runoff generators, as well as the lowest in January and August, allowing the establishment of increase rates in the Marrecas river flow peaks due to the occupation of the soil in the contributing basin, ranging from 0.78 to 1.64 m³s⁻¹ for each km² of exposed soil, depending on the probability of precipitation. It is concluded that the institution of the new Forest Code, compared to the old one, reduced in 69.2% the recoverable PPAs, minimizing the legal possibilities of flood mitigation to the urban perimeter of Francisco Beltrão, as well as the seasonal use and agricultural occupation of the soil established a strong correlation between the increase in the flow peaks and the occupation by exposed soil.

KEY-WORDS: soil cover, runoff, flow peak, overflood, Marrecas river.

SUMÁRIO

LISTA DE TABELASx						
L	LISTA DE FIGURAS xi					
1	INT	RODUÇÃO	. 1			
2	OB.	JETIVOS	.4			
	2.1	Objetivo geral	.4			
	2.2	Objetivos específicos	.4			
3	RE	VISÃO BIBLIOGRÁFICA	.5			
	3.1	Análise sistêmica	.5			
	3.2	Escoamento superficial	.7			
	3.3	Geomorfologia fluvial	.9			
	3.4	Vazões de cheia	11			
	3.5	Modelos hidrológicos	12			
	3.6	HEC-HMS	14			
4	REI	FERÊNCIAS	18			
5	AR	TIGOS	23			
	5.1 NO	ARTIGO 1. IMPLICAÇÕES NOS PICOS DE VAZÃO PERANTE AS ALTERAÇÕI CÓDIGO FLORESTAL BRASILEIRO	ΞS 23			
	5.2 GEF	ARTIGO 2. DINÂMICA SAZONAL DA COBERTURA DO SOLO AGRÍCOLA N RAÇÃO DO ESCOAMENTO SUPERFICIAL	√A 40			
6	СО	NSIDERAÇÕES FINAIS	54			
7	API	ÊNDICES	55			
	7.1 simu	Apêndice 1 – Atributos ou parâmetros de controle da bacia considerados para ulações hidrológicas no HEC-HMS	as 55			
	7.	1.1 Tabela de atributos das sub-bacias	55			
	7.	1.2 Tabela de atributos dos canais de drenagem	58			
	7.2	Apêndice 2 – Precipitações de projeto consideradas no referido estudo	61			
	7.	2.1 Intensidades das precipitações de projeto	61			

7.2.2 Distribuições das precipitações de projeto para cada período de retorno pelo método dos blocos alternados63
7.2.3 Exemplo da distribuição gráfica das precipitações de projeto (hietograma) pelo método dos blocos alternados70
 7.3 Apêndice 3 – Exemplos dos resultados das simulações hidrológicas obtidas no HEC- HMS71
7.3.1 Hidrograma de vazão e hietogramas de chuvas das sub-bacias71
7.3.2 Hidrograma de vazão do exutório da bacia72
7.3.3 Tabelas com valores dos picos de vazão, tempo de pico e volume escoado superficialmente em cada sub-bacia e no exutório da bacia
7.4 Apêndice 4 – Resultados da analise estatística do Artigo 1 no Programa R 80
7.5 Apêndice 5 – Resultados da analise estatística do Artigo 2 no Programa R
8 ANEXOS
8.1 Anexo 1 – Normas para autores da Revista Engenharia Agrícola

LISTA DE TABELAS

ARTIGO 1

Tabela 1.	Picos de	e vazão	gerados	para o	s cenários	de us	o do	solo	de	referência,	este	uso
com APP	s adequa	das ao i	novo e ad	o antigo	Código Fl	oresta	l					. 34

ARTIGO 2

LISTA DE FIGURAS

ARTIGO 1

ARTIGO 2

1 INTRODUÇÃO

As mudanças no uso e na ocupação do solo, motivadas pela exploração humana em busca de recursos para o desenvolvimento, podem ter consequências diversas sobre o ciclo das águas na bacia hidrográfica. Os principais impactos são as reduções nas taxas de infiltração, aprofundamento dos lençóis freáticos e aumento no escoamento superficial, alterando os padrões de fluxo e podendo aumentar picos de vazão em períodos úmidos (BROWN et al., 2005; CANHOLI, 2005; DEASY et al., 2014; SANYAL et al., 2014; ALVARENGA et al., 2016).

O escoamento superficial corresponde ao componente do ciclo hidrológico relacionado ao deslocamento das águas sob o solo. Conhecimentos sobre este segmento do ciclo das águas são de fundamental importância para a maioria dos estudos hidrológicos ligados ao aproveitamento da água superficial, bem como para proteção contra as consequências provocadas por seu deslocamento. Além disso, o escoamento superficial está relacionado ao transporte de partículas de solo em suspensão, compostos químicos, matéria orgânica, sementes e defensivos agrícolas, que causam prejuízos à produção agropecuária e poluem os cursos d'água (VILLELA; MATTOS, 1975; PRUSKI et al., 2004).

Dentre os componentes do ciclo hidrológico, o escoamento superficial é o que merece maior atenção, uma vez que sua ocorrência determina a elevação relativamente rápida das descargas nos cursos d'água (CANHOLI, 2005; GRIBBIN, 2013; TUCCI, 2012). Em resposta ao escoamento superficial, os picos de vazão indicam o momento de máxima ocupação pela inundação, cujo transbordamento para suas margens é consequência da incapacidade de drenagem da descarga pelos cursos d'água (TUCCI; BERTONI, 2003; CANHOLI, 2005; DEASY et al., 2014; SANYAL et al., 2014).

As alterações no ciclo hidrológico, em especial na dinâmica do escoamento superficial, em função das atividades antrópicas, têm seu ápice no processo de urbanização. A concentração populacional nas áreas urbanas é capaz de afetar o ciclo das águas de acordo com o grau de desenvolvimento e ocupação territorial (SURIYA; MUDGAL, 2012; ZOPE et al., 2016; NIEMI et al., 2017). A concentração populacional em centros urbanos ocorre historicamente ao longo dos rios, tendo em vista a utilização dos corpos hídricos como fonte de alimento, via de transporte, dessedentação e despejo de dejetos (CANHOLI, 2005). Este processo é observado também na ocupação urbana de Francisco Beltrão, Sudoeste do Paraná, Brasil, que, de acordo com estimativas do IBGE, possui uma população de 87.491 habitantes em 2016, sendo que 85% destes são residentes urbanos. O perímetro urbano de Francisco Beltrão é cortado pelo rio Marrecas, que, apesar de ser fonte de água para o abastecimento público e receptor de dejetos, tem ocasionado prejuízos diversos nos últimos anos, devido às recorrentes inundações pelo extravasamento das águas do rio para sua planície de inundação.

De acordo com registros da Defesa Civil de Francisco Beltrão, dados históricos do Instituto Águas Paraná e Andres et al. (2015), ocorreram sete eventos de inundações provocadas pelo extravasamento do rio Marrecas desde o ano de 2010, com o número de pessoas atingidas variando de acordo com os níveis das inundações, sendo que a maior cota registrada ocorreu em maio de 2014, com 1.050 desabrigados. O rio Marrecas foi submetido ao longo dos últimos anos a processos de dragagem para alargamento e aprofundamento do leito em seu percurso no perímetro urbano, com o objetivo de aumentar a área transversal de drenagem, sendo a última realizada em 2013; entretanto, a maior cota dos últimos anos foi registrada na sequência deste processo de dragagem, questionando a eficiência destas medidas estruturais de drenagem urbana na mitigação das inundações.

A bacia contribuinte à montante do perímetro urbano de Francisco Beltrão, que delimita o alto vale do rio Marrecas, possui 0,7% de sua área ocupada por lâminas d'água, 1,7% por pastagens permanentes, 32,3% por florestas e 65,3% por atividades agrícolas. Esta região foi colonizada por imigrantes dos estados de Santa Catarina e do Rio Grande do Sul, em maiores proporções a partir da década de 1940 (CASSOL; MORAIS, 2014), que ocuparam pequenas parcelas de terra, caracterizando uma forma de produção agrícola familiar (SAVOLDI; CUNHA, 2010). Este modelo de ocupação provocou profundas alterações na paisagem, com a substituição da Floresta Ombrófila Mista pelo uso agrícola (CASSOL; MORAIS, 2014), potencializando o processo de escoamento superficial.

A complexidade de fatores que atuam na bacia hidrográfica é simplificada pelos modelos hidrológicos, ferramentas computacionais capazes de simulações de diferentes cenários climáticos e de ocupação do solo, permitindo o ordenamento do território, estimulando o planejamento e a gestão da bacia, possibilitando assim a previsão dos riscos de inundações (TUCCI, 2005; RAZI et al., 2010). O HEC-HMS é um dos modelos computacionais de ampla utilização por todo o mundo, permitindo a realização de simulações hidrológicas sob diversas condições morfoclimáticas. Com dados de entrada de boa qualidade, é capaz de uma condição ideal de representação da bacia hidrográfica (HALWATURA; NAJIM, 2013). Além disso, o programa HEC-HMS já foi utilizado para averiguação dos impactos nos picos de vazão, provocados pelas mudanças no uso do solo ao longo de anos de intervenção humana na bacia (OLANG; FÜRST, 2011), eventos extremos de precipitação e suas vazões de cheias geradas (PANIGRAHI; PAUL, 2014)

Diante da necessidade de compreensão do comportamento hidrológico da bacia hidrográfica que delimita o alto vale do rio Marrecas, este trabalho executou simulações dos picos de vazão de duas condições principais de uso e ocupação do solo. A primeira contemplou as alterações nos critérios de delimitação das áreas de preservação permanente instituídas pelo novo Código Florestal (Lei 12.651/2012), em detrimento às regras da antiga norma (Lei 4.771/1965), e as comparou, ainda, com o atual uso do solo na bacia, no processo de mitigação das inundações. A segunda condição avaliou a dinâmica

sazonal do uso do solo agrícola para cada mês do ano, com intuito de compreender a distribuição temporal dos potenciais de geração de escoamento superficial e dos riscos de inundação.

2 OBJETIVOS

2.1 Objetivo geral

Este trabalho objetivou o estudo do comportamento hidrológico do escoamento superficial da bacia delimitada pelo alto vale do rio Marrecas à montante do perímetro urbano de Francisco Beltrão, sob diferentes cenários de uso e ocupação do solo.

2.2 Objetivos específicos

- Avaliar as implicações nos picos de vazão perante as alterações nos critérios de classificação das áreas de preservação permanente, instituídas pelo novo Código Florestal, em detrimento à antiga norma e ao atual uso do solo;
- Compreender a distribuição temporal dos potenciais de geração de escoamento superficial e dos riscos de inundação, decorrentes da dinâmica sazonal do uso do solo agrícola.

3 REVISÃO BIBLIOGRÁFICA

3.1 Análise sistêmica

Pode-se considerar que toda água utilizada pelo homem provenha da atmosfera, quando as gotículas de água atingem determinada dimensão, precipitam-se em forma de chuva, na grande maioria. Parte da precipitação não atinge o solo devido ao processo de evaporação ocorrido na queda e na superfície das folhas das plantas. A parte que atinge o solo infiltra, escoa sobre a superfície ou é evapotranspirada, por evaporação na superfície do solo e pela transpiração das plantas. Toda a água que atinge o solo, com exceção das águas armazenadas subterraneamente, em determinado momento será evaporada no continente ou no mar, voltando à atmosfera e fechando o ciclo hidrológico (PINTO et al., 1976).

A bacia hidrográfica ou de drenagem é entendida como unidade espacial ou célula básica de análise ambiental, delimitada topograficamente por divisores de água, e corresponde à área drenada por um determinado rio ou por um sistema fluvial (VILLELA; MATTOS, 1975; CHRISTOFOLETTI, 1980; VITTE; GUERRA, 2004). A bacia hidrográfica é responsável por interceptar a precipitação e transportá-la até o curso d'água. A delimitação da bacia de drenagem é definida por um ponto escolhido no curso d'água, que constitui a saída do escoamento produzido por ela, denominado exutório da bacia (GRIBBIN, 2013).

A entrada de água na bacia hidrográfica se faz basicamente através da precipitação em forma de chuva. Na superfície terrestre a água pode tomar diversos caminhos; entretanto, os mais importantes para a engenharia são a infiltração e o escoamento superficial (TUCCI, 2012). A infiltração da água tende a diminuir com o tempo de precipitação, sendo que o início do escoamento superficial decorre basicamente de dois processos: a partir do momento em que a intensidade da precipitação supera a capacidade de infiltração (escoamento superficial hortoniano) ou quando o solo se encontra totalmente saturado (escoamento superficial saturado). Contudo, para a água chegar até o canal, ela percorre ainda o fluxo de base gerado pela infiltração, que permite a recarga do lençol freático, e o fluxo subsuperficial, que percola lateralmente a uma pequena profundidade. Estes processos podem ser observados na Figura 1 (DUNNE, 1980; PAISANI, 1998).

Figura 1 Caminhos da água na encosta, baseado em Dunne (1978).

A água constitui um dos elementos físicos mais importantes na composição da paisagem terrestre, interligando os fenômenos da atmosfera aos da litosfera, através das chuvas, bem como um dos elementos químicos, atuando no intemperismo das rochas. A água tem papel de grande importância como agente modelador do relevo da superfície terrestre, atuando principalmente através do escoamento superficial na erosão, controlando tanto a formação como o comportamento mecânico dos mantos de materiais alterados (GUERRA; CUNHA, 2005).

A erosão como agente degradante dos solos e de materiais alterados da rocha, bem como o intemperismo, e atuando analogamente com este, tem como agentes ativos três processos principais – os físicos, químicos e biológicos – na remoção de sedimentos e modelagem da paisagem, apesar de o processo biológico ser interpretado como físico ou químico, e até mesmo todos os processos serem resumidos como físicos ou mecânicos, tendo em vista a predominância deste processo na remoção de sedimentos (SUGUIO, 2003).

А substituição das florestas nas bacias hidrográficas motivada pelo desenvolvimento humano tem como consequência o aumento do escoamento superficial das águas pluviais e das perdas de solo, pela redução da transpiração e da interceptação promovidas pela vegetação nativa (GITHUI et al., 2009; ZHANG et al., 2015; EUM et al., 2016; SILVA et al., 2016; LOTZ et al., 2017). O cultivo agrícola moderno, principal substituto da cobertura florestal, juntamente com pastagens, potencializa ainda mais o processo de escoamento superficial, devido à compactação dos horizontes de solo causado pelo tráfego de máquinas agrícolas e animais, aumentando a densidade aparente, reduzindo as taxas de infiltração e o abastecimento dos aquíferos subterrâneos (ANKENY et al., 1990, ABU-HAMDEH, 2003; GÓMEZ-RODRÍGUEZ et al., 2013, FEITOSA et al., 2015; SILVA WM et al., 2016).

Os eventos extremos de precipitação, definidos como ocorrências raras, que têm seus valores distantes das médias, aliado às alterações na cobertura do solo são os principais potencializadores dos processos relacionados ao escoamento superficial (SAREWITZ; PIELKE JR., 2000; SANYAL et al., 2014; EUM et al., 2016; LOTZ et al., 2017; MAYERHOFER et al., 2017). As precipitações elevadas tendem a gerar grandes parcelas de escoamento superficial, que, acumuladas nos canais, superam suas capacidades de drenagem e extravasam para as áreas ribeirinhas, causando inundações. Seus prejuízos, entretanto, dependem do grau de ocupação destas áreas e da frequência com que estas inundações ocorrem (TUCCI, 2012).

Historicamente, o desenvolvimento urbano ocorre próximo aos rios, que forneciam o abastecimento de água para a população, a animais, recebiam os dejetos, além de serem vias de transporte. Com o passar do tempo, a urbanização acelerada desconsiderou os aspectos relacionados à drenagem urbana, observando-se grande impermeabilização do solo e ocupação de fundos de vale. Fatores estes que, combinados a eventos extremos de precipitação, têm como resultado inundações destas áreas urbanas e grandes prejuízos sociais, econômicos e ambientais (CANHOLI, 2005).

Diante de tais problemas, surge a demanda por modelos hidrológicos que representem os eventos causadores das inundações. Entretanto, há a necessidade de um esforço enorme e contínuo, por parte da comunidade científica, para que estes modelos possam trabalhar com informações consistentes e seguras, obtendo informações adequadas ao ambiente representado (PALACIOS-VÉLEZ et al., 1998). A representação dos processos hidrológicos na bacia hidrográfica é extremamente complexa, a ponto de não existir uma formulação matemática capaz de descrevê-las completamente. Na maioria dos casos, a modelagem hidrológica é somente uma representação aproximada da realidade, mas que com esforços e o monitoramento contínuos permite o ajuste do modelo às características hidrológicas da bacia (RENNÓ, 2003; RAZI et al., 2010; DU et al., 2012; PONTES et al., 2016; KURTZ et al., 2017).

A simulação hidrológica tem por objetivo a previsão do comportamento da bacia hidrográfica, bem como os impactos sobre ela, de diferentes cenários ou condições de ocupação do solo, possibilitando que medidas preventivas possam ser tomadas, contribuindo para a redução dos impactos ocasionados pelas inundações urbanas (TUCCI, 2005).

3.2 Escoamento superficial

Das fases básicas do ciclo hidrológico, possivelmente a mais importante para o engenheiro é a que se trata do transporte da água sobre a superfície terrestre, pois a maioria dos estudos hidrológicos está ligada ao aproveitamento da água superficial e à proteção contra os fenômenos provocados pelo seu deslocamento (VILLELA; MATTOS, 1975). O processo de formação do escoamento superficial é iniciado após a precipitação superar a interceptação promovida pela cobertura vegetal, exceder a capacidade de infiltração no solo e superar a retenção ocasionada pelo empoçamento da água em depressões superficiais (PRUSKI et al., 2004).

O fluxo de água superficial em uma encosta é o processo gerado pela parcela da chuva que supera a capacidade de infiltração do solo, as perdas por evaporação, o preenchimento das reentrâncias do solo e a transpiração, também chamada de precipitação excedente ou efetiva, dependendo do autor (CANHOLI, 2005; GRIBBIN, 2013).

O escoamento superficial pode ser classificado como difuso quando ocorre sem hierarquia e fixação dos leitos, de maneira laminar, ou concentrado, quando as águas se concentram fixando um leito (CHRISTOFOLETTI, 1980). O Escoamento Superficial é responsável pelo modelamento da superfície da terra, conduzido pela erosão dos solos (GUERRA; MARÇAL, 2006). Além disso, o escoamento superficial está relacionado ao transporte de partículas de solo em suspensão, compostos químicos, matéria orgânica, sementes e defensivos agrícolas, que causam prejuízos à produção agropecuária e poluem os cursos d'água (PRUSKI et al., 2004).

O fluxo superficial tem influência direta no hidrograma de vazão da seção de saída ou exutório, que drena determinada área delimitada por uma bacia ou uma cabeceira de drenagem. As alterações no volume de água drenado por unidade de tempo sofrem aumentos bruscos quando iniciada a contribuição do escoamento superficial, atingindo valor máximo na crista do hidrograma, conhecido como pico de vazão, como pode ser visualizado na Figura 2. A partir deste princípio é possível determinar que os aumentos nas vazões decorram basicamente do escoamento superficial, visto que o escoamento subterrâneo depende da percolação da água pelo solo, que ocorre lentamente em regime perene (VILLELA; MATTOS, 1975; CANHOLI, 2005; TUCCI, 2012; GRIBBIN, 2013).

Figura 2 Hietograma de precipitação e hidrograma de vazão (VILLELA; MATTOS, 1975).

O escoamento superficial sofre a influência de diversos fatores que podem intensificar ou não sua ocorrência, podendo ser de natureza climática ou fisiográfica. Os fatores climáticos destacam a intensidade e a duração das chuvas, entendendo-se que quanto maior a intensidade, da chuva mais rapidamente é superada a capacidade de infiltração. Quanto à duração, maiores serão as oportunidades de geração do escoamento superficial quanto maior for à duração da chuva (VILELLA; MATTOS, 1975). Enquanto os fatores fisiográficos estão relacionados ao uso e tipo do solo, determinando a capacidade de infiltração da água, e a topografia relacionada com a declividade das encostas (PORTO et al., 1999).

O tipo de solo, a topografia e a cobertura do solo são os fatores mais importantes no controle do processo de geração de escoamento superficial. A cobertura do solo é considerada o elemento dinâmico, podendo ser alterada diversas vezes ao longo de apenas um ano, na formação do escoamento superficial, visto que o tipo de solo e a topografia têm alterações insignificantes em curto prazo (MILLER et al., 2002). A análise das alterações na cobertura do solo na bacia hidrográfica são de fundamental importância para a compreensão do comportamento espaço-temporal do escoamento superficial das águas pluviais, bem como seus impactos socioeconômicos e ambientais (MARQUES et al., 2007; GITHUI et al., 2009; SANYAL et al., 2014; MU et al., 2015; ZHANG et al., 2015; SILVA VPR et al., 2016; YU et al., 2016; LOTZ et al., 2017; MAYERHOFER et al., 2017).

3.3 Geomorfologia fluvial

O escoamento nos canais fluviais apresenta diversas características dinâmicas, dentre elas as forças que atuam sobre a água que flui em canais abertos, a gravidade e a fricção. A gravidade atua verticalmente, possibilitando o escoamento das águas das partes mais altas para as mais baixas. Já a fricção exercida pela superfície do canal no escoamento do fluido, apresentada por alguns autores como rugosidade, promove ação de retardamento, cuja direção é contrária ao fluxo (CHRISTOFOLETTI, 1981; GRIBBIN, 2013).

A forma do canal também exerce influência sobre o fluxo, oferecendo maior ou menor superfície de contato com a água, e consequente fricção. Entretanto, a forma do canal de drenagem é determinada por diversos aspectos, como o gradiente topográfico e o equilíbrio entre deposição e erosão de sedimentos, determinado pelo tamanho das partículas e a energia disponibilizada pelo fluxo (LEOPOLD et al., 1964; CHRISTOFOLETTI, 1981).

O escoamento das águas em canais de drenagem ou cursos d'água depende basicamente de dois fatores: da velocidade de deslocamento da água e da área da seção transversal do canal. A velocidade de fluxo é dependente, entretanto, da forma do canal, da declividade ou gradiente da linha hidrográfica e da rugosidade do leito. Já a área da seção transversal depende da capacidade de esculpir o leito, promovida pela energia do fluxo (PORTO et al., 1999; CANHOLI, 2005; TUCCI, 2012; GRIBBIN, 2013).

De acordo com Christofoletti (1980), os leitos fluviais correspondem aos espaços que podem ser ocupados pelo escoamento das águas e podem ser assim distinguidos (Figura 3):

- a. Leito vazante, leito utilizado para escoamento das águas baixas, ele serpenteia entre as margens do leito menor, acompanhando o talvegue, que é a linha de maior profundidade ao longo do leito;
- b. Leito menor, encaixado entre margens bem definidas, o escoamento constante é suficiente para impedir o crescimento de vegetação;
- c. Leito maior periódico ou sazonal é regularmente ocupado pelas cheias, pelo menos uma vez cada ano; e
- d. Leito maior excepcional por onde correm as cheias mais elevadas, as enchentes, submerso em intervalos irregulares, mas, por definição, nem todos os anos.

O extravasamento das águas do leito de um rio em regime fluvial é uma consequência natural do ciclo hidrológico, com forte interação entre os fluxos do leito principal e da planície de inundação (WIELEWICKI, 2014). As planícies de inundação conhecidas como várzeas são encontradas nos rios de todas as grandezas, denominação dada ao fato de ser inundada em períodos de enchente, tornando-se o leito do rio (CHRISTOFOLETTI, 1980). As planícies de inundação, por não serem ocupadas pelo fluxo de água dos canais na maior parte do tempo, acabam sendo ocupadas pela população, em períodos de grandes enchentes. Entretanto, estes locais são ocupados pelas águas do canal, causando grandes prejuízos aos habitantes atingidos (TUCCI, 2012; COSTA et al., 2016).

A sinuosidade dos canais fluviais são fatores de grande relevância para o escoamento das águas nos canais de drenagem. A sinuosidade corresponde à razão entre a extensão do canal principal (talvegue) e a distância em linha reta entre o início e o fim do canal é um fator controlador da velocidade de escoamento (VILLELA; MATTOS, 1975;

SELLIN et al., 1993). As curvas são obstáculos para o fluxo, causando perda adicional de energia e aumento do remanso a montante (WIELEWICKI, 2014).

O índice de sinuosidade determina os padrões de canal fluvial, definidos classicamente dentro da geomorfologia fluvial, como retilíneos, meândricos e anastomosados ou entrelaçados ('braided'). Os padrões dos canais fluviais são dependentes de fatores geológicos e geomorfológicos, determinados pelo interrelacionamento das variáveis do sistema fluvial (CHRISTOFOLETTI, 1981; ZANCOPÉ, 2004).

3.4 Vazões de cheia

Os eventos de cheias também podem ser denominados como enchentes, sendo o fenômeno da ocorrência de vazões relativamente grandes e que, podem causar inundações, que são o extravasamento das águas do canal natural do rio. As enchentes são grandes vazões de água nos canais de drenagem causadas em virtude do elevado escoamento superficial das águas da chuva. As inundações são ocasionadas pelo extravasamento dos cursos d'água para suas margens, decorrentes da incapacidade de drenagem da água escoada até estes canais. Assim uma enchente pode não causar inundações, se obras de controle forem construídas, bem como, inundações podem acontecer sem que ocorra uma enchente, caso haja alguma obstrução no canal do rio (VILLELA; MATTOS, 1975; CANHOLI, 2005; GRIBBIN, 2013).

A variação do nível do rio depende de variáveis climatológicas e físicas da bacia hidrográfica. As variáveis climatológicas dependem basicamente da distribuição temporal das precipitações, como intensidade e duração, e espacialmente da área de abrangência da precipitação. As variáveis físicas da bacia estão relacionadas a: declividade, na qual valores elevados aumentam o potencial de escoamento superficial; uso e ocupação do solo, que está relacionado ao grau de impermeabilização, onde no agrícola e pastoril aumentam o potencial do escoamento superficial, quando comparado ao florestal, entretanto, são menores que no urbano. A forma da bacia também pode interferir na dinâmica de escoamento das águas, nas quais bacias radiais ou arredondadas têm maior tendência a enchentes, devido a similares tempos de concentração de suas sub-bacias contribuintes, do que bacias alongadas, que possuem tempos de concentração dos fluxos diferentes (TUCCI, 2012; MU, et al., 2015; LOTZ et al., 2017; MAYERHOFER et al., 2017).

O escoamento de um evento de cheia, a jusante de um curso d'água, é denominado onda de cheia, embora a crista da onda não seja visível a observadores casuais. Conforme a onda de cheia se desloca, sua altura diminui e ela se espalha na direção do curso d'água. A redução da altura ou magnitude da onda de cheia é chamada de atenuação, e o procedimento de cálculo desta redução é chamado de propagação. A

propagação tem como princípio que o escoamento quando entra no curso d'água fica retido temporariamente e então é liberado para jusante, processo similar ao que acontece nas bacias de detenção, onde a vazão máxima efluente (que sai da bacia) é menor que a vazão máxima afluente (que entra na bacia) (CANHOLI, 2005; GRIBBIN, 2013).

Os métodos utilizados para estimativa das vazões de cheias são baseados: a) no ajuste de uma distribuição estatística, quando se dispõem de dados históricos de uma determinada bacia; b) na regionalização de vazões, quando os dados são escassos, neste caso são utilizados dados das bacias da região; c) na precipitação, através de modelos matemáticos que representam as vazões geradas, a partir das condições de precipitações e das características da bacia (TUCCI, 2012).

3.5 Modelos hidrológicos

Para compreensão do processo de modelagem hidrológica é importante conhecer o conceito de "sistema". De acordo com Dooge (1973), sistema é qualquer estrutura, esquema ou procedimento, real ou abstrato, que num dado tempo de referência se relaciona com uma entrada, causa ou estímulo de energia ou informação, e uma saída, efeito ou resposta de energia ou informação.

O modelo pode ser entendido como uma estruturação simplificada da realidade, representando características de um sistema, altamente subjetivas, por não incluírem todos os detalhes dos processos observados, mas que permitirem a representação dos aspectos da realidade. Na análise de fenômenos ambientais como sistema, uma das maiores dificuldades se encontra na identificação das variáveis inerentes aos processos e suas relações, para definição com clareza da extensão abrangida pelo objeto que se deseja compreender do sistema (CHRISTOFOLETTI, 1999).

Os modelos hidrológicos são ferramentas que a ciência desenvolveu para representar o comportamento de bacias hidrográficas, e prever condições diferentes das observadas. A simulação hidrológica é limitada a heterogeneidade física da bacia e dos processos envolvidos, o que tem propiciado o desenvolvimento de modelos hidrológicos de representação de processos e objetivos específicos (TUCCI, 2005).

Os modelos hidrológicos são construídos a partir de abordagens físicas dos processos hidrológicos inerentes na bacia hidrográfica, compreendida como um sistema, utilizando-se das equações da conservação da massa e da equação da quantidade de movimento na forma completa ou simplificada. Os modelos hidrológicos com embasamento físico são de grande valia para interpretação e análise de problemas localizados e visam fundamentalmente à obtenção do hidrograma de cheia na saída do exutório de uma bacia (SANTOS, 2009).

Os modelos hidrológicos evoluíram a partir da necessidade de representação do sistema constituído pela bacia hidrográfica, cuja complexidade de fatores envolvidos induziu ao desenvolvimento de um grande número de modelos, que se diferenciam pelos dados utilizados, pelas prioridades e métodos de representação dos processos e dos objetivos a serem alcançados (TUCCI, 2005).

De acordo com Tucci (2005), os modelos hidrológicos podem ser assim classificados:

- a. Concentrado ou Distribuído: o modelo é classificado como concentrado quando não leva em consideração a variabilidade espacial da bacia. Já o modelo é considerado distribuído quando suas variáveis e seus parâmetros dependem do espaço e/ou tempo;
- b. Estocástico ou Determinístico: quando a chance de ocorrência das variáveis for levada em consideração, e o conceito de probabilidade é introduzido na formulação do modelo, o processo e o modelo são ditos estocásticos. Ou seja, quando para uma mesma entrada, o modelo produz uma mesma saída (com condições iniciais iguais), o modelo é classificado como determinístico;
- c. Conceitual ou Empírico: os modelos são ditos conceituais quando levam em consideração os conceitos físicos relacionados aos processos hidrológicos. Já os modelos empíricos são aqueles que utilizam funções que não tenham relação com os processos físicos envolvidos e são baseados em análises estatísticas, como métodos de correlação e análise de regressão.

O planejamento hidrológico demanda de ferramentas de simulação e previsão de cenários futuros: para este fim é que os modelos hidrológicos foram criados. Derivações dos modelos hidrológicos, as simulações de eventos, normais ou extremos, permitem o ordenamento do território, estimuladas pelas necessidades de planejamento e gestão da bacia, possibilitando assim a previsão dos riscos de inundações e a ocupação adequada do solo (RAZI et al., 2010).

As simulações hidrológicas computadorizadas têm facilitado muito a utilização dos modelos representativos dos sistemas hídricos, avançando rapidamente, estas ferramentas se tornaram essenciais para a compreensão da influência humana sobre o regime de fluxos das águas nas bacias hidrográficas. A necessidade de apoio de ações de planejamento ambiental, com modelos de simulação e previsão hidrológica, tem motivado o desenvolvimento de instrumentos de regulação e de planejamento dos recursos hídricos. A alimentação com informações e dados hidrológicos tem subsidiado normas, como o plano diretor da bacia hidrográfica, estabelecendo uma ligação direta entre a descrição de fenômenos hidrológicos e a atribuição de ordenamento do território (TUCCI, 1997; TUCCI, 2005; HALWATURA; NAJIM, 2013).

3.6 HEC-HMS

O HEC-HMS (Hydrologic Modeling System) é um modelo hidrológico desenvolvido pelo Centro de Engenharia Hidrológica do Corpo de Engenheiros do Exército dos Estados Unidos da América. Este modelo permite a simulação de diversas situações e a avaliação de um grande número de cenários possíveis, entre eles: estudo de bacias hidrográficas, abastecimento de água, hidrologia de inundações e escoamento de áreas naturais (FELDMAN, 2000).

Os hidrogramas produzidos pelo HEC-HMS podem ser utilizados diretamente em estudos de drenagem urbana, de previsão de fluxo, de impactos futuros da urbanização, de projetos de vertedouros de reservatórios, de redução de danos causados por inundações, de regulamentação de planícies de inundação e operação de sistemas (FLEMING, 2013).

O HEC-HMS requer a entrada de modelos componentes, para a simulação de escoamento superficial de uma bacia hidrográfica em estudo: o modelo de representação física da bacia; o modelo meteorológico; e o modelo de especificações de controle; sendo em muitas vezes necessários dados de séries-temporais. O módulo de representação da bacia se relaciona às características físicas, com o esquema hidrológico, a distribuição espacial das sub-bacias e os possíveis reservatórios de acúmulo de água. No modelo meteorológico são introduzidas informações de pluviosidade e de evapotranspiração. Os intervalos de tempo das variáveis dos modelos, como distribuição das precipitações, são adicionados nas especificações de controle (FLEMING, 2013).

Dentre as capacidades do HEC-HMS, estão (SCHARFFENBERG, 2015):

- A descrição física da bacia hidrográfica, representando os divisores de água, conectando seus elementos hidrológicos, representação do escoamento superficial, além de utilizar diversas ferramentas para representar as perdas de água no sistema, seja por infiltração ou evapotranspiração. Utiliza um método de cálculo de umidade do solo em três camadas, para modelagem contínua em ambientes de infiltração e evapotranspiração complexos. Reservatórios barragens também podem ser representados no sistema.
- ✓ A descrição meteorológica trabalha com diversas informações, mas utiliza basicamente dados de precipitação. Analisa dados históricos de precipitação, produz informações de precipitações de projeto definidas por cálculos estatísticos, calcula a evapotranspiração potencial usando valores médios mensais, podendo incluir ainda valores de radiação.
- ✓ A simulação hidrológica tem seu tempo controlado por especificações de controle, que incluem os intervalos dos processos. A execução da simulação é criada pelo modelo de representação da bacia, pelo modelo meteorológico e pelas

especificações de controle. Os resultados das simulações podem ser visualizados em mapas, tabelas e gráfico.

- A estimativa de parâmetros, quando quaisquer parâmetros utilizados por métodos do programa podem ser estimados automaticamente, usando ensaios para melhor representação. Restrições podem ser impostas para restringir o espaço de parâmetro do método de busca.
- A análise de simulações trabalha com simulações de processamento de informações adicionais. Como exemplo, para a análise de frequência de tempestade, dada uma seleção de elementos, a ferramenta ajusta automaticamente a área da tempestade e gera picos de fluxo.
- A previsão de fluxos futuros permite que o modelo da bacia inclua características que aumentem a eficiência de previsões futuras de fluxos, em um modo de funcionamento em tempo real. A alternativa de previsão é um tipo de simulação que usa um modelo da bacia e um modelo meteorológico em combinação com parâmetro de controle para prever fluxos futuros.
- O trabalho com sedimentos e qualidade da água, os quais fornecem informações adicionais ao modelo da bacia, permitindo dados de erosão, transporte e deposição de sedimentos, além de transformações e transporte de nutrientes como nitrogênio e fósforo.
- ✓ Por fim, o uso integrado de sistemas de informações geográficas (SIG), que possibilitam maior agilidade de análise de dados de elevação e de algoritmos geométricos da bacia, executando tarefas muito mais rapidamente.

O HEC-HMS é muito utilizado para geração de dados de cheias, juntamente com o HEC-RAS (River Analysis System), que é um modelo hidráulico de representação hidráulica do fluxo da água no rio, também criado pelo Centro de Engenharia Hidrológica do Corpo de Engenheiros do Exército dos Estados Unidos. Com eles é possível a previsão das áreas de inundação geradas por grandes cheias (HYDROLOGIC ENGINEERING CENTER, 2015). De acordo Knebl et al. (2004), em estudos realizados sobre as cheias do rio San Antonio no Texas, EUA, com auxílio do programa HEC-HMS, o modelo possibilitou uma ótima representação hidrológica da bacia. Destaca o autor que este modelo, ajustado para a escala regional, pode ser utilizado com êxito em outras áreas com características bastante diversas.

O HEC-HMS é um programa de transformação de chuva em vazão amplamente utilizado pelo mundo. Podemos citar como exemplo o trabalho desenvolvido por Choudhari et al. (2014), desenvolvido na Bacias Hidrográficas de Odisha, na Índia. O estudo avaliou 24 eventos extremos de precipitação e suas vazões de cheias geradas, abrangendo quatro anos de dados (2010-2013), apresentando resultados satisfatórios e com baixos erros estatísticos.

De acordo com Souza et al. (2012), em estudo comparativo entre os modelos SWMM (Storm Water Management Model) e o HEC-HMS, na bacia do Córrego Samambaia, localizada no município de Goiânia/GO, concluíram que a forma de representação espacial da bacia e sub-bacias, considerada pelo modelo HEC-HMS, é mais adequada para a modelação do processo de escoamento superficial em bacias rurais. Os autores atribuíram o fato à quantidade de parâmetros envolvidos na simulação pelo HEC-HMS, que garante maior detalhamento das características da área, quando comparada ao modelo SWMM, o qual se adequa melhor à representação de bacias urbanas.

As características de uso e ocupação do solo na bacia são fatores de grande influência na geração de escoamento superficial e consequentes nos elevados picos de vazão (SANYAL et al., 2014; ZHANG et al., 2015; LOTZ et al., 2017; MAYERHOFER et al., 2017). No HEC-HMS, este fator pode ser introduzido no programa através do valor do CN (curve number) do método do Soil Conservation Service (SCS-CN), correspondente a um coeficiente de escoamento (USDA, 1982; SCHARFFENBERG, 2015), parâmetro empírico amplamente utilizado para estimar a geração de escoamento superficial a partir de precipitações geradas (CHU & STEINMAN, 2009).

O uso e a ocupação do solo têm forte relação com a geração de escoamento superficial das águas pluviais, fator este que pode ser medido pelo HEC-HMS através de diferentes métodos (SCHARFFENBERG, 2015). Estudos realizados por Du et al. (2012), na bacia hidrográfica do Rio Qinhuai na província de Jiangsu, China, com o programa HEC-HMS, revelaram uma relação linear entre a taxa de impermeabilização do solo urbano e a evolução dos picos de vazão, ao longo dos anos de 1988 a 2009, sugerindo que o uso do programa HEC-HMS, conjuntamente com a análise evolutiva da ocupação antrópica do solo, é um método apropriado para a avaliação dos impactos hidrológicos causados por estas mudanças.

Olang e Fürst (2011) realizaram estudos na bacia hidrográfica do rio Nyando, no Kenya, com auxílio do programa HEC-HMS sobre os impactos nos picos de vazão, provocados pelas mudanças no uso do solo ao longo do período de 1973 a 2000. Os autores verificaram um aumento de 30 a 47% nos picos de vazão, nas sub-bacias a montante, com maior taxa de desmatamento.

Devido à grande complexidade de fatores envolvidos nas simulações dos processos hidrológicos, o HEC-HMS apresenta limitações quanto a dois aspectos de projeto: formulação simplificada do modelo e representação de fluxo simplificada. Simplificar a formulação do modelo permite que o programa tenha um bom desempenho computacional; entretanto, suas equações são assumidas como estacionadas no tempo, não levando em consideração as alterações nas bacias decorrentes dos processos

humanos. A representação do fluxo não permite que um rio principal se divida em dois a jusante, inviabilizando a análise de saídas auxiliares em bacias de contenção ou de cursos d'água com ramificações no exutório (SCHARFFENBERG, 2015).

4 REFERÊNCIAS

ABU-HAMDEH, N. H. Compaction and subsoiling effects on corn growth and soil bulk density. **Soil Science Society of America Journal**, v. 67, n. 4, p. 1213-1219, 2003.

ANDRES, J.; CANEPARO, S. C.; HENDGES, E. R. Riscos de Inundação na Cidade de Francisco Beltrão (PR) por meio de Combinação Linear Ponderada Difusa. In: Simpósio Brasileiro de Sensoriamento Remoto – SBSR, 17., 2015. João Pessoa. **Anais...** João Pessoa: INPE, 2015. p. 5034-5041.

ANKENY, M. D.; KASPAR, T. C.; HORTON, R. Characterization of tillage and traffic effects on unconfined infiltration measurements. **Soil Science Society of America Journal**, v. 54, n. 3, p. 837-840, 1990.

ALVARENGA, L. A.; MELLO, C. R.; COLOMBO, A.; CUARTAS, L. A.; BOWLING, L. C. Assessment of land cover change on the hydrology of a Brazilian headwater watershed using the Distributed Hydrology-Soil-Vegetation Model. **Catena**, v. 143, p. 7-17, 2016.

BROWN, A. E.; ZHANG, L.; MCMAHON, T. A.; WESTERN, A. W.; VERTESSY, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. **Journal of Hydrology**, v. 310, p. 28-61, 2005.

CANHOLI, A. P. Drenagem urbana e controle de enchentes. São Paulo: Oficina dos Textos, 2005.

CASSOL, H. L. G.; MORAES, E. C. Recorte municipal do sudeste e sudoeste paranaense: relação entre os fatores sociais e econômicos com o desflorestamento na Floresta Ombrófila Mista? **Revista Espinhaço**, v. 3, n. 1, p. 43-61, 2014.

CHOUDHARI, K.; PANIGRAHI, B.; PAUL J. C. Simulation of rainfall-runoff process using HEC-HMS model for Balijore Nala watershed, Odisha, India. International Journal of Geomatics and Geosciences, v. 5, n. 2, p. 253-265, 2014.

CHRISTOFOLETTI, A. Geomorfologia. 2a. ed. São Paulo: Edgard Blucher, 1980.

CHRISTOFOLETTI, A. Geomorfologia fluvial. São Paulo: Edgard Blucher, 1981.

CHRISTOFOLETTI, A. Modelagem de Sistemas Ambientais. São Paulo: Edgard Blucher, 1999.

CHU, X.; STEINMAN, A. Event and Continuous Hydrologic Modeling with HEC-HMS. **Journal of Irrigation and Drainage Engineering**, January/February, p. 119-124, 2009.

COSTA, S. M. F.; VALOTA, E. C. S.; OLIVEIRA, I. G.; MONTOIA, G. R. M.; SANTOS, E. A. Crescimento urbano e ocupação de várzea em pequenas cidades da Amazônia: uma discussão premente. **Geografia, Ensino & Pesquisa**, v. 20, n. 1, p. 114-129, 2016.

DEASY, D.; TITMAN, A.; QUINTON, J. N. Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale. **Journal of Environmental Management**, v. 132, p. 304-312, 2014.

DOOGE, J. C. I. **Linear theory of hydrologic systems**. Technical Bulletin n. 1948. ARS, US Department of Agriculture, 1973.

DU, J.; QIAN, L.; RUI, H.; ZUO, T.; ZHENG, D.; XU, Y.; XU, C-.Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. **Journal of Hydrology**, v. 464-465, p. 127-139, 2012.

DUNNE, T. Field studies of hillslope flow processes. In: KIRKBY, M. J. (Ed.). Hillslope hydrology. John Wiley & Sons, 1978. p. 227–293.

EUM, H-.I.; DIBIKE, Y.; PROWSE, T. Comparative evaluation of the effects of climate and land-cover changes on hydrologic responses of the Muskeg River, Alberta, Canada. **Journal of Hydrology: Regional Studies**, v. 8, p. 198-221, 2016.

FEITOSA, J. R.; FERNANDES, H. C.; TEIXEIRA, M. M.; CECON, P. R. Influência da pressão interna dos pneus e da velocidade de deslocamento nos parâmetros operacionais de um trator agrícola e nas propriedades físicas do solo. **Engenharia Agrícola**, v. 35, n. 1, p. 117-127, 2015.

FELDMAN, A. D. Hydrologic Modeling System HEC-HMS, Technical Reference Manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC, Davis, CA, USA, 2000.

FLEMING, M. J. Hydrologic Modeling System HEC-HMS, Quick Start Guide. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC, Davis, CA, USA, 2013.

GITHUI, F.; MUTUA, F.; BAUWENS, W. Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): case study of Nzoia catchment, Kenya. **Hydrological Sciences Journal**, v. 54, n. 5, p. 899-908, 2009.

GÓMEZ-RODRÍGUEZ, K.; CAMACHO-TAMAYO, J. H.; VÉLEZ-SÁNCHEZ, J. E. Changes in water availability in the soil due to tractor traffic. **Engenharia Agrícola**, v. 33, n. 6, p. 1156-1164, 2013.

GRIBBIN, J. E. Introdução a hidráulica, hidrologia e gestão de águas pluviais. 3a. ed. São Paulo: Cengange Learning, 2013.

GUERRA, A. J. T.; CUNHA, S. B. **Geomorfologia**: uma atualização de bases e conceitos. 6a. ed. Rio de Janeiro: Bertrand Brasil, 2005.

GUERRA, A. J. T.; MARÇAL, M. S. **Geomorfologia ambiental.** Rio de Janeiro: Bertrand Brasil, 2006.

HALWATURA, D.; NAJIM, M. M. M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. **Environmental Modelling & Software**, v. 46, p. 155-162, 2013.

Hydrologic Engineering Center. **Applications Guide**. Davis, CA: US Army Corps of Engineers, 2015.

KNEBL, M. R.; YANG, Z. -L.; HUTCHISON, K.; MAIDMENT, D. R. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. **Journal of Environment Management**, v. 75, 325-336, 2005.

KURTZ, W.; LAPIN, A.; SCHILLING, O. S.; TANG, Q.; SCHILLER, E.; BRAUN, T.; HUNKELER, D.; VEREECKEN, H.; SUDICKY, E.; KROPF, P. Integrating hydrological modelling, data assimilation and cloud computing for real-time management of water resources. **Environmental Modelling & Software**, v. 93, p. 418-435, 2017.

LEOPOLD, L. B., WOLMAN, M. G.; MILLER, J. P. Fluvial processes in geomorphology. San Francisco: W. H. Freeman, 1964.

LOTZ, T.; OPP, C.; HE, X. Factors of runoff generation in the Dongting Lake basin based on a SWAT model and implications of recent land cover change. **Quaternary International**, v. 434, p. 1-9, 2017.

MARQUES, M. J.; BIENES, R.; JIMÉNEZ, L.; PÉREZ-RODRÍGUEZ, R. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots. **Science of the Total Environment**, v. 378, p. 161-165, 2007.

MAYERHOFER, C.; MEIßL, G.; KLEBINDER, K.; KOHL, B.; MARKART, G. Comparison of the results of a small-plot and a large-plot rainfall simulator – Effects of land use and land cover on surface runoff in Alpine catchments. **Catena**, v. 156, p. 184-196, 2017.

MILLER, S.N.; KEPNER, W.G.; MEHAFFEY, M. H.; HERNANDEZ, M.; MILLER, R. C.; GOODRICH, D. C.; DEVONALD, K. K.; HEGGEM, D. T.; MILLER, W. P. Integrating landscape assessment and hydrologic modeling for land cover change analysis. **Journal of the American Water Resources Association**, v. 38, p. 915-929, 2002.

MU, W.; YU, F.; LI, C.; XIE, Y.; TIAN, J.; LIU, J.; ZHAO, N. Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. **Water**, v. 7, p. 2990-3008, 2015.

NIEMI, T. J.; WARSTA, L.; TAKA, M.; HICKMAN, B.; PULKKINEN, S.; KREBS, G.; MOISSEEV, D. N.; KOIVUSALO, H.; KOKKONEN, T. Applicability of open rainfall data to event-scale urban rainfall-runoff modelling. **Journal of Hydrology**, v. 54, p. 143-155, 2017.

OLANG, L. O.; FÜRST, L. Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River Basin, Kenya. **Hydrological Processes**, v. 25, p. 80-89, 2011.

PAISANI, J. C. Descontinuidades hidrológicas, escoamento superficial e desenvolvimento de incisões erosivas em áreas de cabeceira de drenagem: estudo de caso na Colônia Quero-Quero, Palmeira (PR). 1998. 184f. Dissertação (Mestrado em Geografia) – Universidade Federal de Santa Catarina, Florianópolis, 1998.

PALACIOS-VÉLEZ, O.L.; GANDOY-BERNASCONI, W.; CUEVAS-RENAUD, B. Geometric analysis of surface runoff and the computation order of unit elements in distributed hydrological models. **Journal of Hydrology**, v. 211, p. 266-274, 1998.

PINTO, N. L. S.; HOLTZ, A. C. T.; MARTINS, J. A.; GOMIDE, F. L. S. **Hidrologia básica**. São Paulo: Edgard Blucher, 1976.

PONTES, L. M.; VIOLA, M. R.; SILVA, M. L. N.; BISPO, D. F. A.; CURI, N. Hydrological modeling of tributaries of Cantareira system, Southeast Brazil, with the SWAT model. **Engenharia Agrícola**, v. 36, n. 6, p. 1037-1049, 2016.

PORTO, R. L. L.; ZAHED FILHO K.; SILVA R. M. **Hidrologia aplicada – bacias hidrográficas.** São Paulo: Escola Politécnica da Universidade de São Paulo – Departamento de Engenharia Hidráulica e Sanitária, 1999.

PRUSKI, F. F.; BRANDÃO, V. S.; SILVA, D. D. **Escoamento superficial**. 2a. ed. Viçosa: UFV, 2004.

RAZI, M. A. M.; ARIFFIN, J.; TAHIR, T.; ARISH, A. M. Flood estimation studies using hydrologic modeling system (HEC-HMS) for Johor River, Malaysia. **Journal of Applied Sciences**, v. 10, p. 930-939, 2010.

RENNÓ, C. D. **Construção de um sistema de análise e simulação hidrológica: Aplicação a bacias hidrográficas**. 2003. 146f. Tese (Doutorado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2004.

SANTOS, L. L. Modelos hidráulicos-hidrológicos: conceitos e aplicações. **Revista Brasileira** de Geografia Física, v. 2, n. 03, p. 1-19, 2009.

SANYAL J.; DENSMORE A. L.; CARBONNEAU P. Analysing the effect of land-use/cover changes at sub-catchment levels on downstream flood peaks: a semi-distributed modelling approach with sparse data. **Catena**, v. 118, p. 28-40, 2014.

SAREWITZ, D.; PIELKE JR., R. **Workshop**: Extreme Events Developing a Research Agenda for the 21st Century. Bolder, 2000.

SAVOLDI, A.; CUNHA, L. A. Uma abordagem sobre a agricultura familiar, PRONAF e a modernização da agricultura no Sudoeste do Paraná na década de 1970. **Revista Geografar**, v. 5, n.1, p. 25-45, 2010.

SCHARFFENBERG. W. A. Hydrologic Modeling System HEC-HMS, User's Manual, Version 4.1. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC, Davis, CA, USA, 2015.

SELLIN, R. H. J.; ERVINE, D. A.; WILLETS, B. B. Behaviour of meandering two-stage channels. **Proceeding of the Institution of Civil Engineers Water Maritime and Energy**, London, v. 101, p. 99-111, 1993.

SILVA, V. P. R.; SILVA, M. T.; SOUZA, E. P. Influence of land use change on sediment yield: a case study of the sub-middle of the São Francisco river basin. **Engenharia Agrícola**, v. 36, n. 6, p. 1005-1015, 2016.

SILVA, W. M.; BIANCHINI, A.; CUNHA, C. A. Modeling and correction of soil penetration resistance for variations in soil moisture and soil bulk density. **Engenharia Agrícola**, v. 36, n. 3, p. 449-459, 2016.

SOUZA, R. M.; CRISPIM, D. C.; FORMIGA, K. T. M. Estudo comparativo entre os modelos SWMM e HEC-HMS para simulação de escoamento superficial – caso de estudo Bacia do córrego Samanbaia. **Revista Eletrônica de Engenharia Civil**, v.5, n. 2, p. 1-11, 2012.

SUGUIO, K. Geologia sedimentar. São Paulo: Edgard Blucher, 2003.

SURIYA S.; MUDGAL B. V. Impact of urbanization on flooding: the thirusoolam sub watershed – a case study. **Journal of Hydrology**, v. 412-413, p. 210-219, 2012.

TUCCI, C. E. M.; BERTONI, J. C. (Org.) **Inundações Urbanas na América do Sul**. Porto Alegre: Associação Brasileira de Recursos Hídricos, 2003.

TUCCI, C. E. M. Modelos hidrológicos. 2a. ed. Porto Alegre: Editora da UFRGS, 2005.

TUCCI, C. E. M. (Org.) **Hidrologia**: ciência e aplicação. 4a. ed. 4a. reimp. Porto Alegre: Editora da UFRGS/ABRH, 2012.

USDA – United States Department of Agriculture, Natural Resources Conservation Service. Urban Hydrology for Small Watersheds. In: USDA – United States Department of Agriculture, Natural Resources Conservation Service **TR-55.** 2a. ed. 1986. Disponível em: <https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf>. Acesso em 17 ago. 2016.

VILLELA, S. M.; MATTOS, A. Hidrologia aplicada. São Paulo: McGraw-Hill do Brasil, 1975.

VITTE, A. C.; GUERRA, J. T. (Org.) **Refelxões sobre a geografia física**. Rio de Janeiro: Bertrand Brasil, 2004.

WIELEWICKI, R. P. Análise da influência da sinuosidade sobre o escoamento em rios com planície de inundação utilizando simulação numérica tridimensional. 2014. 70f. Trabalho de Conclusão de Curso (Graduação em Engenharia Civil) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2014.

YU, Y.; LOISKANDL, W.; KAUL, H-. P.; HIMMELBAUER, M.; WEI, W.; CHEN, L.; BODNER, G. Estimation of runoff mitigation by morphologically different cover crop root systems. **Journal of Hydrology**, v. 538, p. 667-676, 2016.

ZANCOPÉ, M. H. C. Estudo dos padrões de canal fluvial do rio Mogi Guaçu/SP. 2004. 101f. Dissertação (Mestrado em Geografia) – Universidade Estadual Paulista, Rio Claro, 2004.

ZHANG, L.; WANG, J.; BAI, Z.; LV, C. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. **Catena**, v. 128, p. 44-53, 2015.

ZOPE, P. E.; ELDHO, T. I.; JOTHIPRAKASH, V. Impacts of land use–land cover change and urbanization on flooding: a case study of Oshiwara river basin in Mumbai, India. **Catena**, v. 145, p. 142-154, 2016.

5 ARTIGOS

5.1 ARTIGO 1. IMPLICAÇÕES NOS PICOS DE VAZÃO PERANTE AS ALTERAÇÕES NO CÓDIGO FLORESTAL BRASILEIRO²

RESUMO: As alterações no Código Florestal Brasileiro abrandam os critérios de recuperação e conservação das áreas de preservação permanente (APPs), potencializando os processos relacionados ao escoamento superficial. Este trabalho tem por objetivo, compreender os efeitos das alterações nos critérios de classificação de APPs, instituídas pelo novo Código Florestal (Lei 12.651/2012), em detrimento a antiga norma (Lei 4.771/1965), perante a resposta do escoamento superficial na bacia que drena o alto vale do rio Marrecas nos picos de vazão. Os picos de vazão foram simulados pelo modelo HEC-HMS, em três cenários de uso do solo representativos do uso atual e deste uso com APPs adequadas ao novo e ao antigo Código Florestal, sob sete períodos de retorno de precipitação. Nos cenários propostos, a aplicação do novo Código, em detrimento ao antigo, implicaria na redução das APPs de 44,5% para 13,7% da área total da bacia, tendo como consequência o aumento médio nos picos de vazão em 22,1%, já o cenário adequado à nova norma comparado ao do atual uso do solo, entretanto, não apresentou redução significativa nos picos de vazão. Portanto, comparado aos termos do antigo Código, a nova regra reduziu as APPs em 69,2%, incrementando os picos de vazão em até 30,7%, minimizando assim, as possibilidades legais de mitigação das inundações ao perímetro urbano de Francisco Beltrão-PR.

PALAVRAS-CHAVE: escoamento superficial, legislação florestal, simulação hidrológica, uso do solo, rio Marrecas.

INTRODUÇÃO

O Código Florestal Brasileiro instituído pela Lei 4.771 de 1965, quando em vigor regulamentou as atividades de uso do solo no país e esteve adequado ao contexto socioeconômico da década de 1960. A atualização desta norma florestal ao contexto atual, instituída pela Lei 12.651 de 2012, entretanto, alterou diversos aspectos da legislação anterior, dentre eles os critérios de classificação das Áreas de Preservação Permanente (APPs), reduzindo expressivamente a área potencial a ser recuperada por vegetação nativa em todo país (SOARES-FILHO et al., 2014). Estas alterações no uso e na ocupação do solo afetam o ciclo e a disponibilidade das águas, podendo acentuar a ocorrência de desastres naturais e danos ambientais (COUTINHO et al., 2013; LIN et al., 2014; REIS et al., 2015).

A bacia drenada pelo alto vale do rio Marrecas é ocupada em 0,7% de sua área por lâminas d'água, 1,7% por pastagens permanentes, 32,3% por florestas e 65,3% por atividades agrícolas, caracterizando uma forma de produção agrícola familiar (SAVOLDI & CUNHA, 2010). Este modelo de ocupação provocou profundas alterações na paisagem, com a substituição da Floresta Ombrófila Mista pelo uso agrícola (CASSOL & MORAIS, 2014). O uso agrícola por sua vez, pode ter intensificado as recorrentes inundações que afetam o perímetro urbano de Francisco Beltrão-PR, Brasil, em decorrência da remoção da

² Este artigo segue as normas da Revista Engenharia Agrícola (Anexo 1)
cobertura florestal com maior superfície permeável (COSTA et al., 2012; KIBENA et al., 2014; LOTZ et al., 2017) – tendo em vista que as inundações ao perímetro urbano de Francisco Beltrão são propícias devido ao baixo gradiente topográfico e à alta sinuosidade do rio Marrecas neste trecho, bem como os elevados índices pluviométricos registrados na sua bacia de drenagem.

A substituição das florestas por usos antrópicos modifica a dinâmica entre o escoamento superficial e a infiltração, desequilibrando o balanço natural das águas (SURIYA & MUDGAL, 2012). O conhecimento sobre estas alterações no ciclo das águas é essencial à correta gestão dos recursos hídricos, que já conduziram estudos sobre os efeitos da urbanização (DU et al., 2012; SURIYA & MUDGAL, 2012; NIEMI et al., 2017), de diferentes usos do solo (GITHUI et al., 2009; SANYAL et al., 2014; LOTZ et al., 2017; MAYERHOFER et al., 2017), da influência da cobertura vegetal (MARQUES et al., 2007; MU et al., 2015; ZHANG et al., 2015; SILVA et al., 2016; YU et al., 2016), sobre o balanço das águas continentais.

Apesar de várias pesquisas sobre simulações hidrológica de cenários de uso do solo (ALI et al., 2011; DU et al., 2012; SANYAL et al., 2014; LIN et al., 2014; SILVA et al., 2016), alguns com caráter prático na gestão dos recursos hídricos (RAZI et al., 2010; DU et al., 2012; PEREIRA et al., 2014; PONTES et al., 2016; KURTZ et al., 2017), poucos buscaram compreender os impactos do desflorestamento (WAN & YANG, 2007; KALANTARI et al., 2014; ALGEET-ABARQUERO et al., 2015), e raros os que pesquisaram as implicações nos picos de vazão decorrentes das alterações nos limites das APPs instituídos pelo novo Código Florestal Brasileiro.

Diante deste contexto, este estudo tem por objetivo estudar os efeitos das alterações nos critérios de classificação de APPs, instituídas pelo novo Código Florestal, em detrimento à antiga norma, perante a resposta do escoamento superficial na bacia que drena o alto vale do rio Marrecas nos picos de vazão simulados, conhecimentos que permitirão a compreensão dos efeitos das mudanças no Código Florestal no processo de mitigação das inundações ao perímetro urbano de Francisco Beltrão-PR.

MATERIAL E MÉTODOS

O estudo foi realizado na bacia hidrográfica do rio Marrecas à montante do perímetro urbano de Francisco Beltrão-PR, no ponto de controle com coordenadas geográficas 26° 04' 53" S e 53° 04' 30" O. A bacia se estende por três municípios paranaenses (Marmeleiro, Flor da Serra do Sul e Francisco Beltrão) (Figura 1).

Figura 1. Distribuição espacial da região do sul do Brasil (A), localização da bacia do rio Marrecas no estado do Paraná (B) e a bacia que drena o alto vale do rio Marrecas subdividida em 59 sub-bacias com a rede de drenagem considerada neste estudo (C).

A bacia delimitada pelo alto vale do rio Marrecas considerada neste estudo tem altitudes variando de 950 m próximos aos divisores de água, até 540 m no exutório, com altitude média de 736 m – Figura 2.

O perfil longitudinal do rio Marrecas, considerado neste estudo, apresenta alta declividade, próximo aos divisores de água, diminuindo no sentido de jusante, porém demonstra algumas rupturas de declive de acordo que o fluxo se direciona para o exutório da bacia. Ao atingir o perímetro urbano de Francisco Beltrão o rio Marrecas apresenta baixo

gradiente topográfico, com aproximadamente 0,1% de declividade, bem como índice de sinuosidade de 59,3%, classificado como muito sinuoso (Figura 3).

Figura 3. Perfil longitudinal e planimétrico do rio Marrecas a montante do perímetro urbano de Francisco Beltrão.

O ponto de controle no rio Marrecas foi escolhido devido às seguintes características: possuir uma estação fluviométrica (código 65950200/Instituto Águas Paraná); ser ponto de coleta de água pela Companhia de Saneamento do Paraná (Sanepar), para abastecimento público de grande parte da cidade de Francisco Beltrão; e representar o ponto de entrada do rio na área urbana, afetada com frequência por inundações.

As simulações hidrológicas contemplaram o parâmetro de pico de vazão, que é a resposta do escoamento superficial no canal de drenagem, cujo transbordamento para suas margens determina o momento de máxima ocupação pela inundação. As simulações foram realizadas pelo modelo HEC-HMS 4.1 (SCHARFFENBERG, 2015), que demandou a entrada do modelo da bacia com características físicas da bacia e dos canais, do modelo meteorológico com dados de precipitação e as especificações de controle com os intervalos para obtenção das respostas.

Modelo da bacia

As características da bacia e dos canais foram obtidas com auxílio da extensão HEC-GeoHMS (FLEMING & DOAN, 2013), executado pelo programa ArcMap 10.1. O HEC-GeoHMS exige a entrada de um modelo digital de elevação (MDE) e informações dos canais de drenagem, fornecendo dados de escoamento superficial e de propagação da onda de cheia nos canais.

O MDE utilizado neste estudo foi disponibilizado por Valeriano (2004), o qual foi gerado a partir do projeto SRTM (Shuttle Radar Topographic Mission) que advém de cooperação entre a NASA (National Aeronautics and Space Administration) e a NIMA (National Imagery and Mapping Agency), do DOD (Departamento de Defesa) dos Estados Unidos e das agências espaciais da Alemanha e da Itália (VALERIANO & ABDON, 2007), em escala 1:250.000 e em resolução espacial de 30 metros, para todo o estado do Paraná.

Inicialmente com o MDE adicionado no ArcMap 10.1 foi realizada a conversão do sistema de coordenadas do Datum SAD 69 para SIRGAS 2000, com auxílio das ferramentas disponibilizadas na caixa de ferramentas.

Em seguida com auxílio das ferramentas da extensão do HEC-GeoHMS habilitadas no ArcMap, o MDE foi pré-processado para a obtenção das informações físicas da bacia de drenagem. O primeiro passo foi o preenchimento de depressões com a ferramenta "Fill Sinks". Em seguida foram definidas as direções de fluxo de cada pixel do MDE com a ferramenta "Flow Direction". O fluxo acumulado pelo número de células de drenagem a montante a uma dada célula pela ferramenta "Flow Accumulation". A definição de início da drenagem a ser considerada no estudo, que neste caso seguiu a recomendação de acumulação da área mínima de 1% da área total da bacia, determinando o fracionamento da bacia total em sub-bacias, pela ferramenta "Stream Definition"; Divisão dos fluxos de grade em segmentos de fluxo ou junções de fluxo, pela ferramenta "Stream Segmentation"; Criação de uma camada de polígonos das sub-bacias com a ferramenta "Catchment Polygon Processing"; Criação de linhas vetorizadas dos córregos das sub-bacias, com a ferramenta "Drainage Line Processing"; e por fim a agregação das sub-bacias a montante em cada confluência de fluxo, a fim de melhor desempenho computacional, com a ferramenta "Adjoint Catchment Processing" (FLEMING & DOAN, 2013).

O MDE pré-processado delineou a bacia que drena o alto vale do rio Marrecas a montante do perímetro urbano de Francisco Beltrão-PR, com área de 337,88 km². A bacia foi subdividida em 59 sub-bacias, com intuito de melhor representação espacial dos processos hidrológicos, compostas por uma linha hidrográfica gerada a partir da área mínima de drenagem de 1% da área total, cuja distribuição pode ser observada na Figura 1.

Na sequência com as ferramentas "Project Setup" do HEC-GeoHMS, foram definidos o nome do projeto, a descrição e a definição do ponto de controle ou exutório da bacia a ser considerada no estudo, com auxílio da ferramenta "Add Project Point", localizado na rede de drenagem, contornando os limites da bacia. Definido o ponto de controle, a ferramenta "Generate Project" gera as camadas pré-processadas para a área da bacia em estudo.

Com as ferramentas da aba "Characteristics", foram determinados os comprimentos e a declividade dos canais com "River Length" e "River Slope", respectivamente, a declividade de capa sub-bacia com "Basin Slope", o percurso mais longo de cada canal para o cálculo do tempo de concentração com "Longest Flow Path", o centroide das bacias com "Basin Centroid", a elevação dos centroides com "Centroid Elevation" e o trajeto de centro de gravidade da bacia até o exutório de cada sub-bacia com "Centroidal Longest Flow Path".

Em "Parameters" foram pré-selecionados no HEC-GeoHMS, os métodos adotados nas simulações dos picos de vazão pelo HEC-HMS, escolhidos com base na disponibilidade de informações sobre os canais de drenagem e a bacia: perdas por infiltração (método "SCS curve number"); transformação de precipitação efetiva em escoamento superficial (método "SCS unit hydrograph"); e propagação da onda no canal (método de "Muskingum-Cunge"). Nesta etapa foram ainda definidas as nomenclaturas das sub-bacia e dos rios, bem como a adição às tabelas de atributos das sub-bacias de informações como abstrações iniciais, número da curva (CN), porcentagem de impermeabilização, tempo de concentração, tempo de retardo – bem como dos canais de drenagem como declividade lateral, largura e coeficiente de rugosidade de Manning.

Os dados de número da curva (CN), que correspondem a um coeficiente de escoamento superficial, para as sub-bacias, foram obtidos pelo confronto de dados de tipo de solo de acordo com o mapeamento realizado pela IAPAR/EMBRAPA (2006), que definiram os grupos hidrológicos de solo e uso do solo, com auxílio da ferramenta "Generante CN Grid" do HEC-GeoHMS.

O uso do solo foi classificado pelo software Spring, com a imagem do satélite CBERS 4, sensor PAN, de 02 de abril de 2016, gerada pelo Instituto Nacional de Pesquisas Espaciais (INPE), escolhida aleatoriamente. Segmentada com nível de similaridade 10 e área mínima de 25 pixels, os usos foram individualizados pelo classificador Bhattacharya a um limiar de aceitação de 95%. A composição dos usos levou em consideração a chave de classificação forma, cor e textura possíveis de serem identificadas nas imagens.

Três cenários de uso do solo foram gerados: o uso de referência, representativo do uso atual, da imagem de 02 de abril de 2016, denominado "CR"; o CR com APPs adaptadas aos artigos 4º e 61-A do novo Código Florestal (NCF), doravante denominado "CNCF"; e o CR com APPs adaptadas ao artigo 2º do antigo Código Florestal (ACF), doravante denominado "CACF". Todos os cenários foram gerados no programa ArcMap 10.1.

As adequações das APPs de margens de rios, nascentes e de reservatórios com barramento do canal, ao NCF demandaram informações de tamanhos médios de propriedades rurais, dados levantados em campo, a partir de amostragens aleatórias de cinco propriedades para cada uma das 59 sub-bacias, exigindo também, a classificação dos usos do solo nas APPs definidas pelo Art. 4º, anteriores a 22 de julho de 2008, para definição das "áreas consolidadas em áreas de preservação permanente" estabelecidas pelo Art. 61-A.

As APPs de áreas com declividade de encosta acima de 45º ou 100%, para ambas as normas, foram realizadas através do processamento do MDE no programa ArcMap, que definiu a camada de declividade da bacia com a ferramenta "Slope", que foi reclassificada identificando as áreas com declividade acima de 45°.

As APPs de topo de morro de acordo com a Lei 12.651/2012 foram realizadas no programa ArcMap 10.1 de acordo com a metodologia descrita por Oliveira (2015); já as APPs de topo de morro definidas pela Lei 4.771/1965 foram desenvolvidas no programa ArcMap 9.3 de acordo com a metodologia descrita por Paluzio et al. (2010).

Os três cenários de uso do solo foram reclassificados em grandezas de CN ("curve number"), de acordo com o recomendado pelo Serviço de Conservação de Solos do Departamento de Agricultura dos Estados Unidos (USDA-SCS) gerados pelo HEC-GeoHMS. Para isso, os cenários de usos do solo foram cruzados com os grupos hidrológicos de solos da bacia, sob as condições de umidade antecedente do solo pré-fixada em AMC (Antecedent Moisture Condition) II (USDA, 1986).

Neste estudo para as simulações dos picos de vazão, as APPs, em acordo com os requisitos estabelecidos pelo ACF e pelo NCF, foram consideradas com ocupação por vegetação nativa na região do alto vale do rio Marrecas (Floresta Ombrófila Mista), adotando os valores de CN de cobertura florestal (RODERJAN et al., 2002).

A análise individual das APPs (margens de rios, entorno de nascentes, topos de morro, dentre outras) não levam em consideração as sobreposições de mesmas áreas geradas por diferentes classes de APPs. Portanto, a soma das APPs individualizadas superam os valores das APPs totais adequadas a cada um dos Códigos Florestais.

A propagação da onda de cheia calculada pelo método de "Muskingun-Cunge" exigiu informações de largura, declividade lateral e o coeficiente de rugosidade de Manning (n) dos canais de drenagem. Estes dados foram coletados em campo, por amostragens de três pontos para cada canal componente das 59 sub-bacias, totalizando 177 pontos amostrados.

As ferramentas de "Hidrologic Modeling System – HMS" prepararam os dados processados no HEC-GeoHMS para serem exportados para o HEC-HMS, definindo o sistema de unidades, averiguando as possibilidades de problemas nas camadas e organizando esquematicamente as informações obtidas sobre as características hidrológicas da bacia. Os atributos ou parâmetros de controle das camadas de cada subbacia e de cada canal da bacia necessários às simulações hidrológicas podem ser visualizados no Apêndice 1.

Modelo meteorológico

As precipitações foram geradas a partir da equação das curvas IDF (intensidade, duração e frequência), proposta por Fendrich (2011) para Francisco Beltrão-PR, para os períodos de retorno de 2, 5, 10, 25, 50, 100 e 200 anos. A duração de cada precipitação

correspondeu ao tempo de concentração da bacia delimitada pelo alto vale do rio Marrecas, calculada pela fórmula "US Corps of Engineers" (SILVEIRA, 2005), determinada em 810 min e distribuída pelo método dos blocos alternados, com intervalos de 15 min. Os valores e as distribuições das precipitações de projeto obtidas para o referido estudo podem ser verificadas no Apêndice 2.

Os períodos de retorno de precipitação foram definidos, a fim da obtenção de uma boa representação das probabilidades de ocorrência de eventos extremos, de baixa intensidade, porém com alta frequência, como o período de retorno de 2 anos, até eventos de grande intensidade com baixa frequência de ocorrência, como o de 200 anos. As precipitações foram calculadas com auxílio do programa Excel, cujos resultados tiveram seus valores adicionados no HEC-HMS pelo programa HEC-DSS.

Especificações de controle

As especificações de controle determinaram os intervalos das simulações, como data e hora de início e fim. As simulações realizadas neste estudo têm caráter pontual de obtenção dos picos de vazão para cada cenário analisado, fazendo com que os valores adotados tenham intuito apenas de obter todos os detalhes das respostas da bacia sobre a distribuição das vazões. Para isso, entre o início e o fim do processo foram totalizadas 30 h para as simulações de cada tratamento.

Simulações no HEC-HMS

Com os modelos da bacia e meteorológico adicionados no programa HEC-HMS, bem como definidos os intervalos das simulações nas especificações de controle, na ferramenta "Simulation Run" foram criadas e salvas as combinações de cenários de uso de solo que deram origem aos modelos das bacias, com as probabilidades de precipitação representadas pelos modelos meteorológicos e as especificações de controle.

Posteriormente as simulações foram executadas pela ferramenta "Compute Current Run", e os resultados averiguados na aba "Simulations Runs", cujas características dos resultados podem ser observadas no Apêndice 3 deste trabalho: como os hidrogramas de vazão com os hietogramas de chuvas para cada sub-bacia; os hidrogramas do exutório de toda bacia; e as tabelas com informações dos picos de vazão, tempos de pico e volume escoado superficialmente em cada sub-bacia e no exutório bacia.

Análise estatística

O experimento foi distribuído em três tratamentos, representativos dos cenários de ocupação do solo propostos neste trabalho, que compuseram um delineamento em blocos casualizados. A distribuição em blocos se deu devido à necessidade de compreensão das variações nos picos de vazão (variável resposta) gerados em cada tratamento (cenários de uso do solo) em diferentes condições de probabilidade de precipitação. Os tratamentos foram, então, analisados em sete blocos/repetições formados pelos períodos de retorno de 2, 5, 10, 25, 50, 100 e 200 anos.

Os resultados de picos de vazão obtidos foram averiguados pela análise de variância (ANOVA) a 5% de significância. Rejeitada a hipótese nula (H_o), seguiram-se as verificações múltiplas de médias em cada tratamento, dois a dois, pelo teste Tukey a 5% de significância. A análise estatística dos resultados foi conduzida pelo programa R, cujos resultados podem ser observados no Apêndice 4.

RESULTADOS E DISCUSSÃO

A adequação das APPs na bacia que drena o alto vale do rio Marrecas ao antigo e ao atual Código Florestal revelaram amplas diferenças na ocupação territorial. No CACF as APPs compuseram 44,5% da área total da bacia em estudo (150,4 km²), enquanto no CNCF estas áreas ocuparam 13,7% (46,3 km²). A distribuição espacial dos usos e das ocupações do solo na bacia que drena o alto vale do rio Marrecas, adequados aos cenários propostos, pode ser observada na Figura 4.

Figura 4. Cenário de uso do solo de referência (A), este cenário com APPs adequadas ao novo Código Florestal (B) e o mesmo cenário com APPs adequadas ao antigo Código Florestal (C).

As expressivas reduções nas APPs no cumprimento das regras do NCF se devem à norma tornar legais áreas consideradas de risco, que eram anteriormente ilegais, fruto da intensa pressão política do setor ruralista, que tinha como intuito ser anistiado das infrações do antigo Código e aumentar a área de exploração (MACCARINI & SILVA, 2016).

Nas averiguações individualizadas das classes de APPs identificadas na bacia que drena o alto vale do rio Marrecas, a maior discrepância ocorreu nas APPs de topo de morro. Enquanto 82,8 km² foram classificadas como APPs de topo de morro no CACF, nenhuma área compôs estas APPs no CNCF, relação entre o antigo e o novo código florestal, que pode ser observada na Figura 5, que demonstra as variações das demais classes de APPs. As mudanças nos critérios de classificação destas APPs reduziram em 87% a área potencial a ser protegida em morros, montes, montanhas e serras em todo o país (SOARES-FILHO et al., 2014).

As alterações instituídas pelo NCF nos critérios de classificação de APPs de topos de morro permitem o uso antrópico destas áreas, afetando drasticamente o comportamento hidrodinâmico e a estabilidade geológica das encostas de dispersão, podendo acentuar inundações e deslizamentos em períodos com grandes volumes de chuva (COUTINHO et al., 2013).

Enquanto as APPs marginais a rios tiveram redução de 70,1 km² para 29,5 km², as APPs responsáveis pela manutenção dos entornos de nascentes encolheram de 16,4 km² para 2,9 km² (Figura 5). A redução nas APPs marginais a cursos d'água, devido à permissão de uso antrópico nestas áreas introduzida pelo Art. 61-A do NCF, é considerada um dos principais retrocessos da instituição na nova regra (BRANCALION et al., 2016), mas pode ser ainda menor de acordo com proposta de alteração da norma florestal vigente, em trâmite no Congresso Nacional (REIS et al., 2015). As alterações nas regras de classificação das

APPs descritas nas disposições transitórias do NCF reduzem em 58% a área potencial a ser recuperada com vegetação nativa no Brasil, em relação aos termos da legislação anterior (SOARES-FILHO et al., 2014).

As modificações na norma florestal não levam em consideração a função da vegetação nativa, na disposição de superfície com maior permeabilidade para interceptação e retardo do escoamento superficial (KIBENA et al., 2014; LOTZ et al., 2017; MAYERHOFER et al., 2017). A Lei do NCF afeta a bacia que drena o alto vale do rio Marrecas, principalmente nos termos do inciso IX do Art. 4º, que dispõe sobre as regras de classificação de APPs de topos de morro, e nos termos do Art. 61-A, que autoriza nas APPs a "continuidade das atividades agrossilvipastoris, de ecoturismo e de turismo rural em áreas rurais consolidadas até 22 de julho de 2008". A utilização antrópica destas APPs potencializa e incrementa os picos de vazão, aumentando a frequência e a gravidade das inundações (COSTA et al., 2012; KALANTARI et al., 2014; SANYAL et al., 2014; ALGEET-ABARQUERO et al., 2015).

Perante as alterações nos critérios de classificação das APPs decorrentes da instituição do NCF, as análises estatísticas comprovaram os supostos impactos da redução da vegetação nativa na bacia que drena o alto vale do rio Marrecas, sobre a distribuição das vazões, apresentadas na Tabela 1. A hipótese nula (H_o) da ANOVA foi rejeitada a um nível de significância de 5%, indicando que alterações no uso do solo promovem mudanças nos picos de vazão.

Tratamentos	Pico de vazão (m ³ s ⁻¹)								
(cenários de uso	Blocos (períodos de retorno de precipitações em anos)								
do solo ^{Tukey 5%})	2 5 10 25 50 100 2								
Referência ^{a*}	507,3	728,3	937,4	1295,3	1639,7	2052,0	2543,5		
APPs – 12.651/12 ^a	473,8	681,4	891,8	1239,6	1576,3	1980,0	2460,8		
APPs – 4.771/65 ^b	362,6	540,5	715,4	1023,8	1318,5	1690,2	2132,9		

Tabela 1. Picos de vazão gerados para os cenários de uso do solo de referência, este uso com APPs adequadas ao novo e ao antigo Código Florestal

*Letras iguais representam igualdade estatística entre os picos de vazão gerados pelos cenários de uso do solo, dois a dois pelo teste Tukey a 5% de significância.

As análises múltiplas de médias dos picos de vazão pelo teste de Tukey ao nível de significância de 5% revelaram diferenças significativas entre os picos de vazão gerados pelo CACF com os produzidos pelos CNCF e CR – não demonstrando, entretanto, diferenças significativas entre os picos de vazão gerados pelos CNCF e CR.

As interpretações estatísticas confirmam a influência exercida pela cobertura vegetal sobre a distribuição das vazões. Os picos de vazão gerados pelo CNCF e pelo CR tiveram acréscimos significativos, ao nível de 5% pelo teste de Tukey, comparados aos picos de vazão produzidos pelo CACF. Porém, não foram observadas reduções significativas nos picos de vazão produzidos pelo CNCF com relação ao CR, indicando que

a adequação das APPs ao NCF não difere significativamente do cenário representativo do atual uso do solo, no que concerne à retenção do escoamento superficial.

A substituição das florestas nas APPs na bacia que drena o alto vale do rio Marrecas por usos antrópicos aumenta o escoamento superficial e as perdas de solo, pela redução da transpiração e da interceptação da vegetação (GITHUI et al., 2009; ZHANG et al., 2015;

EUM et al., 2016; SILVA et al., 2016; LOTZ et al., 2017). O cultivo agrícola moderno, principal substituto da cobertura florestal, compacta os horizontes de solo devido principalmente ao tráfego de máquinas agrícolas, reduzindo as taxas de infiltração e aumentando a densidade aparente, tendo como consequência o aumento do escoamento superficial (ANKENY et al., 1990; ABU-HAMDEH, 2003; GÓMEZ-RODRÍGUEZ et al., 2013; FEITOSA et al., 2015; SILVA WM et al., 2016).

O aumento percentual médio nos picos de vazão gerados pelo CNCF, comparados aos produzidos pelo CACF, foi de 22,1%, podendo chegar a 30,7% para o período de retorno de maior frequência, de 2 anos. Considerando a ocorrência registrada de quatro eventos de inundações ao perímetro urbano de Francisco Beltrão-PR, nos últimos 5 anos, este último percentual pode melhor representar o aumento nos picos de vazão para este período, decorrente da instituição da nova norma florestal em detrimento ao antigo Código.

CONCLUSÕES

As regras do novo Código Florestal reduzem em 69,2% as APPs, com potencial recuperação por vegetação nativa na bacia que drena o alto vale do rio Marrecas, comparado às condições do antigo Código. Em resposta a esta potencial redução na cobertura por vegetação nativa, os picos de vazão simulados tiveram acréscimo de até 30,7%, para a precipitação com período de retorno de 2 anos. As igualdades estatísticas entre os picos de vazão gerados pelo CNCF e pelo CR induzem à reflexão de que as alterações no Código Florestal minimizam as possibilidades legais de mitigação das inundações ao perímetro urbano de Francisco Beltrão-PR, reforçando as hipóteses de que decisões políticas são tomadas sem a devida cautela sobre seus reais impactos no ambiente.

AGRADECIMENTOS

Pelos apoios diversos para o desenvolvimento desta pesquisa da UTFPR-FB (Universidade Tecnológica Federal do Paraná, Câmpus de Francisco Beltrão), do PGEAGRI (Programa de Pós-Graduação em Engenharia Agrícola da UNIOESTE, Câmpus de Cascavel), da Fundação Araucária, da CAPES (Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior), do 3º Subgrupamento de Bombeiros Independente do Corpo de Bombeiros do Paraná e do Laboratório de Geoprocessamento da UNIOESTE, Câmpus de Francisco Beltrão.

REFERÊNCIAS

ABU-HAMDEH NH (2003) Compaction and subsoiling effects on corn growth and soil bulk density. Soil Science Society of America Journal 67(4):1213-1219. DOI: http://dx.doi.org/10.2136/sssaj2003.1213

ALGEET-ABARQUERO N, MARCHAMALO M, BONATTI J, FERNÁNDEZ-MOYA J, MOUSSA R (2015) Implications of land use change on runoff generation at the plot scale in the humid tropics of Costa Rica. Catena 135:263-270. DOI: http://dx.doi.org/10.1016/j.catena.2015.08.004

ALI M, KHAN SJ, ASLAM I, KHAN Z (2011) Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landscape and Urban Planning 102:271-279. DOI: 10.1016/j.landurbplan.2011.05.006

ANKENY MD, KASPAR TC, HORTON R (1990) Characterization of tillage and traffic effects on unconfined infiltration measurements. Soil Science Society of America Journal 54(3):837-840. DOI: http://dx.doi.org/10.2136/sssaj1990.03615995005400030037x

BRANCALION PHS, GARCIA LC, LOYOLA R, RODRIGUES RR, PILLAR VD, LEWINSOHN TM (2016) Análise crítica da Lei de proteção da vegetação nativa (2012), que substituiu o antigo código florestal: atualizações e ações em curso. Natureza & Conservação 14: e1-e16. DOI: http://dx.doi.org/10.1016/j.ncon.2016.03.004

CASSOL HLG, MORAES EC (2014) Recorte municipal do sudeste e sudoeste paranaense: relação entre os fatores sociais e econômicos com o desflorestamento na Floresta Ombrófila Mista? Revista Espinhaço 3(1):43-61.

COSTA J, COSTA A, POLETO C (2012) Telhado verde: redução e retardo do escoamento superficial. Revista de estudos ambientais (Online) 14(2esp): 50-56.

COUTINHO MP, MEDEIROS JD, SORIANO É, LONDE LR, LEAL PJD, SAITO SM (2013) O Código Florestal Atual (Lei Federal nº 12.651/2012) e suas implicações na prevenção de desastres naturais. Sustentabilidade em Debate 4(2):237-256.

DU J, QIAN L, RUI H, ZUO T, ZHENG D, XU Y, XU C-Y (2012) Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. Journal of Hydrology 464-465:127-139. DOI: http://dx.doi.org/10.1016/j.jhydrol.2012.06.057

EUM H-I, DIBIKE Y, PROWSE T (2016) Comparative evaluation of the effects of climate and land-cover changes on hydrologic responses of the Muskeg River, Alberta, Canada. Journal of Hydrology: Regional Studies 8:198-221. DOI: http://dx.doi.org/10.1016/j.ejrh.2016.10.003

FEITOSA JR, FERNANDES HC, TEIXEIRA MM, CECON PR (2015) Influência da pressão interna dos pneus e da velocidade de deslocamento nos parâmetros operacionais de um trator agrícola e nas propriedades físicas do solo. Engenharia Agrícola 35(1):117-127. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v35n1p117-127/2015

FENDRICH R (2011) Chuvas intensas para obras de drenagem no Estado do Paraná. 3. ed. ampl. Curitiba, O Autor. 89p.

FLEMING MJ, DOAN JH (2013) HEC-GeoHMS: Geospatial Hydrologic Modeling Extension, User's Manual, Version 10.1. U.S. Army Corps of Engineers, Hydrologic Engineering Center. Avaiable: http://www.hec.usace.army.mil/software/hec-geohms/documentation/HEC-GeoHMS_Users_Manual_10.1.pdf. Accessed Sep 14, 2015.

GITHUI F, MUTUA F, BAUWENS W (2009) Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): case study of Nzoia catchment, Kenya. Hydrological Sciences Journal 54(5):899-908. DOI: http://dx.doi.org/10.1623/hysj.54.5.899

GÓMEZ-RODRÍGUEZ K, CAMACHO-TAMAYO JH, VÉLEZ-SÁNCHEZ JE (2013) Changes in water availability in the soil due to tractor traffic. Engenharia Agrícola 33(6):1156-1164. DOI: http://dx.doi.org/10.1590/S0100-69162013000600008

PARANÁ: Carta de solos do estado do Paraná. Curitiba: IAPAR/EMBRAPA, 2006. 50 – 22 – Y – A – MIR-516. Escala 1:210.000

KALANTARI Z, LYON SW, FOLKESON L, FRENCH HK, STOLTE J, JANSSON PE, SASSNER M (2014) Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Science of the Total Environment 466-467:741-754. DOI: http://dx.doi.org/10.1016/j.scitotenv.2013.07.047

KIBENA J, NHAPI I, GUMINDOGA W (2014) Assessing the relationship between water quality parameters and changes in land use patterns in the Upper Manyame River, Zimbabwe. Physics and Chemistry of the Earth 67–69:153-163. DOI: http://dx.doi.org/10.1016/j.pce.2013.09.017

KURTZ W, LAPIN A, SCHILLING OS, TANG Q, SCHILLER E, BRAUN T, HUNKELER D, VEREECKEN H, SUDICKY E, KROPF P (2017) Integrating hydrological modelling, data assimilation and cloud computing for real-time management of water resources. Environmental Modelling & Software 93:418-435. DOI: http://dx.doi.org/10.1016/j.envsoft.2017.03.011

LIN K, LV F, CHEN L, SINGH VP, ZHANG Q, CHEN X (2014) Xinanjiang model combined with Curve Number to simulate the effect of land use change on environmental flow. Journal of Hydrology 519: 3142-3152. DOI: http://dx.doi.org/10.1016/j.jhydrol.2014.10.049

LOTZ T, OPP C, HE X (2017) Factors of runoff generation in the Dongting Lake basin based on a SWAT model and implications of recent land cover change. Quaternary International 434:1-9. DOI: http://dx.doi.org/10.1016/j.quaint.2017.03.057

MACCARINI TB, SILVA AA (2016) relação entre o código florestal brasileiro e os desastres naturais. Revista Ordem Pública 9(1):223-233.

MARQUES MJ, BIENES R, JIMÉNEZ L, PÉREZ-RODRÍGUEZ R (2007) Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots. Science of the Total Environment 378:161-165. DOI: http://dx.doi.org/10.1016/j.scitotenv.2007.01.043

MAYERHOFER C, MEIßL G, KLEBINDER K, KOHL B, MARKART G (2017) Comparison of the results of a small-plot and a large-plot rainfall simulator – Effects of land use and land cover on surface runoff in Alpine catchments. Catena 156:184-196. DOI: http://dx.doi.org/10.1016/j.catena.2017.04.009

MU W, YU F, LI C, XIE Y, TIAN J, LIU J, ZHAO N (2015) Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize.

Water 7: 2990-3008. DOI:10.3390/w7062990

NIEMI TJ, WARSTA L, TAKA M, HICKMAN B, PULKKINEN S, KREBS G, MOISSEEV DN, KOIVUSALO H, KOKKONEN T (2017) Applicability of open rainfall data to event-scale urban rainfall-runoff modelling. Journal of Hydrology 547:143-155. DOI: http://dx.doi.org/10.1016/j.jhydrol.2017.01.056

OLIVEIRA GC (2015) Precisão de modelos digitais de terreno, mapeamento automático de APPs em topos de morros e a eficácia do novo Código Florestal. Dissertação de Mestrado, Universidade Federal de Viçosa, Programa de Pós-Graduação em Solos e Nutrição de Plantas.

PEREIRA DR, MARTINEZ MA, ALMEIDA AQ, PRUSKI FF, SILVA DD, ZONTA JH (2014) Hydrological simulation using SWAT model in headwater basin in Southeast Brazil. Engenharia Agrícola 34(4):789-799. DOI: dx.doi.org/10.1590/S0100-69162014000400018

PONTES LM, VIOLA MR, SILVA MLN, BISPO DFA, CURI N (2016) Hydrological modeling of tributaries of Cantareira system, Southeast Brazil, with the SWAT model. Engenharia Agrícola 36(6):1037-1049. DOI: dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n6p1037-1049/2016

RAZI MAM, ARIFFIN J, TAHIR T, ARISH AM (2010) Flood estimation studies using hydrologic modeling system (HEC-HMS) for Johor River, Malaysia. Journal of Applied Sciences

10:930-939. DOI: dx.doi.org/10.3923/jas.2010.930.939

REIS LC, REIS TES, SAAB OJGA, REIS AS, BATISTA BG (2015) Código Florestal Brasileiro: Impactos econômicos e sociais no município de Bandeirantes-PR. Engenharia Agrícola 35(4):778-788. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v35n4p778-788/2015

RODERJAN CV, GALVÃO F, KUNIYOSHI YS, HATSCHBACH GG (2002) As unidades fitogeográficas do estado do Paraná, Brasil. Ciência e Ambiente 24(1):75-42.

SANYAL J, DENSMORE AL, CARBONNEAU P (2014) Analysing the effect of landuse/cover changes at sub-catchment levels on downstream flood peaks: a semi-distributed modelling approach with sparse data. Catena 118:28-40. DOI: 10.1016/j.catena.2014.01.015

SAVOLDI A, CUNHA LA (2010) Uma abordagem sobre a agricultura familiar, PRONAF e a modernização da agricultura no Sudoeste do Paraná na década de 1970. Revista Geografar 5(1):25-45.

SCHARFFENBERG WA (2015) Hydrologic Modeling System HEC-HMS, User's Manual, Version 4.1. U.S. Army Corps of Engineers, Hydrologic Engineering Center. Available: http://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.1.pdf. Accessed Sep 21, 2015.

SILVA WM, BIANCHINI A, CUNHA CA (2016) Modeling and correction of soil penetration resistance for variations in soil moisture and soil bulk density. Engenharia Agrícola 36(3):449-459. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n3p449-459/2016

SILVA VPR, SILVA MT, SOUZA EP (2016) Influence of land use change on sediment yield: a case study of the sub-middle of the São Francisco river basin. Engenharia Agrícola 36(6):1005-1015. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n6p1005-1015/2016

SILVEIRA ALL (2005) Desempenho de fórmulas de tempo de concentração em bacias urbanas e rurais. Revista Brasileira de Recursos Hídricos 10(1):5-23. DOI: http://dx.doi.org/10.21168/rbrh.v10n1.p5-29

SOARES-FILHO B, RAJÃO R, MACEDO M, CARNEIRO A, COSTA W, COE M, RODRIGUES H, ALENCAR A (2014) Cracking Brazil's Forest Code. Science 344:363-364. DOI: 10.1126/science.1246663

SURIYA S, MUDGAL BV (2012) Impact of urbanization on flooding: The thirusoolam sub watershed – A case study. Journal of Hydrology 412-413:210-219. DOI: http://dx.doi.org/10.1016/j.jhydrol.2011.05.008

USDA – United States Department of Agriculture (1986) Natural Resources Conservation Service. Urban Hydrology for Small Watersheds. In: TR-55. 2. ed. Available: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf. Accessed Aug 17, 2016.

VALERIANO MM (2004) Modelo Digital de Elevação com dados SRTM disponíveis para a América do Sul. Dissertação de Mestrado em Sensoriamento Remoto. Instituto Nacional de Pesquisas Espaciais.

VALERIANO MM, ABDON MM (2007) Aplicação de Dados SRTM a estudos do Pantanal. Revista Brasileira de Cartografia 59(1):63-71.

WAN R, YANG G (2007) Influence of land use/cover change on storm runoff - a case study of Xitiaoxi River Basin in upstream of Taihu Lake watershed. Chinese Geographical Science 17(4):349-356. DOI: http://dx.doi.org/10.1007/s11769-007-0349-6

YU Y, LOISKANDL W, KAUL H-P, HIMMELBAUER M, WEI W, CHEN L, BODNER G (2016) Estimation of runoff mitigation by morphologically different cover crop root systems. Journal of Hydrology 538:667-676. DOI: http://dx.doi.org/10.1016/j.jhydrol.2016.04.060

ZHANG L, WANG J, BAI Z, LV C (2015) Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 128:44-53. DOI: http://dx.doi.org/10.1016/j.catena.2015.01.016

5.2 ARTIGO 2. DINÂMICA SAZONAL DA COBERTURA DO SOLO AGRÍCOLA NA GERAÇÃO DO ESCOAMENTO SUPERFICIAL³

RESUMO: Alterações sazonais no uso do solo agrícola devido a condições agroclimáticas afetam o ciclo das águas nas bacias hidrográficas. Este trabalho objetivou a compreensão da variação temporal do escoamento superficial inerente à dinâmica de ocupação sazonal do solo agrícola na bacia que drena o alto vale do rio Marrecas, à montante do perímetro urbano de Francisco Beltrão-PR. Os efeitos do escoamento superficial foram verificados através de picos de vazão simulados pelo modelo HEC-HMS, em doze cenários mensais de uso do solo, sob sete períodos de retorno de precipitação. Os resultados indicaram forte relação entre o uso por solo exposto e os picos de vazão, delimitando temporalmente os meses de abril e março como os maiores geradores de escoamento superficial, bem como os menores: janeiro e agosto. A relação entre uso do solo e escoamento superficial foi quantificada por taxas de aumento nos picos de vazão, que variaram de 0,78 a 1,64 m³ s⁻¹, por km² de solo exposto. Além disso, a pesquisa de dados históricos de precipitação alerta também sobre elevados riscos de inundação para o mês de outubro. Concluindo que há forte correlação entre o acréscimo nos picos de vazão e a ocupação por solo exposto, possível de ser quantificada com precisão, mas que a compreensão da distribuição temporal dos riscos de inundação precisa considerar também os registros históricos de precipitação.

PALAVRAS-CHAVE: inundação, pico de vazão, simulação hidrológica, uso do solo agrícola, rio Marrecas.

INTRODUÇÃO

A Região do alto vale do rio Marrecas à montante do perímetro urbano de Francisco Beltrão-PR possui 0,7% de sua área ocupada por lâminas d'água, 1,7% por pastagens permanentes, 32,3% por florestas e 65,3% por atividades agrícolas. Esta região foi colonizada por imigrantes dos estados de Santa Catarina e do Rio Grande do Sul, em maiores proporções a partir da década de 1940 (CASSOL & MORAIS, 2014), que ocuparam pequenas parcelas de terra, caracterizando uma forma de produção agrícola familiar (SAVOLDI & CUNHA, 2010). Este modelo de ocupação provocou profundas alterações na paisagem, com a substituição da Floresta Ombrófila Mista pelo uso agrícola (CASSOL & MORAIS, 2014).

A remoção das florestas para utilização do solo por atividades antrópicas reduz a interceptação da chuva e a transpiração vegetal, aumentando o escoamento superficial (GITHUI et al., 2009). O cultivo agrícola, um dos principais substitutos das florestas, pode ainda incrementar a geração de escoamento superficial pela compactação dos horizontes de solo, aumentando a densidade aparente e reduzindo as taxas de infiltração (ANKENY et al., 1990, ABU-HAMDEH, 2003).

O tipo de solo, a topografia e a cobertura do solo são os fatores mais importantes no controle do processo de geração de escoamento superficial. A cobertura do solo é

³ Este artigo segue as normas da Revista Engenharia Agrícola (Anexo 1)

considerada o elemento dinâmico na formação do escoamento superficial, já que o tipo de solo e a topografia têm alterações insignificantes em curto prazo (MILLER et al., 2002).

A alteração do uso e a ocupação do solo refletem diretamente o grau de influência humana, que, por sua vez, afeta o ciclo hidrológico e a disponibilidade dos recursos hídricos (LIN et al., 2014). A cobertura do solo agrícola varia em virtude das fases do desenvolvimento das culturas anuais e do período de entressafra, que ocorrem sazonalmente e dependem de fatores sociais, econômicos e ambientais (ZHAO et al., 2014; TESEMMA et al., 2015; YOU, 2017). As mudanças na ocupação do solo agrícola condicionadas às variações climáticas estacionais alteram o balanço entre o escoamento superficial e a infiltração das águas (TUCCI & CLARKE, 1997).

As mudanças na cobertura do solo já foram abordadas em diversos estudos, como nas pesquisas sobre os efeitos da urbanização (SURIYA & MUDGAL, 2012; ZOPE et al., 2016; NIEMI et al., 2017), da evolução da ocupação antrópica em bacias hidrográficas (FANG et al., 2012; SANYAL et al., 2014; RODRIGUEZ-LLOVERAS et al., 2015; NAPOLI et al., 2017; WELDE & GEBREMARIAM, 2017) e da influência da cobertura vegetal (MARQUES et al., 2007; MU et al., 2015; ZHANG et al., 2015; SILVA et al., 2016; YU et al., 2016) no equilíbrio entre os elementos do ciclo hidrológico. Entretanto, são singulares as pesquisas que buscam investigar os efeitos da sazonalidade do uso do solo agrícola na geração do escoamento superficial ao longo de um ano hidrológico.

Perante este contexto e considerando que o perímetro urbano do município de Francisco Beltrão, PR, Brasil, é propício a eventos de inundação, devido ao baixo gradiente topográfico e à alta sinuosidade do rio Marrecas nesta região, além dos elevados índices pluviométricos registrados, a utilização agrícola do solo pode ser entendida como um fator dinâmico no processo de potencialização de geração de escoamento superficial. Este trabalho tem como objetivo compreender o comportamento hidrológico, das alterações sazonais da cobertura do solo agrícola na bacia que drena o alto vale do rio Marrecas, sob doze cenários mensais de uso do solo, perante a resposta do escoamento superficial nos picos de vazão, visando o conhecimento da distribuição temporal do escoamento superficial e dos riscos de inundação.

MATERIAL E MÉTODOS

O estudo foi realizado na bacia que drena o alto vale do rio Marrecas, à montante do perímetro urbano de Francisco Beltrão-PR, no ponto de controle com coordenadas geográficas 26° 04' 53" S e 53° 04' 30" O. A bacia tem altitude média de 736 m e estende-se por três municípios paranaenses (Marmeleiro, Flor da Serra do Sul e Francisco Beltrão) (Figura 1).

Figura 1. Distribuição espacial da região do sul do Brasil (A), localização da bacia do rio Marrecas no estado do Paraná (B) e a bacia que drena o alto vale do rio Marrecas subdividida em 59 sub-bacias com a rede de drenagem considerada neste estudo (C).

O ponto de controle no rio Marrecas foi escolhido devido às seguintes características: possuir uma estação fluviométrica (código 65950200/Instituto Águas Paraná); ser ponto de coleta de água pela Companhia de Saneamento do Paraná (Sanepar), para abastecimento público de grande parte da cidade de Francisco Beltrão; e representar o ponto de entrada do rio na área urbana, afetada com frequência por inundações.

As simulações hidrológicas contemplaram o parâmetro de pico de vazão, que é a resposta do escoamento superficial no canal de drenagem, cujo transbordamento para suas margens determina o momento de máxima ocupação pela inundação. As simulações foram realizadas pelo modelo HEC-HMS 4.1 (SCHARFFENBERG, 2015), que demandou a entrada do modelo com as características físicas da bacia e dos canais, do modelo meteorológico, com dados de precipitação, e as especificações de controle, com os respectivos intervalos para obtenção das respostas.

As características da bacia e dos canais foram obtidas com auxílio da extensão HEC-GeoHMS (Geospatial Hydrologic Modeling), executado pelo programa ArcMap 10.1. O HEC-GeoHMS exige a entrada de um modelo digital de elevação (MDE) e informações dos canais de drenagem, fornecendo dados de escoamento superficial e de propagação da onda de cheia nos canais.

O MDE utilizado neste estudo foi disponibilizado por Valeriano (2004), o qual foi gerado a partir do projeto SRTM (Shuttle Radar Topographic Mission), que advém de cooperação entre a NASA (National Aeronautics and Space Administration) e a NIMA (National Imagery and Mapping Agency), do DOD (Departamento de Defesa) dos Estados

Unidos e das agências espaciais da Alemanha e da Itália (VALERIANO & ABDON, 2007), em escala 1:250.000 e em resolução espacial de 30 metros, para todo o estado do Paraná.

O MDE foi pré-processado pelo HEC-GeoHMS, delineando a bacia drenada pelo alto vale do rio Marrecas à montante do perímetro urbano de Francisco Beltrão-PR, com área de 337,88 km². A bacia foi subdividida em 59 sub-bacias, com intuito de melhor representação espacial dos processos hidrológicos, compostas por uma linha hidrográfica gerada a partir da área mínima de drenagem de 1% da área total, cuja distribuição pode ser observada na Figura 1.

Os métodos adotados nas simulações dos picos de vazão pelo modelo HEC-HMS foram pré-selecionados no HEC-GeoHMS, escolhidos com base na disponibilidade de informações sobre os canais de drenagem e a bacia: perdas por infiltração (método "SCS curve number"); transformação de precipitação efetiva em escoamento superficial (método "SCS unit hydrograph"); e propagação da onda no canal (método de "Muskingum-Cunge").

Os dados de número da curva ("curve number" – CN), que correspondem a um coeficiente de escoamento superficial, para as sub-bacias, foram obtidos pelo confronto de dados de tipo de solo, de acordo com o mapeamento realizado pela IAPAR/EMBRAPA (2006), que definiram os grupos hidrológicos de solo e o uso do solo, com auxílio da ferramenta "Generante CN Grid" do HEC-GeoHMS.

O uso do solo foi classificado pelo software Spring, com imagens do satélite Landsat 8, sensor OLI, geradas pelo U.S. Geological Survey (USGS) e pelo satélite CBERS 4, sensor MUX, geradas pelo Instituto Nacional de Pesquisas Espaciais (INPE). As imagens foram segmentadas com nível de similaridade 10 e área mínima de 20 pixels, os usos foram individualizados pelo classificador Bhattacharya a um limiar de aceitação de 99,9%. A composição dos usos levou em consideração a chave de classificação forma, cor e textura possíveis de serem identificadas nas imagens.

Doze cenários de uso do solo foram gerados, um para cada mês do ano, para as simulações hidrológicas dos picos de vazão, representando os usos praticados sazonalmente na área de estudo, correspondentes às imagens datadas de: 13/01/2017, 28/02/2017, 13/03/2016, 01/04/2017, 24/05/2017, 15/06/2015, 03/07/2016, 04/08/2016, 21/09/2016, 07/10/2016, 24/11/2016 e 05/12/2014.

O uso sazonal do solo na bacia que drena o alto vale do rio Marrecas é dinâmico ao longo do ano, principalmente em áreas agrícolas, bem como supostamente seus efeitos no ciclo das águas. Neste sentido, regiões ocupadas por florestas, pastagens e lâminas de água, tiveram suas áreas fixadas, com base em valores médios obtidos nas classificações, para todos os cenários. Este fator possibilitou a verificação das variações na ocupação das áreas agrícolas com possibilidade de reconhecimento pelo classificador, como solo exposto, lavouras em fase inicial e lavouras em fase intermediária e final, assim como seus impactos na geração do escoamento superficial.

Os doze cenários de uso do solo foram reclassificados em grandezas de CN (curve number), de acordo com o recomendado pelo Serviço de Conservação de Solos do Departamento de Agricultura dos Estados Unidos (USDA-SCS). Para isso, os usos do solo foram cruzados com os grupos hidrológicos de solos da bacia, sob as condições de umidade antecedente do solo AMC (Antecedent Moisture Condition) II (USDA, 1986), bem como demais parâmetros foram fixados para todos os cenários, a fim de averiguar o comportamento do escoamento superficial decorrente do uso sazonal do solo agrícola.

A propagação da onda de cheia calculada pelo método de "Muskingun-Cunge" exigiu informações de largura, declividade lateral e do coeficiente de rugosidade de Manning (n) dos canais de drenagem. Estes dados foram coletados em campo, por amostragens de três pontos para cada canal componente das 59 sub-bacias, totalizando 177 pontos amostrados.

As precipitações foram geradas pela equação das curvas IDF (intensidade, duração e frequência), propostas por Fendrich (2011) para Francisco Beltrão-PR, para os períodos de retorno de 2, 5, 10, 25, 50, 100 e 200 anos. A duração de cada precipitação correspondeu ao tempo de concentração da bacia delimitada pelo alto vale do rio Marrecas, calculada pela fórmula "US Corps of Engineers" (SILVEIRA, 2005), determinada em 810 min e distribuída pelo método dos blocos alternados, com intervalos de 15 min.

As especificações de controle determinaram os intervalos das simulações, como data e hora de início e fim. As simulações realizadas neste estudo tem caráter pontual de obtenção dos picos de vazão para cada cenário analisado, fazendo com que os valores adotados tenham intuito apenas de obter todos os detalhes das respostas da bacia sobre a distribuição das vazões. Para isso, entre o início e o fim do processo foram totalizadas 30 h para as simulações de cada tratamento.

Com os modelos da bacia e meteorológico adicionados no programa HEC-HMS, bem como definidos os intervalos das simulações nas especificações de controle, na ferramenta "Simulation Run" foram criadas e salvas as combinações de cenários de uso de solo que deram origem aos modelos das bacias, com as probabilidades de precipitação representadas pelos modelos meteorológicos e as especificações de controle. As simulações foram executadas pela ferramenta "Compute Current Run", e os resultados averiguados na aba "Simulations Runs".

O experimento foi distribuído em doze tratamentos, representativos dos cenários mensais de ocupação do solo propostos neste trabalho, que compuseram um delineamento em blocos casualizados. A distribuição em blocos se deu devido à necessidade de compreensão das variações nos picos de vazão (variável resposta) gerados em cada tratamento (cenários de uso do solo) em diferentes condições de probabilidade de precipitação. Os tratamentos foram, então, analisados em sete blocos/repetições formados pelos períodos de retorno de 2, 5, 10, 25, 50, 100 e 200 anos.

Os resultados de picos de vazão obtidos foram averiguados pela análise de variância (ANOVA) a 5% de significância. Rejeitada a hipótese nula (H_o), seguiram-se as verificações múltiplas de médias em cada tratamento, dois a dois, pelo teste Tukey a 5% de significância. O procedimento foi conduzido pelo programa R, cujos resultados podem ser verificados no Apêndice 5 deste trabalho.

RESULTADOS E DISCUSSÃO

Os cenários dos doze meses analisados apresentaram grandes variações nos usos das áreas agrícolas ao longo do ano representativo (Figura 2). Os solos expostos tiveram maior ocorrência no mês de abril, com 124,1 km², e menor em agosto, com 4,7 km². A ocupação com lavoura em fase inicial teve maior área no mês de maio, com 175,14 km², e menor no mês de abril, com 82,45 km². Por fim, a lavoura em fases intermediária e final teve maior ocupação no mês de janeiro, com 70,77 km², e menor no mês de março, com 12,45 km².

A classificação de maiores quantidades de áreas ocupadas por lavoura em fase inicial, possível de ser observada na Figura 2, pode estar relacionada à semelhança espectral deste uso com áreas ocupadas por brotações pós-colheita de culturas ou até mesmo ervas daninhas. Semelhanças espectrais decorrentes dos estágios fenológicos das vegetações, com maior ou menor dificuldade de separação podem ocorrer, dependendo também da qualidade da resolução espacial da imagem (PONZONI & REZENDE, 2002; ESCH et al., 2014).

As alterações sazonais no uso do solo agrícola em decorrência das variações climáticas estacionais provocam significativas mudanças no ciclo das águas (TUCCI & CLARKE, 1997). A exposição do solo no preparo para o plantio e os diferentes estágios de desenvolvimento das culturas anuais, podem alterar a dinâmica do escoamento superficial ao longo do ano e consequentemente os picos de vazão (ZHAO et al., 2014; SANYAL et al., 2014, NAPOLI et al., 2017).

Os picos de vazão gerados nos cenários mensais de uso do solo (tratamentos), em cada período de retorno de precipitação (bloco/repetição), podem ser observados na Tabela 1. A hipótese nula do teste ANOVA a 5% de significância foi rejeitada, seguindo com o teste de Tukey ao nível de 5% de significância.

_	Pico de vazão (mº s ⁻)								
Tratamentos	Blocos (períodos de retorno da precipitação anos)								
(mês ^{Tukey 5%})	2	5	10	25	50	100	200		
Janeiro ^{g*}	499,1	719,3	931,8	1294,6	1644,8	2059,6	2542,4		
Fevereiro ^{de}	548,7	777,7	1004,2	1369,8	1733,2	2159,5	2643,7		
Março ^b	578,3	816,0	1044	1417,0	1785,8	2214,7	2714,0		
Abril ^a	596,5	831,3	1068,3	1447,1	1817,0	2248,4	2748,5		
Maio ^f	526,0	751,5	973,3	1333,9	1689,7	2111,7	2600,2		
Junho ^f	531,7	758,9	979,8	1346,2	1704,3	2127,0	2614,2		
Julho ^{cde}	548,8	779,3	1005,2	1371,3	1737,2	2161,4	2645,1		
Agosto ^g	505,8	726,6	941,0	1306,6	1657,6	2074,7	2564,2		
Setembro ^{ef}	537,8	766,3	987,5	1355,7	1717,0	2138,3	2625,3		
Outubro ^c	562,1	792,4	1019,6	1391,6	1758,7	2186,4	2677,2		
Novembro ^{cd}	554,2	785,5	1009,9	1379,5	1745,5	2170,4	2661,6		
Dezembro ^{cde}	549,3	779,2	1005,4	1371,3	1737,3	2159,1	2645,0		

Tabela 1. Picos de vazão gerados para cada cenário de uso do solo mensal

*Letras iguais representam igualdade estatística entre os picos de vazão gerados pelos cenários mensais analisados dois a dois pelo teste Tukey a 5% de significância.

O mês de abril apresentou os maiores picos de vazão; em segunda posição o mês de março, resultado das maiores áreas ocupadas por solo exposto, sendo que os menores picos de vazão foram verificados nos meses de janeiro e agosto, ocupados pelas menores áreas com solo exposto (Figura 2). Esta relação entre uso do solo e geração de escoamento superficial permitiu a aplicação de métodos estatísticos de regressão linear, para o estabelecimento de taxas de aumento nos picos de vazão em função da área de solo exposto. Esta verificação estatística demonstrou que as taxas de aumento nos picos de vazão de pendem da intensidade de precipitação a que o cenário de uso do solo é sujeito, expressos pelos períodos de retorno propostos (Figura 3).

Figura 3. Regressões lineares dos acréscimos nos picos de vazão em função da área de solo exposto.

A análise dos coeficientes angulares das retas (Figura 3) permite quantificar as taxas de aumento nos picos de vazão em função da área de solo exposto, que variaram de 0,78 m³ s⁻¹ a 1,64 m³ s⁻¹, para os períodos de retorno de 2 e 200 anos, respectivamente, para cada km² de solo exposto. As regressões lineares apresentaram um coeficiente de determinação (R²) médio de 0,9743 para os períodos de retorno de precipitação analisados, demonstrando alta qualidade do ajuste, bem como indicando que as áreas agrícolas ocupadas por solo exposto explicam 97,43% da variância dos picos de vazão, sendo que 2,57% destas variâncias dependem de outras variáveis não estudas aqui.

Contrapondo os aumentos no escoamento superficial potencializados pelos solos descobertos, nos meses com maiores coberturas do solo agrícola, ocupadas por lavoura em fases intermediária e final, janeiro e agosto, também foram os períodos com maior retenção do escoamento superficial. Corroborando com os resultados, o mês com menor ocupação por lavouras em fases intermediária e final, março apresentou a segunda posição dos maiores picos de vazão. A ocupação com lavoura em fase inicial demonstrou importância secundária nas variações dos picos de vazão.

A exposição do solo reduz a evapotranspiração, ocasionada pela evaporação da água interceptada nas folhas e pela transpiração das plantas, aumentando o escoamento superficial e as perdas de solo (ZHANG et al., 2015; EUM et al., 2016; SILVA et al., 2016), quando comparado com solos ocupados por pastagens e lavouras sazonais (ZHAO et al., 2014). As fases intermediária e final das culturas têm altas taxas de evapotranspiração e demanda de água (MU et al., 2015; GONDIM et al., 2017), bem como maiores condutividades hidráulicas, proporcionais aos diâmetros e comprimentos das raízes das plantas (YU et al., 2016), aumentando a infiltração da água, retardando o escoamento superficial e reduzindo os picos de vazão (SANYAL et al., 2014; TESEMMA et al., 2015; NAPOLI et al., 2017).

Os dois meses com maior potencial de geração de escoamento superficial, abril e março, respectivamente, demarcam temporalmente um período do ano de maior atenção para potenciais eventos de inundação, com relação ao uso do solo da bacia contribuinte – apesar de que estes dois meses apresentam precipitações médias (Figura 4), abaixo da média de todos os meses. Entretanto, é preciso considerar que eventos de precipitação extremos são crescentes tanto em magnitude quanto em frequência, podendo estar relacionados às mudanças climáticas globais (WANG et al., 2013; DU et al., 2014).

Figura 4. Precipitações médias mensais de 1974 a 2016 da estação agrometeorológica do IAPAR de Francisco Beltrão.

A pesquisa das precipitações médias mensais (Figura 4) alerta também para o mês de outubro, quanto às potencialidades de geração de escoamento superficial e riscos de inundação, devido ao registro das maiores médias mensais de precipitação dos últimos 43 anos para este mês. A análise estatística destes dados históricos revelou que a precipitação média em outubro superou a variação máxima do desvio padrão, da precipitação média de todos os meses. Além disso, o mês de outubro apresenta os terceiros maiores picos de vazão em cada período de retorno, juntamente com os meses de julho, novembro e dezembro, em decorrência da utilização do solo agrícola, que também merecem atenção quanto aos riscos de inundação.

As distribuições temporais, bem como as taxas de geração de escoamento superficial, podem ser extrapoladas para bacias vizinhas que possuam características morfoclimáticas semelhantes (LOPES et al., 2017), tendo em vista a carência de dados hidrológicos no Brasil (PONTES et al., 2016). Estes são conhecimentos que podem compor um banco de dados sobre os fluxos em longo prazo, essenciais para o planejamento e o gerenciamento dos recursos hídricos regionais (PRUSKI et al., 2016).

CONCLUSÕES

A averiguação da ocupação sazonal do solo agrícola identificou forte relação entre o aumento do escoamento superficial, máximos nos meses de abril e março, respectivamente, com ocupações por solo exposto – relação esta que possibilitou a quantificação dos acréscimos nos picos de vazão em função da área de solo exposto, com alta qualidade de ajustes das regressões lineares. Além disso, o confronto dos resultados com dados históricos de precipitação alerta também para o potencial de geração de escoamento superficial no mês de outubro, indicando que a distribuição temporal do escoamento superficial e dos riscos de inundação não pode ser feita apenas pelos fatores de uso do solo.

AGRADECIMENTOS

Pelos apoios diversos para o desenvolvimento desta pesquisa da UTFPR-FB (Universidade Tecnológica Federal do Paraná, Câmpus de Francisco Beltrão), do PGEAGRI (Programa de Pós-Graduação em Engenharia Agrícola da UNIOESTE, Câmpus de Cascavel), da Fundação Araucária, da CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), do 3º Subgrupamento de Bombeiros Independente do Corpo de Bombeiros do Paraná e do Laboratório de Geoprocessamento da UNIOESTE, Câmpus de Francisco Beltrão.

REFERÊNCIAS

ABU-HAMDEH NH (2003) Compaction and subsoiling effects on corn growth and soil bulk density. Soil Science Society of America Journal 67(4):1213-1219. DOI: http://dx.doi.org/10.2136/sssaj2003.1213

ANKENY MD, KASPAR TC, HORTON R (1990) Characterization of tillage and traffic effects on unconfined infiltration measurements. Soil Science Society of America Journal 54(3):837-840. DOI: http://dx.doi.org/10.2136/sssaj1990.03615995005400030037x

CASSOL HLG, MORAES EC (2014) Recorte municipal do sudeste e sudoeste paranaense: relação entre os fatores sociais e econômicos com o desflorestamento na Floresta Ombrófila Mista? Revista Espinhaço 3(1):43-61.

DU H, XIA J, ZENG S, SHE D, LIU J (2014) Variations and statistical probability characteristic analysis of extreme precipitation events under climate change in Haihe River Basin, China. Hydrological Processes 28:913-925. DOI: http://dx.doi.org/10.1002/hyp.9606

ESCH T, METZ A, MARCONCINI M, KEIL M (2014) Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland. International Journal of Applied Earth Observation and Geoinformation 28:230-237.

DOI: http://dx.doi.org/10.1016/j.jag.2013.12.007

EUM H-I, DIBIKE Y, PROWSE T (2016) Comparative evaluation of the effects of climate and land-cover changes on hydrologic responses of the Muskeg River, Alberta, Canada. Journal of Hydrology: Regional Studies 8:198-221. DOI: http://dx.doi.org/10.1016/j.ejrh.2016.10.003

FANG N-F, SHI Z-H, LI L, GUO Z-L, LIU Q-J, AI L (2012) The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed. Catena 99:1-8. DOI: http://dx.doi.org/10.1016/j.catena.2012.07.004

FENDRICH R (2011) Chuvas intensas para obras de drenagem no Estado do Paraná. 3. ed. ampl. Curitiba, O Autor. 89p.

GITHUI F, MUTUA F, BAUWENS W (2009) Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): case study of Nzoia catchment, Kenya. Hydrological Sciences Journal 54(5):899-908. DOI: http://dx.doi.org/10.1623/hysj.54.5.899

GONDIM RS, EVANGELISTA SRM, MAIA AHN, DUARTE AS (2017) Climate change impacts on water demand of melon plants in Jaguaribe-Apodi region, Brazil. Engenharia Agrícola 37(3): 591-602. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n3p591-602/2017

LIN K, LV F, CHEN L, SINGH VP, ZHANG Q, CHEN X (2014) Xinanjiang model combined with Curve Number to simulate the effect of land use change on environmental flow. Journal of Hydrology 519:3142-3152. DOI: http://dx.doi.org/10.1016/j.jhydrol.2014.10.049

LOPES TR, ZOLIN CA, PRADO G, PAULINO J, ALMEIDA FT (2017) Regionalization of maximum and minimum flow in the Teles Pires basin, Brazil. Engenharia Agrícola 37(1):54-63. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n1p54-63/2017

MARQUES MJ, BIENES R, JIMÉNEZ L, PÉREZ-RODRÍGUEZ R (2007) Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots. Science of the Total Environment 378:161-165. DOI: http://dx.doi.org/10.1016/j.scitotenv.2007.01.043

MILLER SN, KEPNER WG, MEHAFFEY MH, HERNANDEZ M, MILLER RC, GOODRICH DC, DEVONALD KK, HEGGEM DT MILLER WP (2002) Integrating landscape assessment and hydrologic modeling for land cover change analysis. Journal of the American Water Resources Association 38: 915-929. DOI: http://dx.doi.org/10.1111/j.1752-1688.2002.tb05534.x

MU W, YU F, LI C, XIE Y, TIAN J, LIU J, ZHAO N (2015) Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize.

Water 7:2990-3008. DOI:10.3390/w7062990

NAPOLI M, MASSETTI L, ORLANDINI S (2017) Hydrological response to land use and climate changes in a rural hilly basin in Italy. Catena 157:1-11. DOI: http://dx.doi.org/10.1016/j.catena.2017.05.002

NIEMI TJ, WARSTA L, TAKA M, HICKMAN B, PULKKINEN S, KREBS G, MOISSEEV DN, KOIVUSALO H, KOKKONEN T (2017) Applicability of open rainfall data to event-scale urban rainfall-runoff modelling. Journal of Hydrology 547:143-155. DOI: http://dx.doi.org/10.1016/j.jhydrol.2017.01.056

PALUZIO TMO, SANTOS AR, FIEDLER NC (2010) Mapeamento de áreas de preservação permanente no ArqGIS 9.3. Alegre: CAUFES. 58p.

PONTES LM, VIOLA MR, SILVA MLN, BISPO DFA, CURI N (2016) Hydrological modeling of tributaries of Cantareira system, Southeast Brazil, with the SWAT model. Engenharia Agrícola 36(6):1037-1049.DOI:http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n6p1037-1049/2016

PONZONI FJ, REZENDE ACP (2002) Influência da resolução espacial de imagens orbitais na identificação de elementos da paisagem em Altamira-PA. Revista Árvore 26(4):403-410.

PRUSKI FF, RODRIGUEZ RDG, PRUSKI PL, NUNES AA, REGO FS (2016) Extrapolation of regionalization equations for long-term average flow. Engenharia Agrícola 36(5): 830-838. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n5p830-838/2016

RODRIGUEZ-LLOVERAS X, BUSSI G, FRANCÉS F, RODRIGUEZ-CABALLERO E, SOLÉ-BENET A, CALLE M, BENITO G (2015) Patterns of runoff and sediment production in response to land-use changes in an ungauged Mediterranean catchment. Journal of Hydrology 531:1054-1066. DOI: http://dx.doi.org/10.1016/j.jhydrol.2015.11.014

SANYAL J, DENSMORE A L, CARBONNEAU P (2014) Analysing the effect of landuse/cover changes at sub-catchment levels on downstream flood peaks: a semi-distributed modelling approach with sparse data. Catena 118:28-40. DOI: 10.1016/j.catena.2014.01.015

SAVOLDI A, CUNHA LA (2010) Uma abordagem sobre a agricultura familiar, PRONAF e a modernização da agricultura no Sudoeste do Paraná na década de 1970. Revista Geografar 5(1):25-45.

SCHARFFENBERG WA (2015) Hydrologic Modeling System HEC-HMS, User's Manual, Version 4.0. U.S. Army Corps of Engineers, Hydrologic Engineering Center. Available: http://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.1.pdf. Accessed Sep 21, 2015.

SILVA VPR, SILVA MT, SOUZA EP (2016) Influence of land use change on sediment yield: a case study of the sub-middle of the São Francisco river basin. Engenharia Agrícola 36(6):1005-1015. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n6p1005-1015/2016

SILVEIRA ALL (2005) Desempenho de fórmulas de tempo de concentração em bacias urbanas e rurais. Revista Brasileira de Recursos Hídricos 10(1):5-23. DOI: http://dx.doi.org/10.21168/rbrh.v10n1.p5-29

SURIYA S, MUDGAL BV (2012) Impact of urbanization on flooding: The thirusoolam sub watershed – A case study. Journal of Hydrology 412-413:210-219. DOI: http://dx.doi.org/10.1016/j.jhydrol.2011.05.008

TESEMMA ZK, WEI Y, PEEL MC, WESTERN AW (2015) The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff. Advances in Water Resources 83:310-322. DOI: http://dx.doi.org/10.1016/j.advwatres.2015.07.002

TUCCI CEM, CLARKE RT (1997) Impactos das mudanças da cobertura vegetal no escoamento: Revisão. Revista Brasileira de Recursos Hídricos 2(1):135-152.

USDA – United States Department of Agriculture (1986) Natural Resources Conservation Service. Urban Hydrology for Small Watersheds. In: TR-55. 2. ed. Available: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf. Accessed Aug 17, 2016.

VALERIANO MM (2004) Modelo Digital de Elevação com dados SRTM disponíveis para a América do Sul. Dissertação de Mestrado em Sensoriamento Remoto. Instituto Nacional de Pesquisas Espaciais.

VALERIANO MM, ABDON MM (2007) Aplicação de Dados SRTM a estudos do Pantanal. Revista Brasileira de Cartografia 59(1):63-71. WANG H, CHEN Y, CHEN Z (2013) Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, Northwest of China, during 1960-2010. Hydrological Processes 27:1807-1818. DOI: 10.1002/hyp.9339

WELDE K, GEBREMARIAM B (2017) Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. International Soil and Water Conservation Research 5:1-16. DOI: http://dx.doi.org/10.1016/j.iswcr.2017.03.002

YOU H (2017) Agricultural landscape dynamics in response to economic transition: Comparisons between different spatial planning zones in Ningbo region, China. Land Use Policy 61:316-328. DOI: http://dx.doi.org/10.1016/j.landusepol.2016.11.025

YU Y, LOISKANDL W, KAUL H-P, HIMMELBAUER M, WEI W, CHEN L, BODNER G (2016) Estimation of runoff mitigation by morphologically different cover crop root systems. Journal of Hydrology 538:667-676. DOI: http://dx.doi.org/10.1016/j.jhydrol.2016.04.060

ZHANG L, WANG J, BAI Z, LV C (2015) Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 128:44-53. DOI: http://dx.doi.org/10.1016/j.catena.2015.01.016

ZHAO X, HUANG J, WU P, GAO H (2014) The dynamic effects of pastures and crop on runoff and sediments reduction at loess slopes under simulated rainfall conditions. Catena 119:1-7. DOI: http://dx.doi.org/10.1016/j.catena.2014.03.001

ZOPE PE, ELDHO TI, JOTHIPRAKASH V (2016) Impacts of land use–land cover change and urbanization on flooding: a case study of Oshiwara river basin in Mumbai, India. Catena 145:142-154. DOI: http://dx.doi.org/10.1016/j.catena.2016.06.009

6 CONSIDERAÇÕES FINAIS

As simulações hidrológicas dos cenários de uso do solo na bacia que drena o alto vale do rio Marrecas, à montante do perímetro urbano de Francisco Beltrão, demonstraram forte relação com a cobertura da terra, corroborando para que esta metodologia possa ser utilizada de maneira confiável para representar as implicações no escoamento superficial das águas pluviais, decorrentes de variadas condições de utilização antrópica do solo na bacia. A compreensão do comportamento hidrológico da bacia fornece subsídios a ações e políticas de gestão, planejamento e controle dos fatores intensificadores do escoamento superficial, bem como de mitigação dos impactos negativos gerados por este processo, como as perdas de solo, perdas de água e a contaminação dos corpos hídricos, abrindo uma esfera de investigações com possibilidades diversas, voltadas à geração de conhecimento para a mitigação de problemas reais.

7 APÊNDICES

7.1 Apêndice 1 – Atributos ou parâmetros de controle da bacia considerados para as simulações hidrológicas no HEC-HMS

7.1.1 Tabela de atributos das sub-bacias

Subbasin1, 22/11/2017, Page 1-1

OBJECTID *	Shape *	grid_code	HydroID	DrainID	Name	BasinSlope	LossMet
2	Polygon	1	61	61	W600	15,400000	505
2	Polygon	2	62	62	W620	10,997379	808
1	Polygon	1	63	63	W630	14 015052	200
5	Polygon	- 5	64	64	W640	13 248555	SCS
6	Polygon	6	65	65	W650	13,586603	SCS
7	Polygon	7	66	66	W660	13 222838	SCS
8	Polygon	8	67	67	W670	15 799056	SCS
9	Polygon	9	68	68	W680	18 472488	SCS
10	Polygon	10	69	69	W690	16,96752	SCS
11	Polygon	11	70	70	W700	17.581379	SCS
12	Polygon	12	71	71	W710	13,729195	SCS
13	Polygon	13	72	72	W720	18,131325	SCS
14	Polygon	14	73	73	W730	14,005122	SCS
15	Polygon	15	74	74	W740	18,264023	SCS
16	Polygon	16	75	75	W750	20,452314	SCS
17	Polygon	17	76	76	W760	17,183664	SCS
18	Polygon	18	77	77	W770	14,781744	SCS
19	Polygon	19	78	78	W780	14,32505	SCS
20	Polygon	20	79	79	W790	13,811754	SCS
21	Polygon	21	80	80	W800	12,412854	SCS
22	Polygon	22	81	81	W810	12,532032	SCS
23	Polygon	23	82	82	W820	16,460993	SCS
24	Polygon	24	83	83	W830	24,109028	SCS
25	Polygon	25	84	84	W840	17,921722	SCS
26	Polygon	26	85	85	W850	14,132029	SCS
27	Polygon	27	86	86	W860	18,213987	SCS
28	Polygon	28	87	87	W870	13,98656	SCS
29	Polygon	29	88	88	W880	13,64071	SCS
30	Polygon	30	89	89	W890	11,626682	SCS
31	Polygon	31	90	90	VV900	19,267694	SUS
32	Polygon	32	91	91	W910	13,380042	505
33	Polygon	24	92	92	VV920	16,004944	505
25	Polygon	25	93	93	W040	7 25424	808
36	Polygon	36	94	9 4 05	W050	10 400508	808
37	Polygon	37	96	96	W/960	10,409090	200
38	Polygon	38	97	97	W/970	17 074152	SCS
39	Polygon	39	98	98	W980	13 659986	SCS
40	Polygon	40	99	99	W990	9 227703	SCS
41	Polygon	41	100	100	W1000	13 440281	SCS
42	Polygon	42	101	101	W1010	13.047874	SCS
43	Polygon	43	102	102	W1020	15,426421	SCS
44	Polygon	44	103	103	W1030	10,035251	SCS
45	Polygon	45	104	104	W1040	15,295661	SCS
46	Polygon	46	105	105	W1050	14,436959	SCS
47	Polygon	47	106	106	W1060	6,690535	SCS
48	Polygon	48	107	107	W1070	16,067337	SCS
49	Polygon	49	108	108	W1080	13,413168	SCS
50	Polygon	50	109	109	W1090	10,098585	SCS
51	Polygon	51	110	110	W1100	14,246954	SCS
52	Polygon	52	111	111	W1110	15,946903	SCS
53	Polygon	53	112	112	W1120	12,790892	SCS
54	Polygon	54	113	113	W1130	13,015531	SCS
55	Polygon	55	114	114	W1140	13,784142	SCS
56	Polygon	56	115	115	W1150	14,589165	SCS
57	Polygon	57	116	116	W1160	14,381575	SCS
58	Polygon	58	117	117	W1170	13,858087	SCS
59	Polygon	59	118	118	W1180	16,392988	SCS

Subbasin1, 22/11/2017, Page 1-2

Fransmet Pctimp IntLost Basint/N Ic Basint/Bag Snape_Length SCS 2,876454 24,943417 67,068535 2,450237 1,470142 14719,543 SCS 0,1582264 22,320227 69,46891 0,840347 0,504223 1,1711,155 SCS 0,38279 23,471233 66,337949 0,2304623 0,182744 2752,4348 SCS 0,479233 25,807204 66,312302 0,080420 0,484925 9872,864 SCS 0,160559 26,664588 65,75377 1,259582 0,917751 1946,548 SCS 0,16422 23,990147 76,922476 2,760331 1,650229 26746,466 SCS 0,164422 23,991477 76,922473 1,702499 9,00263 1944,5502 SCS 0,16447 19,894741 72,104442 1,500439 0,900263 19445,502 SCS 0,290003 24,485504 63,34915 0,841066 0,60141 17323,4708 SCS 0,290003					-	- · ·	a b b
SCS 1,89047 35,78048 56,671993 1,45019 0,872411 12086,7794 SCS 0,155264 22,322237 69,46891 0,440374 0,504224 11069,755 SCS 0,38279 23,471233 66,3376490 0,364230 0,15527774 2752,47143 SCS 3,379653 40,279184 66,371307 0,084230 0,182774 2752,4748 SCS 0,479233 25,607204 66,371837 0,569663 10531,0546 SCS 0,16422 23,49018 66,373837 0,967818 0,80091 11000,0942 SCS 0,014422 23,49018 66,373837 0,967818 0,80091 11000,0942 SCS 0,05499 32,743779 00,806442 1,198215 0,711829 16215,436 SCS 0,05499 32,743779 06,806422 1,500439 0,900263 19444,5002 SCS 0,054919 32,743779 0,806442 1,902515 0,112178 1045502 SCS 0,054914 7,5767616	TransMet	PctImp	InitAbst	BasinCN	TC	BasinLag	Shape_Length
SCS 2,276454 24,943417 69,46801 0,840377 1,470142 1470142 1470142 SCS 0,158226 23,28237 69,46801 0,840374 0,55022 17771,155 SCS 0,398617 62,113200 0,304423 0,659663 10531,0546 SCS 0,479233 25,807204 66,312302 0,808200 0,484925 9872,864 SCS 0,106559 25,867454 66,37316 0,96718 0,5000 1,446,5498 SCS 0,16422 23,48601 66,373291 1,825962 1,097755 16686,5622 SCS 0,16422 23,48601 66,373291 1,20296 0,612178 10830,2232 SCS 1,261538 23,991147 67,922478 2,760381 1,650229 2743779 SCS 0,0117647 1,9594741 7,267418 1,381319 0,82206 14445,792 SCS 0,0117647 1,65023 1,003186 0,601912 134043,7602 SCS 0,29408523 63,334917	SCS	1,89047	35,783048	58,671993	1,454019	0,872411	12086,7794
SCS 0.168264 22.328237 69.46891 0.840374 0.504224 11098,575 SCS 0.38279 23.471233 68.3979491 1.258337 0.755002 17771,155 SCS 3.379953 40.279144 65.75664 1.094405 0.659663 10531.0546 SCS 0.479233 25.807204 66.312302 0.808209 0.484925 9872.864 SCS 0.106559 25.874945 66.253716 0.98718 0.550691 11608.0422 SCS 0.164542 23.991147 67.922478 2.750381 1.821529 25744.466 SCS 0.165499 32.743779 60.806442 1.18215 0.71829 12245.731 SCS 0.360318 22.7600327 69.209314 1.360239 0.900263 134445.502 SCS 0.419177 19.594741 72.765718 1.381319 0.828791 17228.4708 SCS 0.171647 14.891078 77.567618 1.381319 0.828791 172428.4708 SCS 0.124686 <td>SCS</td> <td>2,876454</td> <td>24,943417</td> <td>67,068535</td> <td>2,450237</td> <td>1,470142</td> <td>14719,543</td>	SCS	2,876454	24,943417	67,068535	2,450237	1,470142	14719,543
SCS 0.38279 23,471233 66,397449 1.285337 0.755002 1.7771,155 SCS 8,490566 0.30986134 0.2772,148 55,775842 1.099439 0.659663 10531,0546 SCS 0.479233 25,807204 66,312302 0.808200 0.484425 9872,984 SCS 0.106559 26,864558 65,575377 1.528585 0.917751 19446,5498 SCS 0.16422 23,498018 68,373291 1.825992 1.0877555 19668,5822 SCS 0.16422 23,498018 68,373291 1.825992 1.087755 19668,5822 SCS 0.163493 23,73377 0.6064442 1.18219 1.660229 27474,486 SCS 0.3013125 22,600527 69,209312 1.020296 0.612178 103830,2328 SCS 0.411917 19,594741 7,14578 1,587013 0.992208 12445,792 SCS 0.411967 19,594744 1,032047 1,577644 0.34652 6617174 SCS <td>SCS</td> <td>0,158264</td> <td>22,326237</td> <td>69,46891</td> <td>0.840374</td> <td>0.504224</td> <td>11069,575</td>	SCS	0,158264	22,326237	69,46891	0.840374	0.504224	11069,575
SCS 8.40566 30.986147 22.113200 0.304623 0.182774 22.23436 SCS 3.379953 40.279144 57.75642 1.099409 0.659663 10531.0546 SCS 0.106559 25.807204 66.312302 0.808209 0.444925 9872.864 SCS 0.106559 25.874945 66.253717 1.529685 0.917751 194446.5408 SCS 0.16422 23.498018 66.2337161 0.9867818 0.580691 11608.0942 SCS 0.163499 32.743779 60.800442 1.198215 0.718929 1627.4446 SCS 0.309174 19.594741 72.164482 1.500439 0.900263 194445.592 SCS 0.41917 19.594741 72.164482 1.500439 0.900263 194445.592 SCS 0.41917 19.594741 72.164482 1.500439 0.900263 194445.592 SCS 0.17647 14.691078 77.567818 1.381319 0.828791 124345.792 SCS 0.12940852	SCS	0.38279	23,471233	68,397949	1,258337	0.755002	17771,155
SCS 3,37993 40,279184 55,775442 1,09433 0,659683 10551,0546 SCS 0,472233 25,807204 66,312302 0,806209 0,444225 9972,864 SCS 0,106559 25,864555 65,573717 1,529565 0,917755 19685,8922 SCS 0,16422 23,480018 68,373204 1,829529 1,087755 19685,8922 SCS 1,281538 23,949018 68,373219 1,282549 1,680229 16245,4314 SCS 0,053499 32,743779 06,806442 1,198216 0,718929 16245,4314 SCS 0,031125 12,660527 69,209312 1,020296 0,612178 10380,2328 SCS 0,411917 11,954714 7,154781 1,381319 0,828791 17222,4708 SCS 0,117647 14,891078 77,55718 1,381319 0,828791 17222,4708 SCS 0,290032 4,886504 67,13493 1,003166 6,50441 11465,9270 SCS 0,124686 <td>SCS</td> <td>8 490566</td> <td>30 986147</td> <td>62 113209</td> <td>0 304623</td> <td>0 182774</td> <td>2752 4348</td>	SCS	8 490566	30 986147	62 113209	0 304623	0 182774	2752 4348
3.5.3 3.5.3 4.0.2 9.10 3.5.1 1.0.540 SCS 0.147223 25.807204 66.312002 0.806209 0.44425 9872.864 SCS 0.16559 22.6644568 65.57837 1.529565 0.917751 19446.5498 SCS 0.16422 23.498018 66.373291 1.829592 1.097755 19658.8922 SCS 0.16422 23.991147 77.92478 2.750341 1.650229 26744.466 SCS 0.053499 32.743779 60.806442 1.198215 0.718929 12215.4314 SCS 0.053499 32.743779 60.806442 1.500439 0.900263 19446.5502 SCS 0.411917 75.57618 1.381519 0.860442 1.587013 0.952208 12447.792 SCS 0.117647 44.681075 1.587013 0.952208 12447.792 SCS 0.29408523 63.334917 0.53566 0.639211 17292.4708 SCS 0.2940852 63.3567971 0.636637 0.	808	2 270052	40.270194	55 775642	1 000420	0,002004	10521 0546
SLS 0.49253 23.007204 66.312302 0.805209 0.464925 9672.064 SCS 0.106559 26.664556 65.77371 1.52565 0.917751 19466.6498 SCS 0.16422 23.48010 66.37371 0.52565 0.917751 19665.8922 SCS 1.281538 23.991147 67.922478 2.750381 1.650229 16215.4314 SCS 0.053499 32.743779 60.806442 1.198215 0.718029 112445.731 SCS 0.3109125 22.600527 69.209312 1.020296 0.612178 10830.32328 SCS 0.411917 19.594741 7.567818 1.381319 0.922208 12445,792 SCS 0.171647 14.691075 77.567781 1.94442 1.707640 0.346562 6641,74438 SCS 0.2900214 63.666397 1.065366 0.632214 14659.7074 SCS 0.124668 20.6166397 1.916744 0.9144789 1.022663 20703.097 SCS 0.124668 <td>505</td> <td>0,470000</td> <td>40,279104</td> <td>66 212202</td> <td>1,099439</td> <td>0,009000</td> <td>0970 964</td>	505	0,470000	40,279104	66 212202	1,099439	0,009000	0970 964
SLS 0.10559 26.684358 65.76377 1.529565 0.917751 19446.5498 SCS 0 25.874945 66.253716 0.967818 0.580691 11666.0942 SCS 1.281538 23.991147 67.922478 2.750311 1.650229 22764.6466 SCS 0.033499 32.743779 60.806442 1.198215 0.719929 12445.792 SCS 0.411917 19.594741 72.164482 1.500439 0.900263 19446.5502 SCS 0.411917 19.594741 72.164482 1.500439 0.900263 19446.792 SCS 0.411917 14.691078 77.567818 1.381319 0.822081 12445.792 SCS 0.29.406523 63.349415 0.841066 0.50444 11667.79296 SCS 0.29.406523 63.34915 0.841066 0.50444 14659.7074 SCS 0.124688 20.616939 71.131584 1.70439 1.022663 20703.097 SCS 0.132642 16.32269 75.87621	505	0,479233	25,607204	00,312302	0,808209	0,464925	9672,004
SCS 0 25,874945 66,253716 0,967818 0,380691 11608,0942 SCS 1,281538 23,991147 67,922478 2,750381 1,850229 1,097755 19685,8922 SCS 1,081938 22,74379 60,806442 1,188215 0,718929 182154 51 SCS 0,411917 19,594741 72,164482 1,500439 0,900263 19446,5502 SCS 0,411917 19,594741 72,164482 1,500439 0,900263 19446,5502 SCS 0,411917 19,594741 72,164482 1,500439 0,90263 19446,5502 SCS 0,17647 14,691078 77,567818 1,381319 0,822791 17232,4708 SCS 0,2900523 63,334915 0,841066 0,50464 11667,9296 SCS 0,124688 20,616939 71,31584 1,416980 0,851219 16868,8924 SCS 0,132642 1,137042 1,131534 1,416980 0,851219 168685,8924 SCS <th< td=""><td>SCS</td><td>0,106559</td><td>26,664558</td><td>65,578377</td><td>1,529585</td><td>0,917751</td><td>19446,5498</td></th<>	SCS	0,106559	26,664558	65,578377	1,529585	0,917751	19446,5498
SCS 0.16422 23.498018 68.373291 1.829592 1.097755 19685.8922 SCS 0.053499 32.743779 60.806442 1.198215 0.716929 12616.4466 SCS 2.309125 22.600527 69.209312 1.02206 0.612176 10803.0228 SCS 0.411917 19.594741 72.164482 1.500439 0.900268 12445.792 SCS 0.211764 71.567818 1.381319 0.82208 12445.792 SCS 0.29.408523 63.34915 0.841066 0.50444 11667.79296 SCS 0.29.408523 63.34915 0.841066 0.50444 11667.79296 SCS 0.1284648 20.616939 71.131584 1.70439 1.022663 20703.097 SCS 0.132642 16.1322089 75.897621 1.530766 0.91478 19685.8924 SCS 0.394811 14.999554 77.20417 1.689674 1.01624 19446.5502 SCS 0.394811 14.999554 77.20417 1.689674	SCS	0	25,874945	66,253716	0,967818	0,580691	11608,0942
SCS 1,281538 22,3991147 67,922478 2,750381 1,660229 16274,346 SCS 0,053499 32,743779 60,806442 1,198215 0,718929 16215,4314 SCS 0,411917 19,594741 72,164482 1,500439 0,90263 19446,5502 SCS 0,117647 14,691078 77,567818 1,381319 0,828791 17222,4708 SCS 0,290003 24,868504 67,134933 1,003186 0,601912 13403,1606 SCS 0,290003 24,868504 67,134933 1,003186 0,601912 13403,1606 SCS 0,290003 44,868504 67,137872 0,577604 0,346562 6641,7448 SCS 0,124688 20,616939 71,131584 1,704439 1,022663 20703,097 SCS 0,132642 16,132269 75,887621 1,530796 0,918478 19665,8824 SCS 0,132642 16,135244 1,418689 0,82121 19866,882 SCS 0,132642 16,13535	SCS	0,16422	23,498018	68,373291	1,829592	1,097755	19685,8922
SCS 0.053499 32.743779 60.806442 1.198215 0.718529 16215.4314 SCS 2.309125 22.800527 69.209312 1.020296 0.612178 1030.328 SCS 3.608118 27.538056 64.847153 1.567013 0.952208 12445.792 SCS 0.290003 24.868504 67.134933 1.003186 0.60191 13403.1606 SCS 0 29.408526 63.334915 0.841066 0.50464 11667.9296 SCS 0.124688 20.61939 71.131564 1.704439 1.022663 20703.097 SCS 0.132642 16.132269 75.897621 1.530796 0.918475 7180.2852 SCS 0.394811 1.999554 77.2417 1.693674 1.046263 20703.097 SCS 0.394811 1.999554 77.575474 1.418698 0.851219 18668.6882 SCS 2.138554 29.930916 62.918716 0.781241 0.468745 7180.2852 SCS 0.174611 <	SCS	1,281538	23,991147	67,922478	2,750381	1,650229	26746,486
SCS 2.090125 22.000527 69.209312 1.020286 0.612178 10330.2328 SCS 0.411917 19.594741 72.164482 1.500439 0.900263 19446.5502 SCS 0.117647 14.691078 77.567318 1.381319 0.828791 17292.47008 SCS 0.290003 24.88504 67.134933 1.003186 0.601912 13403,1606 SCS 0.290003 24.88504 67.134933 1.003186 0.601912 13403,1606 SCS 0.000866 18.214358 73.607872 0.577604 0.346562 6641.7448 SCS 0.132642 16.132269 75.807621 1.503766 0.33214 14659.7074 SCS 0.132642 16.132269 75.807621 1.503764 0.918478 19665.8924 SCS 0.132642 16.132267 77.57563 1.048091 0.629401 9753.1928 SCS 2.136554 29.939091 62.918716 0.781491 944099 7180.9904 SCS 2.786112 </td <td>SCS</td> <td>0,053499</td> <td>32,743779</td> <td>60,806442</td> <td>1,198215</td> <td>0,718929</td> <td>16215,4314</td>	SCS	0,053499	32,743779	60,806442	1,198215	0,718929	16215,4314
SCS 0,411917 19,594741 72,164482 1,500439 0,900263 19446,5502 SCS 3,608118 27,538058 64,847153 1,587013 0,952208 12445,792 SCS 0,217647 14,861078 77,567818 1,381319 0,628791 17292,4708 SCS 0 29,408523 63,334915 0,841066 0,50464 11667,9296 SCS 0 29,408523 63,334915 0,841066 0,6039214 14669,7074 SCS 0 28,90914 63,666397 1,065356 0,639214 14669,7074 SCS 0,132642 16,132269 75,837621 1,530766 0,1918478 19685,8924 SCS 0,394811 14,999547 7,24171 1,693674 1,106204 19446,5502 SCS 2,136554 29,390091 62,918716 0,781241 0,468745 7180,9904 SCS 2,136554 29,39091 62,9173 1,756053 1,049001 0,62919 9753,1928 SCS 0,7141	SCS	2,309125	22,600527	69,209312	1,020296	0.612178	10830,2328
SCS 3,608118 27,538058 64,847153 1,587013 0,952208 12445,792 SCS 0,117647 14,691078 77,567818 1,381319 0,228791 17292,4708 SCS 0,290003 24,868504 67,154933 1,003166 0,601912 13403,1606 SCS 0,070866 18,214358 73,607872 0,877604 0,346562 6641,7448 SCS 0,124688 20,616939 71,131564 1,704439 1,022663 20703,097 SCS 0,132642 16,132269 75,897621 1,530796 0,918478 19665,8924 SCS 0,394811 14,999554 77,20417 1,693674 1,016204 19446,5502 SCS 0,376419 18,865512 72,919668 1,404953 0,842972 17830,9904 SCS 0,7761410 12,737665 79,952576 1,573499 0,944099 21660,4654 SCS 0,260631 24,397638 67,555313 1,15315 0,69189 9872,8636 SCS 0,260631	SCS	0.411917	19,594741	72,164482	1,500439	0,900263	19446,5502
SCS 0,117647 1,1601078 77,567818 1,381319 0,828791 17292,4708 SCS 0,290003 24,868504 67,134933 1,003186 0,601912 13403,1606 SCS 0 29,408523 63,334915 0,841066 0,50464 11667,9296 SCS 0 28,990914 63,666397 1,065356 0,639214 14659,7074 SCS 0,132642 16,132269 75,897621 1,503796 0,918478 19985,8924 SCS 0,132642 16,132269 75,897621 1,503796 0,918478 199865,8924 SCS 0,132642 16,132269 75,897621 1,503796 0,918478 19868,6822 SCS 0,136411 14,89954 77,20417 1,083674 10,18204 19446,5502 SCS 2,136554 29,939091 62,918716 0,781241 0,468745 7180,2652 SCS 0,764191 18,865512 72,919868 1,404901 0,629401 9733,1928 SCS 0,764191	SCS	3 608118	27 538058	64 847153	1 587013	0.952208	12445 792
SCS 0,11047 1,33101 1,33101 1,33101 0,20101 113403,1606 SCS 0 29,408523 63,334915 0,841066 0,50464 11667,9296 SCS 3,07086 18,21438 73,607872 0,577604 0,346562 6641,7448 SCS 0,124688 20,616939 71,131564 1,704433 1,02263 20703,097 SCS 0,132642 16,132209 75,897621 1,530796 0,918478 199858,8924 SCS 0,334811 14,999554 77,20417 1,693674 1,016204 19446,5502 SCS 0,334811 14,999554 77,20417 1,693674 1,016204 19446,5502 SCS 2,136554 29,39091 62,918716 0,781241 0,468745 7180,2652 SCS 0,77419 18,86512 72,919868 1,404953 0,842972 17830,9904 SCS 0,71401 12,737665 79,952576 1,573499 0,944099 21660,4654 SCS 0,263012 4	200	0 117647	14 691078	77 567818	1 381310	0,828701	17292 4708
SCS 0,290005 24,00854 67,134835 1,005165 0,00142 14667,9296 SCS 3,070866 18,214358 73,607872 0,541066 0,50464 14659,7074 SCS 0 28,909014 63,666397 1,063356 0,639214 14659,7074 SCS 0,132642 16,132269 75,837621 1,530796 0,918478 19865,8924 SCS 0,334611 14,99954 77,20417 1,693374 1,016204 19446,5502 SCS 0,344611 14,39954 77,291476 1,78030,901 0,842972 17830,9904 SCS 2,186554 29,939091 62,918716 0,7781241 0,6824972 17830,9904 SCS 0,76419 18,865512 72,919868 1,049901 0,628401 9753,1928 SCS 0,761410 12,737665 79,952576 1,753499 0,944099 21660,4654 SCS 0,760419 12,87368 67,555313 1,153315 0,691989 9872,8636 SCS 0,2040423	808	0,117047	24 969504	67 12/022	1,001019	0,020791	12402 1606
SCS 0 29,40523 63,334915 0,841056 0,50444 11667,9246 SCS 3,07086 18,214358 73,607872 0,577604 0,346562 6641,7448 SCS 0,124688 20,616939 71,131584 1,704439 1,022663 20703,097 SCS 0,334811 14,999554 77,20417 1,693674 1,016204 19446,5502 SCS 0,312642 16,132269 75,897621 1,418988 0,851219 18666,6882 SCS 0,776419 18,865512 72,919868 1,044953 0,842972 17830,9904 SCS 1,74101 12,737665 79,952576 1,573499 0,94099 21660,4654 SCS 1,541032 22,306414 69,487747 2,082199 1,249319 13044,1476 SCS 0,200423 17,984959 73,853355 1,438160 0,8629 16095,76 SCS 0,200423 17,987636 67,555313 1,438160 0,52191 11544,2592 SCS 0,166837	303	0,290003	24,000504	07,134933	1,003100	0,001912	13403,1000
SCS 3,070866 18,214358 73,607872 0,577604 0,348562 6641,7448 SCS 0 28,990914 63,666397 1,065356 0,639214 14655,7074 SCS 0,132642 16,132269 75,887621 1,30796 0,918478 19668,8924 SCS 0,339214 14,999554 77,20417 1,016204 19446,5502 SCS 0 11,367042 81,715324 1,418698 0,851219 196666,6882 SCS 2,136554 29,939091 62,918716 0,781241 0,468745 7180,2652 SCS 0,076419 18,865512 72,919868 1,6419010 0,624901 9753,1928 SCS 0,171401 12,737665 79,952576 1,573499 0,944099 21660,4654 SCS 0,20423 17,849459 73,85335 1,438166 0,8629 16095,76 SCS 0,20423 17,9494959 73,85385 1,438166 0,8629 14420,365 SCS 0,10406479 82,997749	SUS	0	29,408523	63,334915	0,841066	0,50464	11667,9296
SCS 0 28,990914 63,666397 1,065356 0,639214 14659,7074 SCS 0,132642 16,132269 71,131584 1,70439 1,022663 20703,097 SCS 0,394811 14,999554 77,20417 1,693674 1,016204 19446,5502 SCS 0 11,367042 81,715324 1,418988 0,851219 18666,6822 SCS 2,136554 29,939091 62,918716 0,781241 0,468745 7180,2652 SCS 0,076419 18,865512 72,919868 1,044901 0,629401 9753,1928 SCS 0,171401 12,737665 79,952576 1,573499 0,944099 21660,4654 SCS 1,541032 22,306414 69,487747 2,082199 1,249319 13044,1476 SCS 0,200423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0,200423 17,984959 73,853355 1,438166 0,85264 4068,817 SCS 0,10685 20,	SCS	3,070866	18,214358	73,607872	0,577604	0,346562	6641,7448
SCS 0.124688 20.616939 71.131584 1.704439 1.022663 20703.097 SCS 0.132642 16.132269 75.897621 1.530796 0.918478 19865,8924 SCS 0.394811 14.999554 77.20417 1.693674 1.016204 19846,5502 SCS 2.136554 29.39091 62.918716 0.781241 0.468745 7180.2652 SCS 0.076419 18.865512 72.919868 1.404953 0.842972 17830.9904 SCS 0.774101 12.737655 79.952576 1.573499 0.944099 21660.4654 SCS 0.714101 12.737655 71.9555313 1.153315 0.691989 972.8636 SCS 0.630612 24.397638 67.555313 1.153315 0.691989 972.8636 SCS 0.10406479 82.997749 1.003655 0.602193 11548,2592 SCS 0.1046479 82.997749 1.003655 0.602193 11548,2592 SCS 0.165837 19.675276 72.0820	SCS	0	28,990914	63,666397	1,065356	0,639214	14659,7074
SCS 0,132642 16,132269 75,837621 1,530796 0,918478 19665,8924 SCS 0,394811 14,999554 77,20417 1,693674 1,016204 19446,5502 SCS 0 11,367042 81,715324 1,418688 0,851219 18666,6882 SCS 2,136554 29,93091 62,918716 0,781241 0,468745 7180,2652 SCS 0,076419 18,865512 72,919868 1,404953 0,842972 17830,9904 SCS 2,786112 20,173855 71,575653 1,049001 0,629401 9753,1928 SCS 1,541032 22,306414 69,487747 2,082199 1,249319 13044,1476 SCS 0,200423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0,165837 19,675276 72,082016 0,9546 0,57276 12944,312 SCS 0,108645 20,915057 70,835892 0,492607 0,295564 4068,817 SCS 0,110865 <	SCS	0,124688	20,616939	71,131584	1,704439	1,022663	20703,097
SCS 0,394811 14,999554 77,20417 1,693674 1,016204 19446,5502 SCS 0 11,367042 81,715324 1,418698 0,851219 18668,6882 SCS 2,136554 29,93091 62,918716 0,781241 0,468745 7180,2652 SCS 0,076419 18,865512 72,919868 1,404953 0,842972 17830,9904 SCS 0,774101 12,737665 79,952576 1,573490 0,944099 21660,4654 SCS 0,63031 24,397638 67,555313 1,153315 0,691989 9872,8636 SCS 0,20423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0,165837 19,675276 72,082016 0,95426 0,585865 11727,7658 SCS 0,088948 23,33339 68,478989 0,976426 0,585856 11727,7658 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,491854	SCS	0,132642	16,132269	75,897621	1,530796	0,918478	19685,8924
SCS 0 11,367042 81,715324 1,418698 0,851219 18668,6882 SCS 2,136554 29,93091 62,918716 0,781241 0,468745 7180,2652 SCS 0,076419 18,865512 72,91968 1,049001 0,629401 9753,1928 SCS 0,171401 12,737655 71,575653 1,049001 0,629401 9753,1928 SCS 0,171401 12,737655 71,575653 1,049001 0,629401 9753,1928 SCS 0,506131 24,397638 67,555313 1,153315 0,691989 9872,8636 SCS 0,200423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0 10,406479 82,997749 1,003655 0,602193 11548,2592 SCS 0 10,60477 82,997749 1,03465 0,602193 1148,2558 SCS 0 10,915057 70,83582 0,492607 0,295564 4068,817 SCS 0,110865 20,155801	SCS	0.394811	14,999554	77.20417	1.693674	1.016204	19446.5502
SCS 2,136554 29,939091 62,918716 0,781241 0,468745 7180,2652 SCS 0,076419 18,865512 72,919868 1,404953 0,842972 17830,9904 SCS 2,766112 20,173855 71,575653 1,049001 0,629401 9753,1928 SCS 0,171401 12,737665 71,575653 1,140901 0,629401 9753,1928 SCS 1,541032 22,306414 69,487747 2,082199 0,944099 21660,4654 SCS 0,200423 17,984959 73,853355 1,43166 0,6829 16095,76 SCS 0,165837 19,675276 72,082016 0,9546 0,57276 12984,312 SCS 0,088948 23,383339 68,478989 0,97426 0,853456 11727,7658 SCS 0,10865 20,915057 70,835892 0,492607 0,295564 4068,817 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,491854	SCS	0	11 367042	81 715324	1 418698	0.851219	18668 6882
SCS 0,076419 18,865512 72,919868 1,04953 0,842972 17830,9904 SCS 2,786112 20,173855 71,575653 1,049001 0,629401 9753,1928 SCS 0,171401 12,737665 79,952576 1,573499 0,944099 21660,4654 SCS 1,541032 22,306414 69,487747 2,082199 1,249319 13044,1476 SCS 2,630631 24,397638 67,555313 1,153315 0,691989 9872,6636 SCS 0 10,0406479 82,997749 1,003655 0,602193 11548,2592 SCS 0 10,0406479 82,997749 1,003655 0,602193 11548,2592 SCS 0 10,0406479 82,997749 1,003655 0,602193 11548,2592 SCS 0 10,040577 72,082016 0,9546 0,57276 12984,312 SCS 0 10,015057 70,835892 0,492607 0,295564 4068,817 SCS 0,110865 20,155801	SCS	2 136554	29 939091	62 918716	0 781241	0 468745	7180 2652
SCS 0,076471 10,005372 71,575663 1,049001 0,629401 9753,1928 SCS 0,171401 12,737665 71,575663 1,049001 0,629401 9753,1928 SCS 0,171401 12,737665 79,952576 1,573499 0,944099 21660,4654 SCS 2,630631 24,397638 67,555513 1,153315 0,601989 9872,8636 SCS 0,200423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0,10406479 82,997749 1,003655 0,602193 11544,2592 SCS 0,110865 20,915057 70,835892 0,976426 0,552364 4068,817 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,930487 14,391486 77,924286 1,024786 0,604832 11727,766 SCS 0 15,671223	200	0.076419	18 865512	72 010868	1 /0/053	0,90072	17830 0004
SCS 2,766112 20,173633 71,973633 1,048001 0,029401 9735,1926 SCS 0,171401 12,737665 79,952576 1,573499 0,944099 21660,4654 SCS 1,541032 22,306414 69,487747 2,082199 1,249319 13044,1476 SCS 2,630631 24,397638 67,555313 1,153315 0,691989 9872,8636 SCS 0,200423 17,984959 73,85355 1,438166 0,8629 16095,76 SCS 0,165837 19,675276 72,082016 0,9546 0,57276 12984,312 SCS 0,108694 23,383339 68,478989 0,976426 0,585856 11727,7658 SCS 0,110865 20,155801 71,593864 1,422382 0,853429 14420,365 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,4914957 17,47973 74,399426 0,917931 0,550759 11787,601 SCS 0,4914957	000	2 796112	20 172955	72,313000	1,4040001	0,042372	0752 1029
SCS 0,17/1401 12,737655 79,952576 1,573499 0,944099 21660,4654 SCS 1,541032 22,306414 69,467747 2,082199 1,249319 13044,1476 SCS 2,630631 24,397638 67,555313 1,153315 0,691989 9872,8636 SCS 0,200423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0 10,406479 82,997749 1,003655 0,602193 11548,2592 SCS 0,108657 70,085802 0,492607 0,295564 4068,817 SCS 0,110865 20,915057 70,835892 0,492607 0,295564 4068,817 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,491854 13,376185 79,157089 1,317447 0,50759 11787,601 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11777,766 SCS 0,474957 17,47973	303	2,700112	20,173033	71,575055	1,049001	0,029401	9755,1926
SCS 1,541032 22,306414 69,487747 2,082199 1,249319 1,3044,1476 SCS 2,630631 24,397638 67,555313 1,153315 0,691989 9872,8636 SCS 0,200423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0 10,406479 82,997749 1,003655 0,602193 11548,2592 SCS 0,165837 19,675276 72,082016 0,9546 0,57276 12984,312 SCS 0,068848 23,383339 68,478889 0,976426 0,585856 1177,77658 SCS 0,110865 20,155801 71,593864 1,422382 0,853429 14420,365 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,491854 13,376185 79,157089 1,024786 0,614872 13343,3256 SCS 0,491457 17,47973 74,399826 0,917931 0,50759 11787,601 SCS 0,190421	SUS	0,171401	12,737665	/9,952576	1,573499	0,944099	21660,4654
SCS 2,630631 24,397638 67,555313 1,153315 0,691899 9872,8636 SCS 0,200423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0 10,406479 82,997749 1,003655 0,602193 11548,2592 SCS 0,088948 23,383339 68,478989 0,976426 0,585866 11727,7658 SCS 0,088948 23,383339 68,478989 0,976426 0,585429 14420,365 SCS 0,0491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,930487 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 0 15,671223 76,424049 0,53381 0,302029 4667,1724 SCS 0 15,671223 76,424049 0,593789 13522,8316 SCS 0 15,671223 76,424049 <td>SCS</td> <td>1,541032</td> <td>22,306414</td> <td>69,487747</td> <td>2,082199</td> <td>1,249319</td> <td>13044,1476</td>	SCS	1,541032	22,306414	69,487747	2,082199	1,249319	13044,1476
SCS 0,200423 17,984959 73,853355 1,438166 0,8629 16095,76 SCS 0 10,406479 82,997749 1,003655 0,602193 11548,2592 SCS 0,165837 19,675276 72,082016 0,9546 0,57276 12984,312 SCS 0,088948 23,383339 68,478989 0,976426 0,585856 11727,7658 SCS 0 20,915057 70,835892 0,492607 0,295564 4068,817 SCS 0,410865 20,155801 71,593864 1,422382 0,853429 14420,365 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,494857 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 0,270027 8,58	SCS	2,630631	24,397638	67,555313	1,153315	0,691989	9872,8636
SCS 0 10,406479 82,997749 1,003655 0,602193 11548,2592 SCS 0,165837 19,675276 72,082016 0,9546 0,57276 12984,312 SCS 0,08948 23,383339 68,478989 0,976426 0,585856 11727,7658 SCS 0 20,915057 70,835892 0,492607 0,295564 4068,817 SCS 0,410865 20,155801 71,593864 1,422382 0,853429 14420,365 SCS 0,491854 13,376185 79,157089 1,174477 0,790468 14779,3788 SCS 0,4930487 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,930487 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 12,15209	SCS	0,200423	17,984959	73,853355	1,438166	0,8629	16095,76
SCS 0,165837 19,675276 72,082016 0,9546 0,57276 12984,312 SCS 0,088948 23,383339 68,478989 0,976426 0,585856 11727,7658 SCS 0 20,915057 70,835892 0,492607 0,295564 4068,817 SCS 0,110865 20,155801 71,593864 1,422382 0,853429 14420,365 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,930487 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 0,270027 8,564368 85,544373 0,999649 0,599789 13522,8316 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0 12,077073	SCS	0	10,406479	82,997749	1,003655	0,602193	11548,2592
SCS 0,088948 23,383339 68,478989 0,976426 0,585856 11727,7658 SCS 0 20,915057 70,835892 0,492607 0,295564 4068,817 SCS 0,110865 20,155801 71,593864 1,422382 0,853429 14420,365 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,930487 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 1,845019 19,564426 72,195572 0,326875 0,196125 3111,4482 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0,219142 <td< td=""><td>SCS</td><td>0,165837</td><td>19,675276</td><td>72,082016</td><td>0,9546</td><td>0,57276</td><td>12984,312</td></td<>	SCS	0,165837	19,675276	72,082016	0,9546	0,57276	12984,312
SCS 0 20,915057 70,835892 0,492607 0,295564 4068,617 SCS 0,110865 20,155801 71,593864 1,422382 0,853429 14420,365 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,930487 14,391486 77,924266 1,024786 0,614872 13333,3256 SCS 0 15,671223 76,424049 0,503381 0,302029 4667,1724 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 0,270027 8,584386 85,544373 0,399649 0,599789 13522,8316 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0,747099 12,077073	SCS	0.088948	23,383339	68.478989	0.976426	0.585856	11727.7658
SCS 0,110865 20,155801 71,593864 1,422382 0,853429 14420,365 SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,930487 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 0 15,671223 76,424049 0,503381 0,302029 4667,1724 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 1,845019 19,564426 72,195572 0,326875 0,196125 3111,4482 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0 12,152095 80,696281 1,259842 0,759052 2812,2704 SCS 0,747099 12,077	SCS	0	20,915057	70,835892	0.492607	0.295564	4068.817
SCS 0,491854 13,376185 79,157089 1,317447 0,790468 14779,3788 SCS 0,474957 17,47973 74,399826 0,917931 0,550759 11787,601 SCS 0,930487 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 0 15,671223 76,424049 0,503381 0,302029 4667,1724 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 1,845019 19,564426 72,195572 0,326875 0,196125 3111,4482 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0,747099 12,077073 80,792564 1,058779 0,635267 17053,128 SCS 0,219142 21,760	SCS	0 110865	20 155801	71 593864	1 422382	0 853429	14420 365
SCS 0,471957 17,37173 74,39926 0,917931 0,550759 11787,601 SCS 0,930487 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 0 15,671223 76,424049 0,503381 0,302029 4667,1724 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 13,38161 79,150398 0,94377 0,566262 9394,1794 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0 12,152095 76,319145 0,405837 0,243502 2812,2704 SCS 0 15,76259 76,319145 0,405837 0,243502 2812,2704 SCS 0,154646 34,526439 59,53606 1,318022 0,790813 17412,1416 SCS 0,140788 11,582088 <t< td=""><td>808</td><td>0 401854</td><td>13 376185</td><td>79 157089</td><td>1 317447</td><td>0 790468</td><td>1/1770 3788</td></t<>	808	0 401854	13 376185	79 157089	1 317447	0 790468	1/1770 3788
SCS 0,474937 14,47373 74,393020 0,374351 0,305735 11767,001 SCS 0,930487 14,391486 77,924286 1,024786 0,614872 13343,3256 SCS 0 15,671223 76,424049 0,503381 0,302029 4667,1724 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 1,845019 19,564426 72,195572 0,326875 0,196125 3111,4482 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0,747099 12,077073 80,792564 1,058779 0,635267 17053,128 SCS 0,71492 2	808	0,431057	17 47072	74 200826	0.017021	0,730400	11797 601
SCS 0,930487 14,391486 77,924268 1,024786 0,614872 13343,3256 SCS 0 15,671223 76,424049 0,503381 0,302029 4667,1724 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 1,845019 19,564426 72,195572 0,326875 0,196125 3111,4482 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 13,38161 79,150398 0,94377 0,566262 9394,1794 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0,747099 12,077073 80,792564 1,058779 0,635267 17053,128 SCS 0,7154646 34,526439 59,53606 1,318022 0,790813 17412,1416 SCS 0,154646 34,526439 59,53606 1,318022 0,790813 17412,1416 SCS 0,140788 11,5820	505	0,474957	11,41913	74,399020	1 00 4 7 9 0	0,000709	10040.001
SCS 0 15,671223 76,424049 0,503381 0,302029 4667,1724 SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 1,845019 19,564426 72,195572 0,326875 0,196125 3111,4482 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 13,38161 79,150398 0,94377 0,566262 9394,1794 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0,747099 12,077073 80,792564 1,058779 0,635267 17053,128 SCS 0,219142 21,760989 70,010071 1,719265 1,031559 24293,2288 SCS 0,154646 34,526439 59,53606 1,318022 0,790813 17412,1416 SCS 0,140788 11,582088 81,433632 1,579569 0,947741 19326,8798 SCS 0,140788 11,5820	505	0,930487	14,391486	77,924286	1,024786	0,614872	13343,3250
SCS 1,106241 11,425075 81,639114 1,016386 0,609832 11727,766 SCS 1,845019 19,564426 72,195572 0,326875 0,196125 3111,4482 SCS 0,270027 8,584386 85,544373 0,999649 0,599789 13522,8316 SCS 0 13,38161 79,150398 0,94377 0,566262 9394,1794 SCS 0 12,152095 80,696281 1,259842 0,755905 15497,405 SCS 0,747099 12,077073 80,792564 1,058779 0,635267 17053,128 SCS 0 15,76259 76,319145 0,405837 0,243502 2812,2704 SCS 0,219142 21,760989 70,010071 1,719265 1,031559 24293,2288 SCS 0,154646 34,526439 59,53606 1,318022 0,790813 17412,1416 SCS 0,140788 11,582088 81,433632 1,579569 0,947741 19326,8798 SCS 0,140788 11,58208	SCS	0	15,671223	76,424049	0,503381	0,302029	4667,1724
SCS1,84501919,56442672,1955720,3268750,1961253111,4482SCS0,2700278,58438685,5443730,9996490,59978913522,8316SCS013,3816179,1503980,943770,5662629394,1794SCS012,15209580,6962811,2598420,75590515497,405SCS0,74709912,07707380,7925641,0587790,63526717053,128SCS015,7625976,3191450,4058370,2435022812,2704SCS0,21914221,76098970,0100711,7192651,03155924293,2288SCS0,15464634,52643959,536061,3180220,79081317412,1416SCS0,30832515,86001576,2076030,5630230,3378146402,4026SCS0,14078811,58208881,4336321,5795690,94774119326,8798SCS0,19220711,95584880,9486311,2358520,74151114899,0496SCS013,04036679,5734790,7066710,4240036163,0606SCS0,590399,99426383,5605160,8934570,53607411249,0818SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,	SCS	1,106241	11,425075	81,639114	1,016386	0,609832	11/2/,766
SCS0,2700278,58438685,5443730,9996490,59978913522,8316SCS013,3816179,1503980,943770,5662629394,1794SCS012,15209580,6962811,2598420,75590515497,405SCS0,74709912,07707380,7925641,0587790,63526717053,128SCS015,7625976,3191450,4058370,2435022812,2704SCS0,21914221,76098970,0100711,7192651,03155924293,2288SCS0,15464634,52643959,536061,3180220,79081317412,1416SCS0,30832515,86001576,2076030,5630230,3378146402,4026SCS0,14078811,58208881,436321,5795690,94774119326,8798SCS0,19220711,95584880,9486311,2358520,74151114899,0496SCS013,04036679,5734790,7066710,4240036163,0606SCS0,590399,99426383,5605160,8934570,53607411249,0818SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	1,845019	19,564426	72,195572	0,326875	0,196125	3111,4482
SCS013,3816179,1503980,943770,5662629394,1794SCS012,15209580,6962811,2598420,75590515497,405SCS0,74709912,07707380,7925641,0587790,63526717053,128SCS015,7625976,3191450,4058370,2435022812,2704SCS0,21914221,76098970,0100711,7192651,03155924293,2288SCS0,15464634,52643959,536061,3180220,79081317412,1416SCS0,30832515,86001576,2076030,5630230,3378146402,4026SCS0,14078811,58208881,4336321,5795690,94774119326,8798SCS0,19220711,95584880,9486311,2358520,74151114899,0496SCS013,04036679,5734790,7066710,4240036163,0606SCS1,36460611,20829681,9245221,0029210,60175312565,4642SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	0,270027	8,584386	85,544373	0,999649	0,599789	13522,8316
SCS012,15209580,6962811,2598420,75590515497,405SCS0,74709912,07707380,7925641,0587790,63526717053,128SCS015,7625976,3191450,4058370,2435022812,2704SCS0,21914221,76098970,0100711,7192651,03155924293,2288SCS0,15464634,52643959,536061,3180220,79081317412,1416SCS0,30832515,86001576,2076030,5630230,3378146402,4026SCS0,14078811,58208881,4336321,5795690,94774119326,8798SCS0,19220711,95584880,9486311,2358520,74151114899,0496SCS013,04036679,5734790,7066710,4240036163,0606SCS1,36460611,20829681,9245221,0029210,60175312565,4642SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	0	13,38161	79,150398	0,94377	0,566262	9394,1794
SCS0,74709912,07707380,7925641,0587790,63526717053,128SCS015,7625976,3191450,4058370,2435022812,2704SCS0,21914221,76098970,0100711,7192651,03155924293,2288SCS0,15464634,52643959,536061,3180220,79081317412,1416SCS0,30832515,86001576,2076030,5630230,3378146402,4026SCS0,14078811,58208881,4336321,5795690,94774119326,8798SCS0,19220711,95584880,9486311,2358520,74151114899,0496SCS013,04036679,5734790,7066710,4240036163,0606SCS1,36460611,20829681,9245221,0029210,60175312565,4642SCS0,5909399,99426383,5605160,8934570,53607411249,0818SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	0	12,152095	80,696281	1,259842	0,755905	15497,405
SCS015,7625976,3191450,4058370,2435022812,2704SCS0,21914221,76098970,0100711,7192651,03155924293,2288SCS0,15464634,52643959,536061,3180220,79081317412,1416SCS0,30832515,86001576,2076030,5630230,3378146402,4026SCS0,14078811,58208881,4336321,5795690,94774119326,8798SCS0,19220711,95584880,9486311,2358520,74151114899,0496SCS013,04036679,5734790,7066710,4240036163,0606SCS013,04036679,5734790,7066710,60175312565,4642SCS0,5909399,99426383,5605160,8934570,53607411249,0818SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	0.747099	12.077073	80.792564	1.058779	0.635267	17053.128
SCS 0,219142 21,760989 70,010071 1,719265 1,031559 24293,2288 SCS 0,154646 34,526439 59,53606 1,318022 0,790813 17412,1416 SCS 0,308325 15,860015 76,207603 0,563023 0,337814 6402,4026 SCS 0,140788 11,582088 81,433632 1,579569 0,947741 19326,8798 SCS 0,192207 11,955848 80,948631 1,235852 0,741511 14899,0496 SCS 0 13,040366 79,573479 0,706671 0,424003 6163,0606 SCS 1,364606 11,208296 81,924522 1,002921 0,601753 12565,4642 SCS 0,590939 9,994263 83,560516 0,893457 0,536074 11249,0818 SCS 0,617492 17,811384 74,040192 1,797601 1,078561 26028,46 SCS 0 31,10352 62,024197 0,875665 0,525399 12804,8058 SCS 0,317589 <	SCS	0	15 76259	76 319145	0 405837	0 243502	2812 2704
SCS 0,154646 34,526439 59,53606 1,318022 0,790813 17412,1416 SCS 0,308325 15,860015 76,207603 0,563023 0,337814 6402,4026 SCS 0,140788 11,582088 81,433632 1,579569 0,947741 19326,8798 SCS 0,192207 11,955848 80,948631 1,235852 0,741511 14899,0496 SCS 0 13,040366 79,573479 0,706671 0,424003 6163,0606 SCS 0 13,040366 79,573479 0,706671 0,424003 6163,0606 SCS 0,590939 9,994263 83,560516 0,893457 0,536074 11249,0818 SCS 0,617492 17,811384 74,040192 1,797601 1,078561 26028,46 SCS 0 31,10352 62,024197 0,875665 0,525399 12804,8058 SCS 0,317589 22,724689 69,092438 1,794923 1,076954 24652,2422 SCS 0,798575 19,26	SCS	0 219142	21 760989	70,010071	1 719265	1 031559	24293 2288
SCS 0,308325 15,860015 76,207603 0,563023 0,337814 6402,4026 SCS 0,140788 11,582088 81,433632 1,579569 0,947741 19326,8798 SCS 0,192207 11,955848 80,948631 1,235852 0,741511 14899,0496 SCS 0 13,040366 79,573479 0,706671 0,424003 6163,0606 SCS 0 13,040366 79,573479 0,706671 0,424003 6163,0606 SCS 0,590939 9,994263 83,560516 0,893457 0,536074 11249,0818 SCS 0,617492 17,811384 74,040192 1,797601 1,078561 26028,46 SCS 0 31,10352 62,024197 0,875665 0,525399 12804,8058 SCS 0,317589 22,724689 69,092438 1,794923 1,076954 24652,2422 SCS 0,798575 19,262765 72,506416 1,850677 1,110406 24233,3934	200	0 154646	34 526430	50 53606	1,710200	0 700813	17/12 1/16
SCS 0,30323 13,80015 78,207603 0,303023 0,337814 6402,4026 SCS 0,140788 11,582088 81,433632 1,579569 0,947741 19326,8798 SCS 0,192207 11,955848 80,948631 1,235852 0,741511 14899,0496 SCS 0 13,040366 79,573479 0,706671 0,424003 6163,0606 SCS 1,364606 11,208296 81,924522 1,002921 0,601753 12565,4642 SCS 0,590939 9,994263 83,560516 0,893457 0,536074 11249,0818 SCS 0,617492 17,811384 74,040192 1,797601 1,078561 26028,46 SCS 0 31,10352 62,024197 0,875665 0,525399 12804,8058 SCS 0,317589 22,724689 69,092438 1,794923 1,076954 24652,2422 SCS 0,798575 19,262765 72,506416 1,850677 1,110406 24233,3934	808	0,104040	15 960015	76 207602	0.562022	0,790013	6402 4026
SCS 0,140788 11,322088 61,433632 1,579569 0,947741 19326,8798 SCS 0,192207 11,955848 80,948631 1,235852 0,741511 14899,0496 SCS 0 13,040366 79,573479 0,706671 0,424003 6163,0606 SCS 1,364606 11,208296 81,924522 1,002921 0,601753 12565,4642 SCS 0,590939 9,994263 83,560516 0,893457 0,536074 11249,0818 SCS 0,617492 17,811384 74,040192 1,797601 1,078561 26028,46 SCS 0 31,10352 62,024197 0,875665 0,525399 12804,8058 SCS 0,317589 22,724689 69,092438 1,794923 1,076954 24652,2422 SCS 0,798575 19,262765 72,506416 1,850677 1,110406 24233,3934	505	0,300323	10,000010	70,207003	0,505025	0,337014	402,4020
SUS0,19220711,95584880,9486311,2358520,74151114899,0496SCS013,04036679,5734790,7066710,4240036163,0606SCS1,36460611,20829681,9245221,0029210,60175312565,4642SCS0,5909399,99426383,5605160,8934570,53607411249,0818SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	363	0,140/88		01,433032	1,579569	0,947741	19320,0/98
SCS013,04036679,5734790,7066710,4240036163,0606SCS1,36460611,20829681,9245221,0029210,60175312565,4642SCS0,5909399,99426383,5605160,8934570,53607411249,0818SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	505	0,192207	11,955848	80,948631	1,235852	0,741511	14899,0496
SCS1,36460611,20829681,9245221,0029210,60175312565,4642SCS0,5909399,99426383,5605160,8934570,53607411249,0818SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	0	13,040366	79,573479	0,706671	0,424003	6163,0606
SCS0,5909399,99426383,5605160,8934570,53607411249,0818SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	1,364606	11,208296	81,924522	1,002921	0,601753	12565,4642
SCS0,61749217,81138474,0401921,7976011,07856126028,46SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	0,590939	9,994263	83,560516	0,893457	0,536074	11249,0818
SCS031,1035262,0241970,8756650,52539912804,8058SCS0,31758922,72468969,0924381,7949231,07695424652,2422SCS0,79857519,26276572,5064161,8506771,11040624233,3934	SCS	0,617492	17,811384	74,040192	1,797601	1,078561	26028,46
SCS 0,317589 22,724689 69,092438 1,794923 1,076954 24652,2422 SCS 0,798575 19,262765 72,506416 1,850677 1,110406 24233,3934	SCS	0	31,10352	62,024197	0,875665	0,525399	12804,8058
SCS 0.798575 19.262765 72.506416 1.850677 1.110406 24233.3934	SCS	0.317589	22,724689	69.092438	1,794923	1.076954	24652.2422
	SCS	0,798575	19,262765	72,506416	1,850677	1,110406	24233,3934

Subbasin1, 22/11/2017, Page 1-3

Shape_Area	Area_HMS
4592619,269923	4,592619
5694454,0368	5,694454
3958907,649488	3,958908
5845721,434355	5,845721
189755,471486	0,189755
3071890,357534	3,07189
2241262,661576	2,241263
7559786,066399	7,559786
4272183,189099	4,272183
8720695,737307	8,720696
15644980.08761	15,64498
8365351,749944	8,365352
2403270,863468	2,403271
9343666,460661	9.343666
3572236,135387	3.572236
10651368.089526	10.651368
5246917.576857	5.246918
3391431,363601	3,391431
1136742,619567	1,136743
4435086 387962	4,435086
10767727 535663	10 767728
7422839 906837	7 42284
7934821 626609	7 934822
10828592 469539	10 828592
1927092 086099	1 927092
8198868 17726	8 198868
2088205 20725	2 088205
10966433 751724	10 966434
4820862 908085	4 820863
2483827 412075	2 483827
8038650 142831	8 03865
4372431 373384	4 372431
5937018 832179	5 937019
4025143 013953	4 025143
583587 562699	0.583588
4844134 765002	4 844135
5823344 604328	5.823345
4145977 890718	4 145978
4905894,839454	4,905895
565686 14834	0.565686
4288294 504804	4 288295
242564,774436	0.242565
4972130,174003	4,97213
2338825,576711	2.338826
5319418,485564	5.319418
5630903,878655	5,630904
252410 557867	0 252411
15112411.588592	15.112412
6366653.88973	6.366654
870905.99719	0.870906
8900605.350568	8,900605
5122502,448932	5,122502
1248626,775689	1.248627
4197892,169772	4,197892
4089588,276776	4.089588
15944829 466976	15,944829
4143292.687391	4,143293
13246184.475264	13,246184
14570892,533482	14,570893

7.1.2 Tabela de atributos dos canais de drenagem

River1, 22/11/2017, Page 1	-1	
----------------------------	----	--

	Chana *	and a seda	UnderstD	Cl.,,	Florid	FlavDO	Dividion
OBJECTID	Snape	gria_code	HydroiD	SIP	Elevup	ElevDS	RivLen
1	Polyline	1	1	0,107254	548,413025	0	5113,221085
2	Polyline	3	2	0,004577	551,348022	548,413025	641,288182
3	Polyline	2	3	0,002268	565,992004	548,413025	7749,796343
4	Polyline	5	4	0,012446	572,656982	565,992004	535,512885
5	Polyline	4	5	0,013031	596,987	572,656982	1867,036077
6	Polyline	7	6	0,013754	594,361023	565,992004	2062,564873
7	Polyline	9	7	0,007424	602,830017	594,361023	1140,6873
8	Polyline	6	8	0,00328	585,294983	572,656982	3852,862714
9	Polyline	8	9	0,011556	633,271973	594,361023	3367,177091
10	Polyline	12	10	0,019601	620,299011	590,518005	1519,35208
11	Polyline	11	11	0,000655	591,288025	585,294983	9156,296885
12	Polyline	13	12	0,001177	590,518005	591,288025	3399,843912
13	Polyline	10	13	0,005645	621,780029	585,294983	6463,332814
14	Polvline	18	14	0.011546	622,989014	621,780029	104,7122
15	Polyline	17	15	0.015638	658,43103	628,71698	1900,143195
16	Polvline	15	16	0.005174	616,642029	590,518005	5049,573697
17	Polyline	19	17	0.00061	612 825012	616 642029	1638 582861
18	Polyline	20	18	0.004112	628 71698	616 642029	2936 558714
19	Polyline	16	19	0.007482	666,203003	643 848999	2987 631552
20	Polyline	14	20	0.015672	637 219971	591 288025	2030 802713
20	Polyline	23	21	0,013508	643 848000	628 71608	4314 021248
21	Polyline	23	21	0,003300	672 724095	621 790020	2920 591255
22	Polyline	21	22	0,013300	605 72600	642 848000	2014 102425
23	Polyline	24	23	0,013001	695,72699	640,640999	3014,102435
24	Polyline	25	24	0,004582	630,659973	019,043962	2404,052473
25	Polyline	27	25	0,002044	619,643982	612,825012	3336,636615
26	Polyline	22	26	0,021916	686,304993	612,825012	3352,84079
27	Polyline	26	27	0,014215	663,624023	630,659973	2318,992036
28	Polyline	29	28	0,006429	678,570984	630,659973	7452,745236
29	Polyline	30	29	0,000441	680,197021	678,570984	3683,622034
30	Polyline	34	30	0,000723	679,776978	683,356995	346,180522
31	Polyline	35	31	0,002857	683,356995	680,197021	1106,076778
32	Polyline	28	32	0,017522	692,096985	619,643982	4134,955204
33	Polyline	32	33	0,009256	686,903992	678,570984	900,281904
34	Polyline	31	34	0,00436	716,629028	702,463989	3248,75145
35	Polyline	38	35	0,009033	702,992981	696,734985	692,801351
36	Polyline	33	36	0,014514	729,812988	707,744995	1520,415365
37	Polyline	40	37	0,007055	702,463989	696,734985	812,03199
38	Polyline	41	38	0,009029	714,028992	707,744995	695,990799
39	Polyline	42	39	0,004614	707,744995	705,054993	582,956139
40	Polyline	39	40	0,00079	705,054993	702,463989	3278,046344
41	Polvline	43	41	0.011306	715,291992	705.054993	905.415116
42	Polvline	44	42	0.004498	696,734985	686,315979	2316,4253
43	Polvline	37	43	0.000765	686,315979	683,356995	3866,135583
44	Polyline	36	44	0.00202	688,794983	680,197021	4256,312077
45	Polyline	47	45	0.000817	688 606995	688 794983	612 873827
46	Polyline	45	46	0.009304	708 585999	688 794983	2127 093149
47	Polyline	46	47	0.005498	698 450989	686 315979	2207 020419
48	Polyline	52	48	0,000731	719 578003	702 343018	1771 086739
40	Polyline	50	40	0,000701	702 343018	608 450080	944 095507
49	Polyline	50	49	0,004122	702,343010	702 242049	1702 551072
50	Polyline	55	50	0,005524	711,734020	702,343010	016 744402
50	Polyline	40	50	0,030344	604 640001	699 606005	110,744402
52	Polyline	49 55	52	0,001350	747 724005	711 754000	4440,211317
53	Polyline	55	53	0,035746	747,731995	711,754028	1006,497761
54	Polyline	48	54	0,008815	732,297974	688,606995	4956,555254
55	Polyline	51	55	0,014153	755,236023	698,450989	4012,095093
56	Polyline	57	56	0,004872	706,36499	694,640991	2406,178512
57	Polyline	56	57	0,015285	764,655029	694,640991	4580,714743
58	Polyline	59	58	0,014994	787,333008	706,36499	5400,006585
59	Polyline	58	59	0,01571	778,487976	706,36499	4590,798606

River1, 22/11/2017, Page 1-2

ChnShapeMusk	ChnShapeKine	ChnWidth	ChnSdSlp	ChnManN	Name	RouteMet
Tranezoid	Trapezoid	19.89	1	0.033	R10	Muskingum Cunge
Trapezoid	Trapezoid	3.86	0.75	0,000	R20	Muskingum Cunge
Trapezoid	Trapezoid	22.96	0,73	0,00	R30	Muskingum Cunge
Trapezoid	Trapezoid	22,00	0,00	0,00	R40	Muskingum Cunge
Trapezoid	Trapezoid	2 81	1	0,037	R50	Muskingum Cunge
Trapezoid	Trapezoid	6.68	0.83	0,032	R60	Muskingum Cunge
Trapezoid	Trapezoid	2.05	1.09	0,035	R00	Muskingum Cunge
Trapezoid	Trapezoid	3,95	1,00	0,035		Muskingum Cunge
Trapezoid	Trapezoid	20,14	0,07	0,033	ROU	Muskingum Cunge
Trapezoid	Trapezoid	5,00	1,07	0,030	R90	Muskingum Cunge
Trapezoid	Trapezolo	5,04 40.05	0,03	0,033	R100	Muskingum Cunge
Trapezoid	Trapezoid	19,95	0,83	0,028	RTIU D100	Muskingum Cunge
Trapezoid	Trapezoid	18,91	0,5	0,025	R120	Wuskingum Cunge
Trapezoid	Trapezoid	6,82	1,33	0,04	R130	Muskingum Cunge
Trapezoid	Trapezoid	5,2	0,5	0,04	R140	wuskingum Cunge
Trapezoid	Trapezoid	4,33	0,67	0,038	R150	Muskingum Cunge
Trapezoid	Trapezoid	22,01	0,67	0,028	R160	Muskingum Cunge
Trapezoid	Trapezoid	22,32	0,92	0,025	R170	Muskingum Cunge
Trapezoid	Trapezoid	9,66	0,5	0,032	R180	Muskingum Cunge
Trapezoid	Trapezoid	6,58	1	0,03	R190	Muskingum Cunge
Trapezoid	Trapezoid	4,75	1,67	0,036	R200	Muskingum Cunge
Trapezoid	Trapezoid	9,36	0,5	0,03	R210	Muskingum Cunge
Trapezoid	Trapezoid	5,86	1	0,038	R220	Muskingum Cunge
Trapezoid	Trapezoid	6,98	1,17	0,033	R230	Muskingum Cunge
Trapezoid	Trapezoid	28,1	0,55	0,038	R240	Muskingum Cunge
Trapezoid	Trapezoid	23,57	1	0,027	R250	Muskingum Cunge
Trapezoid	Trapezoid	4,96	1,5	0,04	R260	Muskingum Cunge
Trapezoid	Trapezoid	5,53	1,17	0,035	R270	Muskingum Cunge
Trapezoid	Trapezoid	22,68	1	0,033	R280	Muskingum Cunge
Trapezoid	Trapezoid	19,88	0,5	0,03	R290	Muskingum Cunge
Trapezoid	Trapezoid	3,82	0,83	0,033	R300	Muskingum Cunge
Trapezoid	Trapezoid	14,13	0,5	0,033	R310	Muskingum Cunge
Trapezoid	Trapezoid	6.7	0.67	0.042	R320	Muskingum Cunge
Trapezoid	Trapezoid	4	0.5	0.035	R330	Muskingum Cunge
Trapezoid	Trapezoid	5.19	1	0.027	R340	Muskingum Cunge
Trapezoid	Trapezoid	3.86	1.5	0.03	R350	Muskingum Cunge
Trapezoid	Trapezoid	4.73	1.33	0.033	R360	Muskingum Cunge
Trapezoid	Trapezoid	10.43	0.5	0.032	R370	Muskingum Cunge
Trapezoid	Trapezoid	3 26	0.83	0.03	R380	Muskingum Cunge
Trapezoid	Trapezoid	5,92	0.67	0.032	R390	Muskingum Cunge
Trapezoid	Trapezoid	9.64	0,5	0.033	R400	Muskingum Cunge
Trapezoid	Trapezoid	30	1	0,000	R410	Muskingum Cunge
Trapezoid	Trapezoid	9,0	0.5	0,002	R420	Muskingum Cunge
Trapezoid	Trapezoid	12 32	1 17	0,027	R420	Muskingum Cunge
Trapezoid	Trapezoid	14.1	0.5	0,033	R430	Muskingum Cunge
Trapezoid	Trapezoid	14,1	0,5	0,032	P450	Muskingum Cungo
Trapezoid	Trapezoid	3 08	0,07	0,033	P460	Muskingum Cunge
Trapezoid	Trapezoid	0.54	1	0,037	D470	Muskingum Cunge
Trapezoid	Trapezoid	9,54	1 22	0,032	R470	Muskingum Cunge
Trapezoid	Trapezoid	4,09	1,33	0,033	R400	Muskingum Cunge
Trapezoid	Trapezolo	6,95	1,07	0,04	R490	Muskingum Cunge
Trapezoid	Trapezoid	5,09	0,67	0,028	R500	Muskingum Cunge
Trapezoid	Trapezoid	4,18	2,67	0,04	R510	Wuskingum Cunge
Trapezoid	Trapezoid	10,98	0,5	0,032	R520	Muskingum Cunge
	Trapezoid	5,03	1	0,035	K530	IVIUSKINGUM CUNGe
rapezoid	rapezoid	5,4	0,83	0,038	R540	Muskingum Cunge
Trapezoid	Trapezoid	5,09	2	0,037	R550	Muskingum Cunge
Trapezoid	Irapezoid	9,78	0,83	0,032	R560	Muskingum Cunge
Trapezoid	Trapezoid	6,21	1	0,042	R570	Muskingum Cunge
Trapezoid	Trapezoid	5,32	1,33	0,035	R580	Muskingum Cunge
Irapezoid	Irapezoid	5,27	1,33	0,037	R590	Muskingum Cunge
River1, 22/11/2017, Page 1-3

Shape_Length	ElevUP_HMS	ElevDS_HMS	RivLen_HMS
5113 221085	548 413025	0 -	5113 221085
6/1 288182	551 348022	548 413025	6/1 288182
7710 7000 102	551,540022	540,415025	7740 7000 40
7749,796343	565,992004	548,413025	7749,796343
535,512885	572,656982	565,992004	535,512885
1867.036077	596.987	572.656982	1867.036077
2062 564873	594 361023	565 992004	2062 564873
1140 6972	602 820017	504 261022	1140 6972
1140,0073	602,630017	594,361023	1140,0073
3852,862714	585,294983	572,656982	3852,862714
3367,177091	633,271973	594,361023	3367,177091
1519.35208	620,299011	590,518005	1519,35208
0156 206885	501 288025	585 204083	0156 206885
9150,290005	591,200025	505,294905	9100,290000
3399,843912	590,518005	591,288025	3399,843912
6463,332814	621,780029	585,294983	6463,332814
104,7122	622,989014	621,780029	104.7122
1900 143195	658 43103	628 71698	1900 143195
5040 572607	616 642020	520,7 1000 500 518005	F040 F72607
5049,573697	010,042029	590,516005	5049,575697
1638,582861	612,825012	616,642029	1638,582861
2936,558714	628,71698	616,642029	2936,558714
2987.631552	666,203003	643.848999	2987.631552
2930 802713	637 210071	591 288025	2030 802713
4044.004040	642,213371	000,74000	2000,002710
4314,021240	043,040999	020,71090	4314,021240
3829,581355	672,734985	621,780029	3829,581355
3814,182435	695,72699	643,848999	3814,182435
2404.052473	630,659973	619 643982	2404.052473
3336 636615	610 643082	612 825012	3336 636615
2050,000010	013,040302	012,020012	0000,000010
3352,84079	686,304993	612,825012	3352,84079
2318,992036	663,624023	630,659973	2318,992036
7452,745236	678,570984	630,659973	7452,745236
3683.622034	680,197021	678,570984	3683.622034
346 180522	679 776978	683 356995	346 180522
1106 076779	692 256005	690 107021	1106 076779
1100,070770	003,300995	000,197021	1100,070770
4134,955204	692,096985	619,643982	4134,955204
900,281904	686,903992	678,570984	900,281904
3248,75145	716,629028	702,463989	3248,75145
692,801351	702,992981	696,734985	692,801351
1520 415365	720 812088	707 744995	1520 415365
1020,410000	723,012300	707,744335	1020,410000
812,03199	702,463989	696,734985	812,03199
695,990799	714,028992	707,744995	695,990799
582,956139	707,744995	705,054993	582,956139
3278.046344	705.054993	702,463989	3278.046344
905 / 15116	715 201002	705 054993	905 / 15116
2210 4252	COC 724085	696 24 50 70	2246 4252
2310,4255	090,734905	000,315979	2310,4233
3866,135583	686,315979	683,356995	3866,135583
4256,312077	688,794983	680,197021	4256,312077
612,873827	688,606995	688,794983	612.873827
2127 093149	708 585999	688 794983	2127 093149
2207 020410	609 450090	696 215070	2207 020410
2207,020419	090,400909	000,313979	2207,020419
1771,086739	719,578003	702,343018	1771,086739
944,095507	702,343018	698,450989	944,095507
1703,551273	711,754028	702,343018	1703,551273
916 744402	744 338989	711 754028	916 744402
1118 211317	604 640001	688 606005	1118 211217
4006 407704	747 704005	711 754000	4000 407704
1006,497761	141,131995	/11,/54028	1006,497761
4956,555254	732,297974	688,606995	4956,555254
4012,095093	755,236023	698,450989	4012,095093
2406,178512	706.36499	694,640991	2406,178512
4580 714743	764 655029	694 640991	4580 714743
5400 006595	707 222000	706 26400	5400 00000
0400,000000	101,333008	100,30499	0400,0000005
4590,798606	778,487976	706,36499	4590,798606

7.2 Apêndice 2 – Precipitações de projeto consideradas no referido estudo

7.2.1 Intensidades das precipitações de projeto

Equação IDF - Sub-bacia do rio Marrecas montante ao perímetro urbano de Francisco Beltrão

Tr = período de retorno (anos)

t = duração da chuva (minutos)

		ntensidade	da precipita	ação de pro	jeto (mm/h	ı)	
Duração			Período	o de retorno	o (anos)		
(minutos)	2	5	10	25	50	100	200
15	102,60	121,21	137,51	162,47	184,31	209,09	237,21
30	70,94	83,81	95,08	112,34	127,44	144,57	164,01
45	55,39	65 <i>,</i> 45	74,25	87,72	99,52	112,90	128,08
60	45,98	54,32	61,63	72,81	82,60	93,71	106,31
75	39,59	46,78	53,07	62,70	71,13	80,70	91,55
90	34,95	41,29	46,84	55,34	62,78	71,22	80,80
105	31,39	37,09	42,08	49,71	56,40	63,98	72,58
120	28,58	33,76	38,30	45,26	51,34	58,24	66,08
135	26,29	31,06	35,23	41,63	47,22	53,57	60,78
150	24,38	28,80	32,68	38,61	43,80	49,69	56,37
165	22,77	26,90	30,51	36,05	40,90	46,40	52,63
180	21,38	25,26	28,65	33,85	38,41	43,57	49,43
195	20,17	23,83	27,04	31,95	36,24	41,11	46,64
210	19,11	22,58	25,62	30,27	34,34	38,95	44,19
225	18,18	21,47	24,36	28,78	32,65	37,04	42,02
240	17,34	20,48	23,24	27,45	31,15	35,33	40,08
255	16,58	19,59	22,23	26,26	29,79	33,80	38,34
270	15,90	18,79	21,31	25,18	28,57	32,41	36,76
285	15,28	18,05	20,48	24,20	27,45	31,14	35,33
300	14,71	17,38	19,72	23,30	26,43	29,99	34,02
315	14,19	16,77	19,02	22,48	25,50	28,93	32,82
330	13,71	16,20	18,38	21,72	24,64	27,95	31,71
345	13,27	15,68	17,79	21,01	23,84	27,04	30,68
360	12,86	15,19	17,23	20,36	23,10	26,20	29,73
375	12,47	14,74	16,72	19,75	22,41	25,42	28,84
390	12,12	14,31	16,24	19,19	21,77	24,69	28,01
405	11,78	13,92	15,79	18,66	21,16	24,01	27,24
420	11,47	13,55	15,37	18,16	20,60	23,37	26,51
435	11,17	13,20	14,97	17,69	20,07	22,77	25,83
450	10,89	12,87	14,60	17,25	19,57	22,20	25,18
465	10,63	12,56	14,25	16,83	19,10	21,66	24,58
480	10,38	12,26	13,91	16,44	18,65	21,16	24,00
495	10,14	11,99	13,60	16,06	18,22	20,68	23,46
510	9,92	11,72	13,30	15,71	17,82	20,22	22,94
525	9,71	11,47	13,01	15,37	17,44	19,79	22,45

540	9,51	11,23	12,74	15,05	17,08	19,37	21,98
555	9,31	11,00	12,48	14,75	16,73	18,98	21,53
570	9,13	10,79	12,24	14,46	16,40	18,61	21,11
585	8,95	10,58	12,00	14,18	16,09	18,25	20,70
600	8,79	10,38	11,78	13,91	15,78	17,91	20,31
615	8,62	10,19	11,56	13,66	15,49	17,58	19,94
630	8,47	10,01	11,35	13,41	15,22	17,26	19,58
645	8,32	9,83	11,15	13,18	14,95	16,96	19,24
660	8,18	9,66	10,96	12,95	14,70	16,67	18,91
675	8,04	9,50	10,78	12,74	14,45	16,39	18,60
690	7,91	9,35	10,60	12,53	14,21	16,12	18,29
705	7,79	9,20	10,43	12,33	13,99	15,87	18,00
720	7,66	9,05	10,27	12,14	13,77	15,62	17,72
735	7,55	8,91	10,11	11,95	13,56	15,38	17,45
750	7,43	8,78	9,96	11,77	13,35	15,15	17,18
765	7,32	8,65	9,81	11,60	13,15	14,92	16,93
780	7,22	8,53	9,67	11,43	12,96	14,71	16,68
795	7,11	8,40	9,53	11,26	12,78	14,50	16,45
810	7,01	8,29	9,40	11,11	12,60	14,30	16,22

7.2.2 Distribuições das precipitações de projeto para cada período de retorno pelo método dos blocos alternados

	Tempo	Intensidade	Precipitração	Precipitação	Ordem	Precipitação
Ordem	(minutos)	(mm/h)	acumulada	(mm)	Alternada	Alternada
			(mm)			(mm)
1	15	102,60	25,65	25,65	53	0,445
2	30	70,94	35,47	9,82	51	0,459
3	45	55,39	41,55	6,08	49	0,474
4	60	45,98	45,98	4,43	47	0,490
5	75	39,59	49,49	3,51	45	0,507
6	90	34,95	52,42	2,93	43	0,526
7	105	31,39	54,94	2,52	41	0,546
8	120	28,58	57,16	2,22	39	0,569
9	135	26,29	59,14	1,99	37	0,593
10	150	24,38	60,95	1,80	35	0,621
11	165	22,77	62,60	1,66	33	0,651
12	180	21,38	64,14	1,53	31	0,685
13	195	20,17	65,56	1,43	29	0,723
14	210	19,11	66,90	1,34	27	0,767
15	225	18,18	68,16	1,26	25	0,817
16	240	17,34	69,35	1,19	23	0,876
17	255	16,58	70,48	1,13	21	0,945
18	270	15,90	71,56	1,08	19	1,028
19	285	15,28	72,58	1,03	17	1,130
20	300	14,71	73,57	0,98	15	1,259
21	315	14,19	74,51	0,95	13	1,427
22	330	13,71	75,42	0,91	11	1,655
23	345	13,27	76,30	0,88	9	1,988
24	360	12,86	77,14	0,85	7	2,519
25	375	12,47	77,96	0,82	5	3,514
26	390	12,12	78,75	0,79	3	6,077
27	405	11.78	79.52	0.77	1	25.649
28	420	11,47	80,26	0,74	2	9,820
29	435	11,17	80,99	0,72	4	4,433
30	450	10,89	81,69	0,70	6	2,927
31	465	10,63	82,38	0,69	8	2,218
32	480	10,38	83,04	0,67	10	1,804
33	495	10,14	83,69	0,65	12	1,531
34	510	9,92	84,33	0,64	14	1,337
35	525	9.71	84.95	0.62	16	1.191
36	540	9,51	85,56	0,61	18	1,077
37	555	9,31	86.15	0,59	20	0,985
38	570	9,13	86,73	0,58	22	0,909
39	585	8.95	87,30	0,57	24	0,845
40	600	8,79	87,86	0,56	26	0,791
41	615	8,62	88,40	0,55	28	0,744
42	630	8,47	88,94	0,54	30	0,704
43	645	8,32	89,47	0,53	32	0,668
44	660	8,18	89,98	0,52	34	0,635
45	675	8.04	90,49	0.51	36	0.607
46	690	7,91	90,99	0,50	38	0,581
47	705	7,79	91,48	0,49	40	0,557
48	720	7,66	91,96	0,48	42	0,536
49	735	7,55	92.43	0,47	44	0,516
50	750	7,43	92.90	0,47	46	0,498
51	765	7,32	93,36	0,46	48	0,482
52	780	7,22	93.81	0,45	50	0,466
53	795	7,11	94.26	0,45	52	0,452
54	810	7.01	94.69	0.44	54	0.439

HIETOGRAMA para Tr = 2 anos

HIETOGRAMA para Tr = 5 anos

	Tempo	Intensidade	Precipitração	Precipitação	Ordem	Precipitação
Ordem	(minutos)	(mm/h)	acumulada	(mm)	Alternada	Alternada
			(mm)			(mm)
1	15	121,21	30,30	30,30	53	0,526
2	30	83,81	41,91	11,60	51	0,542
3	45	65,45	49,09	7,18	49	0,560
4	60	54,32	54,32	5,24	47	0,579
5	75	46,78	58,48	4,15	45	0,599
6	90	41,29	61,93	3,46	43	0,621
7	105	37,09	64,91	2,98	41	0,646
8	120	33,76	67,53	2,62	39	0,672
9	135	31,06	69,88	2,35	37	0,701
10	150	28,80	72,01	2,13	35	0,733
11	165	26,90	73,97	1,96	33	0,769
12	180	25,26	75,77	1,81	31	0,809
13	195	23,83	77,46	1,69	29	0,855
14	210	22,58	79,04	1,58	27	0,906
15	225	21,47	80,53	1,49	25	0,966
16	240	20,48	81,93	1,41	23	1,035
17	255	19,59	83,27	1,34	21	1,117
18	270	18,79	84,54	1,27	19	1,215
19	285	18,05	85,76	1,21	17	1,335
20	300	17,38	86,92	1,16	15	1,487
21	315	16,77	88,04	1,12	13	1,685
22	330	16,20	89,11	1,07	11	1,956
23	345	15,68	90,14	1,03	9	2,348
24	360	15,19	91,14	1,00	7	2,976
25	375	14,74	92,11	0,97	5	4,152
26	390	14,31	93,04	0,93	3	7,180
27	405	13,92	93,95	0,91	1	30,303
28	420	13,55	94,83	0,88	2	11,602
29	435	13,20	95,68	0,85	4	5,238
30	450	12,87	96,52	0,83	6	3,458
31	465	12,56	97,32	0,81	8	2,621
32	480	12,26	98,11	0,79	10	2,132
33	495	11,99	98,88	0,77	12	1,809
34	510	11,72	99,63	0,75	14	1,579
35	525	11,47	100,37	0,73	16	1,407
36	540	11,23	101,08	0,72	18	1,272
37	555	11,00	101,78	0,70	20	1,163
38	570	10,79	102,47	0,69	22	1,074
39	585	10,58	103,14	0,67	24	0,999
40	600	10,38	103,80	0,66	26	0,935
41	615	10,19	104,45	0,65	28	0,880
42	630	10,01	105,08	0,63	30	0,831
43	645	9,83	105,70	0,62	32	0,789
44	660	9,66	106,31	0,61	34	0,751
45	675	9,50	106,91	0,60	36	0,717
46	690	9,35	107,50	0,59	38	0,686
47	705	9,20	108,08	0,58	40	0,659
48	/20	9,05	108,65	0,57	42	0,633
49	/35	8,91	109,21	0,56	44	0,610
50	750	8,78	109,76	0,55	46	0,589
51	/65	8,65	110,30	0,54	48	0,569
52	/80	8,53	110,84	0,53	50	0,551
53	/95	8,40	111,36	0,53	52	0,534
54	1 810	1 8,29	111,88	0,52	54	0,518

HIETOGRAMA para Tr = 10 anos

	Tempo	Intensidade	Precipitração	Precipitação	Ordem	Precipitação
Ordem	(minutos)	(mm/h)	acumulada	(mm)	Alternada	Alternada
			(mm)			(mm)
1	15	137,51	34,38	34,38	53	0,597
2	30	95,08	47,54	13,16	51	0,615
3	45	74,25	55,69	8,15	49	0,635
4	60	61,63	61,63	5,94	47	0,657
5	75	53,07	66,34	4,71	45	0,680
6	90	46,84	70,26	3,92	43	0,705
7	105	42,08	73,64	3,38	41	0,732
8	120	38,30	76,61	2,97	39	0,762
9	135	35,23	79,27	2,66	37	0,795
10	150	32,68	81,69	2,42	35	0,832
11	165	30,51	83,91	2,22	33	0,873
12	180	28,65	85,96	2,05	31	0,918
13	195	27,04	87,87	1,91	29	0,970
14	210	25,62	89,67	1,79	27	1,028
15	225	24,36	91,35	1,69	25	1,095
16	240	23,24	92,95	1,60	23	1,174
17	255	22,23	94,46	1,51	21	1,267
18	270	21,31	95,91	1,44	19	1,378
19	285	20,48	97,29	1,38	17	1,515
20	300	19,72	98,61	1,32	15	1,687
21	315	19,02	99,87	1,27	13	1,912
22	330	18,38	101,09	1,22		2,219
23	345	17,79	102,26	1,17	9	2,664
24	360	17,23	103,40	1,13	/	3,376
25	375	16,72	104,49	1,10	5	4,/10
20	390	16,24	105,55	1,06	3	8,145
27	405	15,79	100,58	1,03	2	34,378
20	420	13,37	107,58	1,00	<u> </u>	5.042
30	455	14,97	108,33	0,97	6	3,342
30	450	14,00	110,49	0,94	8	3,323
32	405	13.91	110,41	0,92	10	2,373
33	400	13,51	112.18	0,87	10	2,410
34	510	13,00	112,10	0.85	12	1 792
35	525	13,01	113,86	0.83	16	1,596
36	540	12,74	114,67	0.81	18	1.443
37	555	12.48	115.47	0.80	20	1.320
38	570	12,24	116,25	0,78	22	1,218
39	585	12.00	117.01	0.76	24	1.133
40	600	11,78	117,76	0,75	26	1,061
41	615	11,56	118,49	0,73	28	0,998
42	630	11,35	119,21	0,72	30	0,943
43	645	11,15	119,91	0,70	32	0,895
44	660	10,96	120,61	0,69	34	0,852
45	675	10,78	121,29	0,68	36	0,813
46	690	10,60	121,95	0,67	38	0,779
47	705	10,43	122,61	0,66	40	0,747
48	720	10,27	123,26	0,65	42	0,718
49	735	10,11	123,89	0,64	44	0,692
50	750	9,96	124,52	0,63	46	0,668
51	765	9,81	125,13	0,62	48	0,646
52	780	9,67	125,74	0,61	50	0,625
53	795	9,53	126,33	0,60	52	0,606
54	810	9,40	126,92	0,59	54	0,588

HIETOGRAMA para Tr = 25 anos

	Tempo	Intensidade	Precipitração	Precipitação	Ordem	Precipitação
Ordem	(minutos)	(mm/h)	acumulada	(mm)	Alternada	Alternada
			(mm)			(mm)
1	15	162.47	40.62	40.62	53	0.705
2	30	112.34	56.17	15.55	51	0.727
3	45	87.72	65.79	9.62	49	0.750
4	60	72,81	72,81	7,02	47	0,776
5	75	62,70	78,38	5,56	45	0,803
6	90	55,34	83,01	4,63	43	0,833
7	105	49,71	87,00	3,99	41	0,865
8	120	45,26	90,51	3,51	39	0,901
9	135	41,63	93,66	3,15	37	0,940
10	150	38,61	96,52	2,86	35	0,983
11	165	36,05	99,14	2,62	33	1,031
12	180	33,85	101,56	2,42	31	1,085
13	195	31,95	103,82	2,26	29	1,145
14	210	30,27	105,94	2,12	27	1,215
15	225	28,78	107,93	1,99	25	1,294
16	240	27,45	109,82	1,89	23	1,387
17	255	26,26	111,61	1,79	21	1,497
18	270	25,18	113,31	1,70	19	1,628
19	285	24,20	114,94	1,63	17	1,790
20	300	23,30	116,50	1,56	15	1,994
21	315	22,48	118,00	1,50	13	2,259
22	330	21,72	119,44	1,44	11	2,621
23	345	21,01	120,82	1,39	9	3,147
24	360	20,36	122,16	1,34	7	3,989
25	375	19,75	123,46	1,29	5	5,564
26	390	19,19	124,71	1,25	3	9,623
27	405	18,66	125,92	1,21	1	40,617
28	420	18,16	127,10	1,18	2	15,551
29	435	17,69	128,25	1,15	4	7,020
30	450	17,25	129,36	1,11	6	4,635
31	465	16,83	130,45	1,08	8	3,513
32	480	16,44	131,50	1,06	10	2,857
33	495	16,06	132,54	1,03	12	2,425
34	510	15,71	133,54	1,01	14	2,117
35	525	15,37	134,52	0,98	16	1,885
36	540	15,05	135,49	0,96	18	1,705
37	555	14,75	136,43	0,94	20	1,559
38	570	14,46	137,35	0,92	22	1,439
39	585	14,18	138,25	0,90	24	1,339
40	600	13,91	139,13	0,88	26	1,253
41	615	13,66	139,99	0,87	28	1,179
42	630	13,41	140,84	0,85	30	1,114
43	645	13,18	141,68	0,83	32	1,057
44	675	12,95	142,49	0,82	34	1,006
45	675	12,74	143,30	0,80	30	0,961
40	590	12,53	144,09	0,79	38	0,920
4/	705	12,33	144,80	0,78	40	0,885
48	720	11 05	145,02	0,70	42	0,649
49	750	11,95	140,57	0,75	44	0,010
50 E1	750	11.60	147,11	0,74	40	0,769
51	700		147,84	0,73	4ð 50	0,705
52 E2	705	11.45	140,50	0,72	50	0,750
53	810	11 11	1/10 06	0,71	52	0,710
L 34	010	I ++,++	1-3,30	0,05	J- 1	0,000

HIETOGRAMA para Tr = 50 anos

	Tempo	Intensidade	Precipitração	Precipitação	Ordem	Precipitação
Ordem	(minutos)	(mm/h)	acumulada	(mm)	Alternada	Alternada
			(mm)			(mm)
1	15	184,31	46.08	46,08	53	0,800
2	30	127,44	63.72	17.64	51	0.825
3	45	99,52	74,64	10,92	49	0,851
4	60	82,60	82,60	7,96	47	0,880
5	75	71,13	88,91	6,31	45	0,911
6	90	62,78	94,17	5,26	43	0,945
7	105	56,40	98,70	4,52	41	0,982
8	120	51,34	102,68	3,99	39	1,022
9	135	47,22	106,25	3,57	37	1,066
10	150	43,80	109,49	3,24	35	1,115
11	165	40,90	112,47	2,97	33	1,170
12	180	38,41	115,22	2,75	31	1,231
13	195	36,24	117,78	2,56	29	1,300
14	210	34,34	120,18	2,40	27	1,378
15	225	32,65	122,44	2,26	25	1,468
16	240	31,15	124,58	2,14	23	1,574
17	255	29,79	126,61	2,03	21	1,698
18	270	28,57	128,55	1,93	19	1,847
19	285	27,45	130,40	1,85	17	2,031
20	300	26,43	132,16	1,77	15	2,262
21	315	25,50	133,86	1,70	13	2,563
22	330	24,64	135,50	1,63	11	2,974
23	345	23,84	137,07	1,57	9	3,571
24	360	23,10	138,59	1,52	7	4,525
25	375	22,41	140,06	1,47	5	6,313
26	390	21,77	141,48	1,42	3	10,917
27	405	21,16	142,86	1,38	1	46,078
28	420	20,60	144,19	1,34	2	17,642
29	435	20,07	145,49	1,30	4	7,964
30	450	19,57	146,76	1,26	6	5,258
31	465	19,10	147,99	1,23	8	3,985
32	480	18,65	149,19	1,20	10	3,242
33	495	18,22	150,36	1,17	12	2,751
34	510	17,82	151,50	1,14	14	2,402
35	525	17,44	152,61	1,12	16	2,139
36	540	17,08	153,70	1,09	18	1,934
37	555	16,73	154,77	1,07	20	1,769
38	570	16,40	155,81	1,04	22	1,633
39	585	16,09	156,83	1,02	24	1,519
40	600	15,78	157,84	1,00	26	1,422
41	615	15,49	158,82	0,98	28	1,337
42	630	15,22	159,78	0,96	30	1,264
43	645	14,95	160,72	0,94	32	1,199
44	660	14,70	161,65	0,93	34	1,142
45	675	14,45	162,56	0,91	36	1,090
46	690	14,21	163,46	0,90	38	1,043
47	705	13,99	164,34	0,88	40	1,001
48	720	13,77	165,20	0,87	42	0,963
49	735	13,56	166,06	0,85	44	0,928
50	750	13,35	166,89	0,84	46	0,895
51	765	13,15	167,72	0,82	48	0,865
52	780	12,96	168,53	0,81	50	0,838
53	795	12,78	169,33	0,80	52	0,812
54	810	12,60	170,12	0,79	54	0,788

HIETOGRAMA para Tr = 100 anos

	Tempo	Intensidade	Precipitração	Precipitação	Ordem	Precipitação
Ordem	(minutos)	(mm/h)	acumulada	(mm)	Alternada	Alternada
			(mm)			(mm)
1	15	209.09	52.27	52.27	53	0.907
2	30	144.57	72.29	20.01	51	0.936
3	45	112.90	84.67	12.39	49	0.966
4	60	93.71	93.71	9.04	47	0.998
5	75	80,70	100.87	7,16	45	1,034
6	90	71,22	106,83	5,96	43	1,072
7	105	63,98	111.97	5,13	41	1,114
8	120	58,24	116,49	4,52	39	1,159
9	135	53,57	120,54	4,05	37	1,210
10	150	49,69	124,22	3,68	35	1,265
11	165	46,40	127,59	3,37	33	1,327
12	180	43,57	130,71	3,12	31	1,396
13	195	41,11	133,62	2,91	29	1,474
14	210	38,95	136,34	2,72	27	1,563
15	225	37,04	138,91	2,57	25	1,666
16	240	35,33	141,33	2,43	23	1,785
17	255	33,80	143,64	2,30	21	1,926
18	270	32,41	145,83	2,19	19	2,096
19	285	31,14	147,93	2,10	17	2,304
20	300	29,99	149,93	2,01	15	2,566
21	315	28,93	151,86	1,93	13	2,907
22	330	27,95	153,71	1,85	11	3,373
23	345	27,04	155,50	1,79	9	4,051
24	360	26,20	157,22	1,72	7	5,133
25	375	25,42	158,89	1,67	5	7,161
26	390	24,69	160,50	1,61	3	12,385
27	405	24,01	162,06	1,56	1	52,273
28	420	23,37	163,58	1,52	2	20,014
29	435	22,77	165,05	1,47	4	9,035
30	450	22,20	166,49	1,43	6	5,965
31	465	21,66	167,88	1,40	8	4,521
32	480	21,16	169,25	1,36	10	3,677
33	495	20,68	170,57	1,33	12	3,121
34	510	20,22	171,87	1,30	14	2,724
35	525	19,79	173,13	1,27	16	2,427
36	540	19,37	174,37	1,24	18	2,194
37	555	18,98	175,58	1,21	20	2,007
38	570	18,61	176,76	1,18	22	1,853
39	585	18,25	177,92	1,16	24	1,723
40	600	17,91	179,06	1,14	26	1,613
41	615	17,58	180,17	1,11	28	1,517
42	630	17,26	181,26	1,09	30	1,434
43	645	16,96	182,33	1,07	32	1,360
44	660	16,67	183,39	1,05	34	1,295
45	675	16,39	184,42	1,03	36	1,237
46	690	16,12	185,44	1,02	38	1,184
47	705	15,87	186,44	1,00	40	1,136
48	720	15,62	187,42	0,98	42	1,092
49	735	15,38	188,38	0,97	44	1,052
50	750	15,15	189,33	0,95	46	1,016
51	765	14,92	190,27	0,94	48	0,982
52	780	14,71	191,19	0,92	50	0,950
53	795	14,50	192,10	0,91	52	0,921
54	810	14,30	192,99	0,89	54	0,894

HIETOGRAMA para Tr = 200 anos

	Tempo	Intensidade	Precipitração	Precipitação	Ordem	Precipitação
Ordem	(minutos)	(mm/h)	acumulada	(mm)	Alternada	Alternada
			(mm)			(mm)
1	15	237.21	59.30	59.30	53	1.029
2	30	164.01	82.01	22.70	51	1.061
3	45	128.08	96.06	14.05	49	1.096
4	60	106.31	106.31	10.25	47	1.133
5	75	91.55	114.43	8.12	45	1.173
6	90	80,80	121,20	6,77	43	1,216
7	105	72,58	127,02	5,82	41	1,263
8	120	66,08	132,15	5,13	39	1,315
9	135	60,78	136,75	4,60	37	1,372
10	150	56,37	140,92	4,17	35	1,435
11	165	52,63	144,74	3,83	33	1,505
12	180	49,43	148,29	3,54	31	1,584
13	195	46,64	151,58	3,30	29	1,672
14	210	44,19	154,67	3,09	27	1,773
15	225	42,02	157,59	2,91	25	1,890
16	240	40,08	160,34	2,75	23	2,025
17	255	38,34	162,95	2,61	21	2,185
18	270	36,76	165,44	2,49	19	2,377
19	285	35,33	167,82	2,38	17	2,613
20	300	34,02	170,09	2,28	15	2,911
21	315	32,82	172,28	2,19	13	3,298
22	330	31,71	174,38	2,10	11	3,827
23	345	30,68	176,41	2,03	9	4,595
24	360	29,73	178,36	1,95	7	5,824
25	375	28,84	180,25	1,89	5	8,124
26	390	28,01	182,08	1,83	3	14,051
27	405	27,24	183,85	1,77	1	59,302
28	420	26,51	185,57	1,72	2	22,705
29	435	25,83	187,25	1,67	4	10,250
30	450	25,18	188,87	1,63	6	6,767
31	465	24,58	190,46	1,58	8	5,129
32	480	24,00	192,00	1,54	10	4,172
33	495	23,46	193,51	1,51	12	3,540
34	510	22,94	194,98	1,47	14	3,091
35	525	22,45	196,41	1,44	16	2,753
36	540	21,98	197,81	1,40	18	2,489
37	555	21,53	199,19	1,37	20	2,277
38	570	21,11	200,53	1,34	22	2,102
39	585	20,70	201,84	1,32	24	1,955
40	600	20,31	203,13	1,29	26	1,829
41	615	19,94	204,40	1,26	28	1,721
42	630	19,58	205,63	1,24	30	1,627
43	645	19,24	206,85	1,22	32	1,543
44	660	18,91	208,04	1,19	34	1,469
45	675	18,60	209,22	1,17	36	1,403
46	690	18,29	210,37	1,15	38	1,343
47	705	18,00	211,50	1,13	40	1,289
48	720	17,72	212,62	1,11	42	1,239
49	735	17,45	213,71	1,10	44	1,194
50	750	17,18	214,79	1,08	46	1,152
51	765	16,93	215,85	1,06	48	1,114
52	780	16,68	216,90	1,05	50	1,078
53	795	16,45	217,93	1,03	52	1,045
I 54	810	16.22	218.94	I 1.01	54	1.014

7.2.3 Exemplo da distribuição gráfica das precipitações de projeto (hietograma) pelo método dos blocos alternados

7.3 Apêndice 3 – Exemplos dos resultados das simulações hidrológicas obtidas no **HEC-HMS**

7.3.2 Hidrograma de vazão do exutório da bacia

72

Run:Uso_12651_Prec_Tr_25aros Element:Outlet1 Result:Outflow Run:Uso_12661_Prec_Tr_25aros Element:W600 Result:Outflow Run:Uso_12661_Prec_Tr_25aros Element:R10 Result:Outflow

	Volume (MM)	69,38	62,58	44,25	77,18	91,75	93,95	88,46	93,59	96,53	76,51	40,31	59,97	80,51	95,88	92,19	84,62
so_sol_Lei_12651_12 et_Tr_25anos ontrole1	Time of Peak	02abr2016, 08:45	02abr2016, 08:45	02abr2016, 08:00	02abr2016, 08:45	02abr2016, 08:00	02abr2016, 08:00	02abr2016, 08:00	02abr2016, 08:15	02abr2016, 08:30	02abr2016, 07:45	02abr2016, 08:30	02abr2016, 08:45	02abr2016, 07:45	02abr2016, 08:00	02abr2016, 08:15	02abr2016, 08:00
in Model: U. eorologic Model: M trol Specifications:C	Peak Discharge (M3/S)	99,3	81,8	25,2	123,8	57,9	56,4	18,5	62,0	95,9	12,5	27,9	90,9	4,2	73,8	62,8	29,3
3, 00:00 Bas 5, 06:00 Met 7, 22:24:49 Con	Drainage Area (KM2)	14,57100	13,24600	4,14330	15,94500	4,08960	4,19790	1,24860	5,12250	8,90060	0,87091	6,36670	15,11200	0,25241	5,63090	5,31940	2,33880
Start of Run: 02abr201 End of Run: 03abr201 Compute Time: 28mar201	Hydrologic Element	W1180	W1170	W1160	W1150	W1140	W1130	W1120	W1110	W1100	W1090	W1080	W1070	W1060	W1050	W1040	W1030

Project: Simul_Hidro_Marrecas Simulation Run: Uso_12651_Prec_Tr_25anos

7.3.3 Tabelas com valores dos picos de vazão, tempo de pico e volume escoado superficialmente em cada sub-bacia e no exutório da bacia

0,2,	A2) 7210 4256	(M3/S) 72,9 3,6	02abr2016, 08:00 02abr2016, 07:45	(MM) 102,02 72,90
4,2	3830	57,7	02abr2016, 08:00	95,14
0,50	5569	7,8	02abr2016, 07:45	70,76
4,9	0590	61,1	02abr2016, 08:00	88,97
4,1	1600	48,2	02abr2016, 08:00	77,62
5,8;	2330	55,3	02abr2016, 08:15	77,62
4,8	4410	38,6	02abr2016, 08:30	69,57
0,5	3359	7,8	02abr2016, 07:45	68,87
4,0;	2510	34,7	02abr2016, 08:00	62,42
5,9:	3700	58,3	02abr2016, 08:00	68,54
4,3	7240	64,5	02abr2016, 08:00	102,82
8,0:	3870	66,5	02abr2016, 08:30	72,02
2,4	3380	18,3	02abr2016, 08:15	58,58
4,8;	2090	29,2	02abr2016, 08:45	67,56
10,	96600	106,1	02abr2016, 08:30	86,78
2,0	3820	19,6	02abr2016, 08:15	69,82
8,11	9890	61,2	02abr2016, 08:30	65,04
1,9:	2710	15,8	02abr2016, 08:00	53,28
10,	32900	111,3	02abr2016, 08:15	88,06

lvdrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
ement	(KM2)	(M3/S)		(MM)
'820	7,93480	68,4	02abr2016, 08:30	81,37
/810	7,42280	62,9	02abr2016, 08:30	75,67
/800	10,76800	67,2	02abr2016, 08:30	61,65
062/	4,43510	31,6	02abr2016, 08:15	54,33
780	1,13670	14,7	02abr2016, 07:45	71,85
/770	3,39140	26,6	02abr2016, 08:00	52,71
V760	5,24690	37,2	02abr2016, 08:15	53,01
V750	10,65100	96,8	02abr2016, 08:15	77,15
V740	3,57220	21,5	02abr2016, 08:30	57,79
V730	9,34370	70,9	02abr2016, 08:30	67,84
V720	2,40330	20,0	02abr2016, 08:15	62,12
V710	8,36540	44,4	02abr2016, 08:15	45,02
V700	15,64500	64,1	02abr2016, 09:15	56,21
V690	8,72070	46,9	02abr2016, 08:45	56,06
V680	4,27220	37,5	02abr2016, 08:00	62,94
V670	7,55980	46,9	02abr2016, 08:30	57,31
V660	2,24130	17,0	02abr2016, 08:00	50,54
V650	3,07190	10,1	02abr2016, 08:15	30,70
V640	0,18976	1,9	02abr2016, 07:45	53,14
V630	5,84570	41,8	02abr2016, 08:15	58,78

			·	
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(KM2)	(M3/S)		(MM)
W620	3,95890	35,1	02abr2016, 08:00	58,30
W610	5,69450	23,5	02abr2016, 09:15	53,09
W600	4,59260	11,8	02abr2016, 08:30	28,31
Outlet1	337,88000	1239,6	02abr2016, 10:45	66,71
J122	27,81700	181,1	02abr2016, 08:45	66,14
J127	47,90500	316,9	02abr2016, 08:45	67,92
J132	8,28750	114,3	02abr2016, 08:00	92,86
J137	14,65900	183,9	02abr2016, 08:15	92,78
J142	24,43000	281,1	02abr2016, 08:15	93,60
J147	69,38400	396,8	02abr2016, 09:00	63,22
J152	74,95600	424,0	02abr2016, 09:00	65,19
J155	65,49600	653,3	02abr2016, 08:15	87,05
J162	15,44000	186,7	02abr2016, 08:00	86,82
J167	10,22500	116,0	02abr2016, 08:00	79,70
J170	33,09600	303,3	02abr2016, 08:15	80,85
J173	28,38500	260,8	02abr2016, 08:15	81,46
J178	75,34500	622,5	02abr2016, 08:45	83,94
J181	155,73000	1013,1	02abr2016, 09:00	74,34
J190	162,58000	883,3	02abr2016, 09:00	72,75
J197	175,60000	938,9	02abr2016, 09:15	72,29

Volume (MM)	72,94	72,97	82,65	77,83	59,51	73,14	71,99	71,59	68,61	59,34	67,61	68,05	67,23	67,24	67,58	68,06	59,36	68,62	70,26	
Time of Peak	02abr2016, 09:15	02abr2016, 09:30	02abr2016, 08:15	02abr2016, 08:30	02abr2016, 08:30	02abr2016, 09:30	02abr2016, 09:30	02abr2016, 09:45	02abr2016, 10:15	02abr2016, 08:15	02abr2016, 10:30	02abr2016, 10:30	02abr2016, 10:45	02abr2016, 10:45	02abr2016, 10:45	02abr2016, 10:30	02abr2016, 08:30	02abr2016, 10:30	02abr2016, 10:30	
Peak Discharge (M3/S)	994,2	1026,0	208,1	301,7	85,3	1196,9	1227,6	1236,4	1202,9	80,0	1230,6	1207,5	1238,4	1235,6	1221,4	1207,1	77,5	1195,7	1091,2	
Drainage Area (KM2)	188,50000	198,01000	21,48000	34,66200	14,15900	238,24000	250,18000	261,93000	300,45000	11,83200	323,63000	309,37000	333,29000	333,29000	323,63000	309,37000	11,83200	300,45000	261,93000	
Hydrologic Element	J200	J203	J210	J213	J218	J221	J232	J235	J242	J247	J252	J255	J262	R10	R30	R40	R60	R80	R110	

olume M)	,61	,15	,75	,79	,59	,30	,90	,80	,13	,97	,52	,76	66,	,87	,82	,01	,06	,62	,83	,93
Vo (M	59	73	72	77	82	72	72	72	72	83	81	19	83	80	85	65	63	93	92	92
Time of Peak	02abr2016, 09:00	02abr2016, 09:30	02abr2016, 09:30	02abr2016, 08:45	02abr2016, 08:30	02abr2016, 09:30	02abr2016, 09:30	02abr2016, 09:15	02abr2016, 09:15	02abr2016, 08:45	02abr2016, 08:30	02abr2016, 08:15	02abr2016, 08:30	02abr2016, 08:30	02abr2016, 08:45	02abr2016, 09:15	02abr2016, 09:00	02abr2016, 08:30	02abr2016, 08:15	02abr2016, 08:15
Peak Discharge (M3/S)	83,9	1196,1	992,3	296,2	202,8	929,4	987,9	876,3	848,7	620,9	257,1	112,5	142,8	296,4	557,6	413,9	387,8	269,9	182,7	108,4
Drainage Area (KM2)	14,15900	238,24000	198,01000	34,66200	21,48000	175,60000	188,50000	162,58000	155,73000	75,34500	28,38500	10,22500	15,44000	33,09600	65,49600	74,95600	69,38400	24,43000	14,65900	8,28750
Hydrologic Element	R130	R160	R170	R180	R210	R240	R250	R280	R290	R310	R370	R390	R400	R420	R430	R440	R450	R470	R490	R500

Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)
R520	47,90500	293,5	02abr2016, 09:00	67,29
R560	27,81700	178,6	02abr2016, 08:45	66,13

7.4 Apêndice 4 – Resultados da analise estatística do Artigo 1 no Programa R

Estatística_R_Resultados_CF

R version 3.3.3 (2017-03-06) -- "Another Canoe" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R é um software livre e vem sem GARANTIA ALGUMA. Você pode redistribuí-lo sob certas circunstâncias. Digite 'license()' ou 'licence()' para detalhes de distribuição. R é um projeto colaborativo com muitos contribuidores. Digite 'contributors()' para obter mais informações e 'citation()' para saber como citar o R ou pacotes do R em publicações. Digite 'demo()' para demonstrações, 'help()' para o sistema on-line de ajuda, ou 'help.start()' para abrir o sistema de ajuda em HTML no seu navegador. Digite 'q()' para sair do R. > dados<-read.table("Resultados_CF_R_2.txt", header=TRUE)</pre> > dados uso vazao prec 1 Prec_Tr_2anos Uso_solo_Referência 507.3 2 Prec_Tr_2anos Uso_solo_Lei_4471_65 362.6 Prec_Tr_2anos Uso_solo_Lei_12651_12 473.8 3 4 Prec_Tr_5anos Uso_solo_Referência 728.3 5 Prec_Tr_5anos Uso_solo_Lei_4471_65 540.5 6 Prec_Tr_5anos Uso_solo_Lei_12651_12 681.4 7 Prec_Tr_10anos Uso_solo_Referência 937.4 8 Prec_Tr_10anos Uso_solo_Lei_4471_65 715.4 9 Prec_Tr_10anos Uso_solo_Lei_12651_12 891.8 10 Prec_Tr_25anos Uso_solo_Referência 1295.3 11 Prec_Tr_25anos Uso_solo_Lei_4471_65 1023.8 12 Prec_Tr_25anos Uso_solo_Lei_12651_12 1239.6 13 Prec_Tr_50anos Uso_solo_Referência 1639.7 14 Prec Tr 50anos Uso solo Lei 4471 65 1318.5 15 Prec_Tr_50anos Uso_solo_Lei_12651_12 1576.3 16 Prec_Tr_100anos Uso_solo_Referência 2052.0 17 Prec_Tr_100anos Uso_solo_Lei_4471_65 1690.2 18 Prec_Tr_100anos Uso_solo_Lei_12651_12 1980.0 19 Prec_Tr_200anos Uso_solo_Referência 2543.5 20 Prec_Tr_200anos Uso_solo_Lei_4471_65 2132.9 21 Prec Tr 200anos Uso solo Lei 12651 12 2460.8 > attach(dados) > dados.anova<-aov(dados\$vazao ~ dados\$prec + dados\$uso)</pre> > summary(dados.anova) Df Sum Sq Mean Sq F value Pr(>F) 6 8818485 1469747 556.58 5.86e-14 *** dados\$prec 55.49 8.63e-07 *** dados\$uso 2 293071 146536 Residuals 12 31688 2641 _ _ _ Signif. codes: 0 (***' 0.001 (**' 0.01 (*' 0.05 (.' 0.1 (' 1 > TukeyHSD(dados.anova) Tukey multiple comparisons of means

Estatística_R_Resultados_CF 95% family-wise confidence level

Fit: aov(formula = dados\$vazao ~ dados\$prec + dados\$uso)

\$`dados\$prec`

	diff	lwr	upr	p adj
Prec_Tr_10anos-Prec_Tr_100anos	-1059.2000	-1206.04813	-912.3519	0.0000000
Prec_Tr_200anos-Prec_Tr_100anos	471.6667	324.81853	618.5148	0.0000016
Prec_Tr_25anos-Prec_Tr_100anos	-721.1667	-868.01480	-574.3185	0.0000000
Prec_Tr_2anos-Prec_Tr_100anos	-1459.5000	-1606.34813	-1312.6519	0.0000000
Prec_Tr_50anos-Prec_Tr_100anos	-395.9000	-542.74813	-249.0519	0.0000104
Prec_Tr_5anos-Prec_Tr_100anos	-1257.3333	-1404.18147	-1110.4852	0.0000000
Prec_Tr_200anos-Prec_Tr_10anos	1530.8667	1384.01853	1677.7148	0.0000000
Prec_Tr_25anos-Prec_Tr_10anos	338.0333	191.18520	484.8815	0.0000535
Prec_Tr_2anos-Prec_Tr_10anos	-400.3000	-547.14813	-253.4519	0.0000093
Prec_Tr_50anos-Prec_Tr_10anos	663.3000	516.45187	810.1481	0.0000000
Prec_Tr_5anos-Prec_Tr_10anos	-198.1333	-344.98147	-51.2852	0.0066078
Prec_Tr_25anos-Prec_Tr_200anos	-1192.8333	-1339.68147	-1045.9852	0.0000000
Prec_Tr_2anos-Prec_Tr_200anos	-1931.1667	-2078.01480	-1784.3185	0.0000000
Prec_Tr_50anos-Prec_Tr_200anos	-867.5667	-1014.41480	-720.7185	0.0000000
Prec_Tr_5anos-Prec_Tr_200anos	-1729.0000	-1875.84813	-1582.1519	0.0000000
Prec_Tr_2anos-Prec_Tr_25anos	-738.3333	-885.18147	-591.4852	0.0000000
Prec_Tr_50anos-Prec_Tr_25anos	325.2667	178.41853	472.1148	0.0000788
Prec_Tr_5anos-Prec_Tr_25anos	-536.1667	-683.01480	-389.3185	0.0000004
Prec_Tr_50anos-Prec_Tr_2anos	1063.6000	916.75187	1210.4481	0.0000000
Prec_Tr_5anos-Prec_Tr_2anos	202.1667	55.31853	349.0148	0.0056533
Prec_Tr_5anos-Prec_Tr_50anos	-861.4333	-1008.28147	-714.5852	0.0000000
\$`dados\$uso`				

p uauospuso			
	diff	lwr	upr
Uso_solo_Lei_4471_65-Uso_solo_Lei_12651_12	-217.11429	-290.39490	-143.8337
Uso_solo_Referência-Uso_solo_Lei_12651_12	57.11429	-16.16632	130.3949
Uso_solo_Referência-Uso_solo_Lei_4471_65	274.22857	200.94796	347.5092
	p adj		
Uso_solo_Lei_4471_65-Uso_solo_Lei_12651_12	0.0000118		
Uso_solo_Referência-Uso_solo_Lei_12651_12	0.1360423		
Uso_solo_Referência-Uso_solo_Lei_4471_65	0.0000010		

7.5 Apêndice 5 – Resultados da analise estatística do Artigo 2 no Programa R

Uso_Sazonal_R_Resultados

R version 3.3.3 (2017-03-06) -- "Another Canoe" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R é um software livre e vem sem GARANTIA ALGUMA. Você pode redistribuí-lo sob certas circunstâncias. Digite 'license()' ou 'licence()' para detalhes de distribuição. R é um projeto colaborativo com muitos contribuidores. Digite 'contributors()' para obter mais informações e 'citation()' para saber como citar o R ou pacotes do R em publicações. Digite 'demo()' para demonstrações, 'help()' para o sistema on-line de ajuda, ou 'help.start()' para abrir o sistema de ajuda em HTML no seu navegador. Digite 'q()' para sair do R. > dados<-read.table("Uso_Sazonal_R.txt", header = TRUE)</pre> > dados Precipitacao Uso_do_solo Vazao_de_pico 1 Prec_Tr_2anos Janeiro 499.1 2 Prec_Tr_2anos Fevereiro 548.7 3 Marco 578.3 Prec_Tr_2anos 4 Prec_Tr_2anos Abril 596.5 5 Prec Tr 2anos Maio 526.0 6 Prec Tr 2anos Junho 531.7 7 Prec_Tr_2anos Julho 548.8 8 Prec_Tr_2anos 508.8 Agosto 9 Prec_Tr_2anos Setembro 537.8 Prec_Tr_2anos 10 Outubro 562.1 11 Prec_Tr_2anos Novembro 554.2 12 Prec_Tr_2anos Dezembro 549.3 13 Prec_Tr_5anos 719.3 Janeiro 14 Prec_Tr_5anos Fevereiro 777.7 15 Prec Tr 5anos Marco 816.0 Prec_Tr_5anos 16 Abril 831.3 17 Prec_Tr_5anos 751.5 Maio Prec_Tr_5anos 18 Junho 758.9 Prec_Tr_5anos 19 Julho 779.3 Prec_Tr_5anos 20 726.6 Agosto Prec_Tr_5anos 21 Setembro 766.3 22 Prec_Tr_5anos Outubro 792.4 23 Prec_Tr_5anos Novembro 785.5 24 Prec_Tr_5anos Dezembro 779.2 25 Prec Tr 10anos 931.8 Janeiro 26 Prec_Tr_10anos Fevereiro 1004.2 27 Prec_Tr_10anos 1044.0 Marco 28 Prec_Tr_10anos Abril 1067.3 29 Prec_Tr_10anos Maio 973.3 30 Prec_Tr_10anos Junho 979.8 31 Prec_Tr_10anos Julho 1005.2 32 Prec_Tr_10anos 941.0 Agosto

		Uso S	Sazonal R Resultados
33	Prec Tr 10anos	_ Setembro	987.5
34	Prec_Tr_10anos	Outubro	1019.6
35	Prec Tr 10anos	Novembro	1009.9
36	Prec Tr 10anos	Dezembro	1005.4
37	Prec Tr 25anos	Janeiro	1294.6
38	Prec Tr 25anos	Fevereiro	1369.8
39	Prec Tr 25anos	Marco	1417.0
40	Prec Tr 25anos	Abril	1447.1
41	Prec Tr 25anos	Maio	1333.9
42	Prec Tr 25anos	Junho	1346.2
43	Prec Tr 25anos	Julho	1371.3
44	Prec Tr 25anos	Agosto	1306.6
45	Prec Tr 25anos	Setembro	1355.7
46	Prec Tr 25anos	Outubro	1391.6
47	Prec Tr 25anos	Novembro	1379.5
48	Prec Tr 25anos	Dezembro	1371.3
49	Prec Tr 50anos	Janeiro	1644.8
50	Prec Tr 50anos	Fevereiro	1733.2
51	Prec Tr 50anos	Marco	1785.8
52	Prec Tr 50anos	Abril	1817.0
53	Prec Tr 50anos	Maio	1689.7
54	Prec Tr 50anos	Junho	1704.3
55	Prec Tr 50anos	Julho	1737.2
56	Prec Tr 50anos	Agosto	1657.6
57	Prec Tr 50anos	Setembro	1717.0
58	Prec Tr 50anos	Outubro	1758.7
59	Prec Tr 50anos	Novembro	1745.5
60	Prec Tr 50anos	Dezembro	1737.3
61	Prec Tr 100anos	Janeiro	2059.6
62	Prec Tr 100anos	Fevereiro	2159.5
63	Prec Tr 100anos	Marco	2214.7
64	Prec Tr 100anos	Abril	2248.4
65	Prec Tr 100anos	Maio	2111.7
66	Prec Tr 100anos	Junho	2127.0
67	Prec Tr 100anos	Julho	2161.4
68	Prec Tr 100anos	Agosto	2074.7
69	Prec Tr 100anos	Setembro	2138.3
70	Prec Tr 100anos	Outubro	2186.4
71	Prec Tr 100anos	Novembro	2170.4
72	Prec Tr 100anos	Dezembro	2159.1
73	Prec Tr 200anos	Janeiro	2542.4
74	Prec Tr 200anos	Fevereiro	2643.7
75	Prec Tr 200anos	Marco	2714.0
76	Prec Tr 200anos	Abril	2748.5
77	Prec Tr 200anos	Maio	2600.2
78	Prec Tr 200anos	Junho	2614.2
79	Prec Tr 200anos	Julho	2645.1
80	Prec_Tr_200anos	Agosto	2564.2
81	Prec_Tr_200anos	Setembro	2625.3
82	Prec_Tr_200anos	Outubro	2677.2
83	Prec_Tr_200anos	Novembro	2661.6
84	Prec_Tr_200anos	Dezembro	2645.0

Uso Sazonal R Resultados > attach(dados) > dados.anova<-aov(dados\$Vazao_de_pico ~ dados\$Precipitacao + dados\$Uso_do_solo)</pre> > summary(dados.anova) Df Sum Sq Mean Sq F value Pr(>F) 53831 <2e-16 *** dados\$Precipitacao 6 41669932 6944989 dados\$Uso_do_solo 11 143391 13036 101 <2e-16 *** Residuals 66 8515 129 Signif. codes: 0 (***' 0.001 (**' 0.01 (*' 0.05 (.' 0.1 (') 1 > TukeyHSD(dados.anova) Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = dados\$Vazao_de_pico ~ dados\$Precipitacao + dados\$Uso_do_solo) \$`dados\$Precipitacao` diff lwr upr p adj Prec_Tr_10anos-Prec_Tr_100anos -1153.5167 -1167.6185 -1139.4148 0 489.1833 0 Prec_Tr_200anos-Prec_Tr_100anos 475.0815 503.2852 Prec_Tr_25anos-Prec_Tr_100anos -785.5500 -799.6519 -771.4481 0 Prec_Tr_2anos-Prec_Tr_100anos -1605.8250 -1619.9269 -1591.7231 0 Prec Tr 50anos-Prec Tr 100anos -423.5917 -437.6935 0 -409.4898 Prec Tr 5anos-Prec Tr 100anos -1377.2667 -1391.3685 -1363.1648 0 Prec_Tr_200anos-Prec_Tr_10anos 1628.5981 1642.7000 1656.8019 0 Prec_Tr_25anos-Prec_Tr_10anos 367.9667 353.8648 382.0685 0 Prec_Tr_2anos-Prec_Tr_10anos -452.3083 -466.4102 -438.2065 0 Prec_Tr_50anos-Prec_Tr_10anos 729.9250 715.8231 744.0269 0 Prec_Tr_5anos-Prec_Tr_10anos -223.7500 -237.8519 -209.6481 0 Prec_Tr_25anos-Prec_Tr_200anos 0 -1274.7333 -1288.8352 -1260.6315 Prec_Tr_2anos-Prec_Tr_200anos -2095.0083 -2109.1102 -2080.9065 0 Prec_Tr_50anos-Prec_Tr_200anos 0 -912.7750 -926.8769 -898.6731 Prec_Tr_5anos-Prec_Tr_200anos -1866.4500 -1880.5519 -1852.3481 0 Prec Tr 2anos-Prec Tr 25anos -820.2750 -834.3769 -806.1731 0 Prec_Tr_50anos-Prec_Tr_25anos 361.9583 347.8565 376.0602 0 Prec_Tr_5anos-Prec_Tr_25anos -591.7167 -605.8185 -577.6148 0 Prec Tr 50anos-Prec Tr 2anos 1168.1315 0 1182.2333 1196.3352 Prec_Tr_5anos-Prec_Tr_2anos 228.5583 214.4565 242.6602 0 Prec_Tr_5anos-Prec_Tr_50anos -953.6750 -967.7769 -939.5731 0 \$`dados\$Uso do solo` diff lwr upr p adi Agosto-Abril -139.5142857 -160.0837080 -118.944863 0.0000000 Dezembro-Abril -72.7857143 -93.3551366 -52.216292 0.0000000 -94.7551366 Fevereiro-Abril -74.1857143 -53.616292 0.0000000 Janeiro-Abril -152.0714286 -172.6408509 -131.502006 0.0000000 Julho-Abril -72.5428571 -93.1122795 -51.973435 0.0000000 Junho-Abril -99.1428571 -119.7122795 -78.573435 0.0000000 Maio-Abril -109.9714286 -130.5408509 -89.402006 0.0000000 Marco-Abril -26.6142857 -47.1837080 -6.044863 0.0023509 Novembro-Abril -64.2142857 -84.7837080 -43.644863 0.0000000 Outubro-Abril -52.5857143 -73.1551366 -32.016292 0.0000000

-89.7428571 -110.3122795

-69.173435 0.0000000

Setembro-Abril

	Uso_	_Sazonal_R_Res	ultados	
Dezembro-Agosto	66.7285714	46.1591491	87.297994	0.000000
Fevereiro-Agosto	65.3285714	44.7591491	85.897994	0.000000
Janeiro-Agosto	-12.5571429	-33.1265652	8.012279	0.6461357
Julho-Agosto	66.9714286	46.4020062	87.540851	0.000000
Junho-Agosto	40.3714286	19.8020062	60.940851	0.0000004
Maio-Agosto	29.5428571	8.9734348	50.112279	0.0004331
Marco-Ágosto	112.9000000	92.3305777	133.469422	0.000000
Novembro-Agosto	75.3000000	54.7305777	95.869422	0.0000000
Outubro-Agosto	86.9285714	66.3591491	107.497994	0.0000000
Setembro-Agosto	49.7714286	29.2020062	70.340851	0.0000000
Fevereiro-Dezembro	-1.4000000	-21.9694223	19.169422	1.0000000
Janeiro-Dezembro	-79.2857143	-99.8551366	-58.716292	0.0000000
Julho-Dezembro	0.2428571	-20.3265652	20.812279	1.0000000
Junho-Dezembro	-26.3571429	-46.9265652	-5.787721	0.0027126
Maio-Dezembro	-37.1857143	-57.7551366	-16.616292	0.0000036
Marco-Dezembro	46.1714286	25.6020062	66.740851	0.0000000
Novembro-Dezembro	8.5714286	-11.9979938	29.140851	0.9570586
Outubro-Dezembro	20.2000000	-0.3694223	40.769422	0.0587884
Setembro-Dezembro	-16.9571429	-37.5265652	3.612279	0.2071260
Janeiro-Fevereiro	-77.8857143	-98.4551366	-57.316292	0.0000000
Julho-Fevereiro	1.6428571	-18.9265652	22.212279	1.0000000
Junho-Fevereiro	-24.9571429	-45.5265652	-4.387721	0.0058079
Maio-Fevereiro	-35.7857143	-56.3551366	-15.216292	0.0000088
Marco-Fevereiro	47.5714286	27.0020062	68.140851	0.0000000
Novembro-Fevereiro	9.9714286	-10.5979938	30.540851	0.8865686
Outubro-Fevereiro	21.6000000	1.0305777	42.169422	0.0312765
Setembro-Fevereiro	-15.5571429	-36.1265652	5.012279	0.3218373
Julho-Janeiro	79.5285714	58.9591491	100.097994	0.0000000
Junho-Janeiro	52.9285714	32.3591491	73.497994	0.0000000
Maio-Janeiro	42.1000000	21.5305777	62.669422	0.0000001
Marco-Janeiro	125.4571429	104.8877205	146.026565	0.0000000
Novembro-Janeiro	87.8571429	67.2877205	108.426565	0.0000000
Outubro-Janeiro	99.4857143	78.9162920	120.055137	0.0000000
Setembro-Janeiro	62.3285714	41.7591491	82.897994	0.000000
Junho-Julho	-26.6000000	-47.1694223	-6.030578	0.0023697
Maio-Julho	-37.4285714	-57.9979938	-16.859149	0.0000030
Marco-Julho	45.9285714	25.3591491	66.497994	0.0000000
Novembro-Julho	8.3285714	-12.2408509	28.897994	0.9649223
Outubro-Julho	19.9571429	-0.6122795	40.526565	0.0652683
Setembro-Julho	-17.2000000	-37.7694223	3.369422	0.1905785
Maio-Junho	-10.8285714	-31.3979938	9.740851	0.8207990
Marco-Junho	72.5285714	51.9591491	93.097994	0.000000
Novembro-Junho	34.9285714	14.3591491	55.497994	0.0000153
Outubro-Junho	46.5571429	25.9877205	67.126565	0.000000
Setembro-Junho	9.4000000	-11.1694223	29.969422	0.9208158
Marco-Maio	83.3571429	62.7877205	103.926565	0.0000000
Novembro-Maio	45.7571429	25.1877205	66.326565	0.0000000
Outubro-Maio	57.3857143	36.8162920	77.955137	0.000000
Setembro-Maio	20.2285714	-0.3408509	40.797994	0.0580639
Novembro-Marco	-37.6000000	-58.1694223	-17.030578	0.0000027
Outubro-Marco	-25.9714286	-46.5408509	-5.402006	0.0033558
Setembro-Marco	-63.1285714	-83.6979938	-42.559149	0.0000000

	Uso_	Sazonal_R_Res	ultados	
Outubro-Novembro	11.6285714	-8.9408509	32.197994	0.7455224
Setembro-Novembro	-25.5285714	-46.0979938	-4.959149	0.0042725
Setembro-Outubro	-37.1571429	-57.7265652	-16.587721	0.000036

8 ANEXOS

8.1 Anexo 1 – Normas para autores da Revista Engenharia Agrícola

Revista Engenharia Agrícola Journal of the Brazilian Association of Agricultural Engineering

ISSN: 1809-4430 (on-line).

INSTRUÇÕES AOS AUTORES

1. Diretrizes Gerais

Os manuscritos podem ser submetidos em português, espanhol e inglês, por meio do Sistema Eletrônico de Editoração de Revistas – SciELO (<u>http://submission.scielo.br/index.php/eagri/</u>). O Comitê Editorial verifica se o artigo está no escopo da revista, se segue RIGOROSAMENTE AS NORMAS para submissão e se há ocorrência de PLÁGIO. O artigo poderá ser reformulado se estiver fora das normas e será recusado nos outros casos.

O autor responsável pela submissão deverá, primeiramente, preencher TODOS os campos do metadados e enviar uma mensagem para <u>contato.sbea@gmail.com</u> assumindo a responsabilidade pelos demais autores, se houver, autorizando a tramitação, obedecendo ao Artigo 5º da Lei no 9.610, que trata do Direito Autoral (vide item 4, ao final deste tópico).

O autor responsável pela submissão deverá enviar também para <u>contato.sbea@gmail.com</u> um oficio assinado por ele, em PDF, afirmando que o manuscrito não foi publicado e nem está sendo submetido para publicação em outro(s) meio(s) de divulgação de qualquer natureza (vide item 4, ao final deste tópico).

Depois de aceitos, os trabalhos submetidos em português e espanhol deverão ser **OBRIGATORIAMENTE** traduzidos para o inglês por **EMPRESAS INDICADAS PELO COMITÊ EDITORIAL**. Os manuscritos submetidos em inglês deverão ser revisados pelas mesmas empresas.

Em seguida, os artigos aceitos passarão por diagramação e última revisão por parte dos autores (prova). Quando recusado, o manuscrito será arquivado, podendo os autores, a partir daí, encaminharem o trabalho a outro periódico.

1.1. Tradução e revisão

A tradução dos artigos submetidos em português e espanhol e a revisão dos artigos submetidos em inglês serão pagas pelos autores diretamente às empresas indicadas pelo Comitê Editorial.

As empresas de tradução ou revisão indicadas são:

- American Journal Experts (https://www.aje.com/en/services/translation)
- Elsevier (<u>http://webshop.elsevier.com/languageservices/</u>)
- Quality Centro de Idiomas (monicamdestefani@hotmail.com)
- STTA Serviços Técnicos de Tradução e Análises (http://stta.com.br/)

2. Normas para configuração do manuscrito

2.1 Configuração

- O manuscrito deve ter no máximo cinco autores;
- Não inserir os nomes e as identificações dos autores;
- O número máximo de laudas é 20;

O texto completo pode apresentar figuras coloridas ou não (fotografias, gráficos, diagramas, etc.) e tabelas. O tamanho do arquivo gravado aceito pelo sistema de submissão é de até 2,0 MB. Arquivos maiores não serão gravados no sistema.

- As grandezas devem ser expressas sempre e unicamente em unidades do Sistema Internacional de Unidades (SI) e grafadas sempre de acordo com as normas de apresentação dos símbolos das unidades do SI (https://www.nist.gov/sites/default/files/documents/pml/div684/fcdc/sp330-2.pdf)

- Texto em editor MSWord 2010 ou superior ou totalmente compatível com esse editor;
- Tamanho do papel: A4 (21 x 29,7 cm);
- Espaçamento entre linhas: 2,0;
- Tipo de letra para o texto: Times New Roman, tamanho 12;
- Tipo de letra para cabeçalho/rodapé: Times New Roman, tamanho 9;
- Margens: 2 cm em todos os lados do papel;
- Inserir numeração de páginas;
- Inserir numeração contínua de linhas nas páginas;
- Parágrafo de 1,0 cm;
- Tamanho máximo do arquivo: 2,0 MB;

- Os autores deverão ser os mesmos que foram cadastrados no sistema quando da submissão do manuscrito. Não poderão ser mudados, a não ser com expressa autorização escrita de cada um dos autores originais. Cada nome deverá ser seguido por um número em sobrescrito, em sequência. Abaixo dos nomes, separado por dois espaços, uma lista com a ordem numérica referente a cada autor. Nessa lista, os números vêm primeiro em sobrescrito e na frente de cada número, em texto normal, deverá constar do autor para correspondência, a instituição e um endereço de e-mail definitivo, e dos demais autores, somente a instituição.

Revista Engenharia Agrícola Journal of the Brazilian Association of Agricultural Engineering

ISSN: 1809-4430 (on-line).

2.2 Categoria

Os artigos podem ser da seguinte natureza:

2.2.1 Artigo científico

Refere-se a relato de pesquisa original, com hipótese bem definida, prestigiando assuntos inovadores. Deve incluir Título, Resumo, Palavras-chave, Introdução, Material e Métodos, Resultados e discussão, Conclusões e Referências.

Todos os itens deverão ser destacados em letras maiúsculas e negrito.

Título: Centralizado, deve ser claro e conciso, permitindo pronta identificação do conteúdo do trabalho, procurando-se evitar palavras do tipo: análise, estudo e avaliação.

Resumo: O texto, contendo no máximo 14 linhas, deve iniciar-se na mesma linha do item, ser claro, sucinto e, obrigatoriamente, explicar o(s) objetivo(s) pretendido(s), procurando justificar sua importância (sem incluir referências), os resultados e as conclusões mais expressivos. Abaixo devem aparecer as *Palavras-chave* (seis no máximo, procurando-se não repetir palavras do título) escritas em letras minúsculas, em ordem alfabética e separadas por vírgula.

Introdução: Devem ser evitadas divagações, e se concentrando no assunto que levará o leitor a entender o objetivo do trabalho. Para isso, deve-se utilizar principalmente de bibliografia recente (últimos 5 anos e periódicos indexados) e apropriada para formular os problemas abordados e a justificativa da importância do assunto, deixando muito claro o(s) objetivo(s) do trabalho, utilizando no máximo 50 linhas.

Material e métodos: Dependendo da natureza do trabalho, a caracterização da área experimental deve ser inserida, tornando claras as condições em que a pesquisa foi realizada. Quando os métodos forem os consagradamente utilizados, apenas a(s) referência(s) bastará (ão); caso contrário, é necessário apresentar descrição dos procedimentos utilizados, adaptações promovidas, etc. Unidades de medidas e símbolos devem seguir o Sistema Internacional de Unidades.

Resultados e discussão: Os resultados obtidos e analisados deverão ser confrontados com os da literatura apresentada na Introdução e com outras pertinentes à área do trabalho, e discutidos à luz dos conhecimentos consagrados, concordando ou discordando desses com explicações científicas e ou técnicas, mas destacando principalmente a importância e a originalidade desses dados. A redação desse item deve ser elaborada não apenas relatando que os resultados obtidos concordam com ou discordam de os resultados obtidos por outros pesquisadores, mas também, de forma clara e concisa, procurar explicar por que os resultados foram esses e por que concordam ou discordam dos apresentados na literatura.

Conclusões: Devem basear-se exclusivamente nos resultados do trabalho. Evitar a repetição dos resultados em listagem subsequente, buscando, sim, confrontar o que se obteve, com os objetivos inicialmente estabelecidos. As conclusões devem ser escritas de forma clara, direta e concisa, facilitando a interpretação do artigo, sem necessidade de consultar outros itens do mesmo.

Agradecimento(s): Agradecimentos a pessoas e/ou a instituições devem ser inseridos, se for o caso, após as conclusões, de maneira sucinta.

Referências: No texto (Introdução, Material e Métodos e Resultados e Discussão) devem ser citadas apenas as referências essenciais. Pelo menos 50% das referências devem ser dos últimos 5 anos e 90% das referências deverão ser de artigos científicos e/ou técnicos de periódicos com corpo editorial e indexados. Os 10% restantes se não forem de artigos científicos, deverão ser apenas de dissertações, teses ou livros. Evitar citações de resumos, trabalhos de conclusão de curso, trabalhos não publicados, boletins técnicos e comunicação pessoal. Casos excepcionais deverão ser justificados e serão analisados pelo Comitê Editorial. As citações no texto deverão aparecer em letras maiúsculas, seguidas da data, conforme abaixo:

SOUZA & SILVA (2014), ou ainda (SOUZA & SILVA, 2014); existindo outras referências do(s) mesmo(s) autor (es) no mesmo ano (outras publicações), isso será identificado com letras minúsculas (a, b, c) após o ano da publicação: SOUZA & SILVA (2014 a). Quando houver três ou mais autores, no texto será citado apenas o primeiro autor seguido de et al., mas na listagem bibliográfica final os demais nomes também deverão aparecer. Na citação de citação (deve ser evitada), identifica-se a obra diretamente consultada; o autor e/ou a obra citada nesta é assim indicado: SILVA (2006) citado por PESSOA (2013).

Na listagem das referências citadas (item Referências) incluir apenas as mencionadas no texto e em tabelas e figuras, aparecendo em ordem alfabética e em letras maiúsculas. A seguir, estão apresentados alguns exemplos:

Periódicos

Pruski FF, Rodrigues RG, Pruski PL, Nunes AA, Rego FS (2016) Extrapolation of regionalization equations for long-term average flow. Engenharia Agricola 36(5):830-838.

Com DOI (Digital Object Identifier)

Pruski FF, Rodrigues RG, Pruski PL, Nunes AA, Rego FS (2016) Extrapolation of regionalization equations for long-term average flow. Engenharia Agricola 36(5):830-838. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n5p830-838/2016

Livros

Obra completa, autorada

Keller J, Bliesner RD (2012) Sprinkle and Trickle Irrigation. New York, Springer. 652p.

Obra completa, com paginação específica (forma preferida)

Keller J, Bliesner RD (2012) Sprinkle and Trickle Irrigation. New York, Springer, p140-160.

Livro com autor institucional

FAO – Food and Agriculture Organization of the United Nations (2016) The state of food and agriculture: climate change, agriculture and food security. Rome, FAO, 190p.

Livro com autor institucional, com paginação específica (forma preferida)

FAO – Food and Agriculture Organization of the United Nations (2016) The state of food and agriculture: climate change, agriculture and food security. Rome, FAO, p50-60.

Livro completo, editado

Mueller T, Sassenrath GF (2015) GIS Applications in Agriculture. Volume Four: Conservation Planning. Boca Raton, CRC Press, v4:304p. DOI: 10.1201/b18173-1

Livro completo, editado, com paginação específica (forma preferida)

Mueller T, Sassenrath GF (2015) GIS Applications in Agriculture. Volume Four: Conservation Planning. Boca Raton, CRC Press, v4: p28-49. DOI: 10.1201/b18173-1

Capítulo de livro ou um artigo parte de um livro

Buckleiter GW (2007) Irrigation system automation. In: Adamsen F, Hook J, Cardon G, Letey J, Lascano RJ, Sojka RE. Irrigation of agricultural crops. Madison, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, p181-194.

Anais de congressos, simposios, wokshops (devem ser evitadas)

Hagel H, Hoffmann C, Doluschitz, R (2014) Mathematical programing models to increase land and water use efficiency in semiarid NE-Brazil. In: World Conference in Computers in Agriculture. San Jose, International Commission of Agricultural Engineering, Proceedings...

Teses (devem ser evitadas)

Schiavone DF (2016) heat mass transfer in ballet switch grass for storage and bioconversion applications. PhD Thesis, Lexington University of Kentuck, College of Engineering.

Documentos cartográficos (mapa, fotografia aérea, imagem de satélite, imagem de satélite digital)

BRASIL e parte da América do Sul: mapa político, escolar, rodoviário, turístico e regional. São Paulo: Michalany, 1981. 1 mapa, color., 79 cm x 95 cm. Escala 1:600.000.

Patentes

Norman LO (1998) Lightning rods. US Patent 4,379,752, 9 Sept 1998.

Revista Engenharia Agrícola Journal of the Brazilian Association of Agricultural Engineering

ISSN: 1809-4430 (on-line).

Documentos on line

Doe J (1999) Title of subordinate document. In: The dictionary of substances and their effects. Royal Society of Chemistry. Available : http://www.rsc.org/dose/title of subordinate document. Accessed Oct 19, 2016.

Figuras e tabelas: Em qualquer parte do texto do manuscrito ilustrações, gráficos e fotografias devem ser inseridos com o título de "Figura" e quadros e tabelas serão sempre "Tabela". -Figuras: apresentadas com tamanho, resolução e detalhes suficientes para a composição final, preferivelmente na mesma posição do texto, podendo ser coloridas. O título e outras informações contidas na Figura deverão ser, no conjunto, autoexplicativos, para que não seja necessário recorrer a qualquer parte do texto para entender a figura. Gráficos: podem apresentar partes coloridas, sendo os eixos x e y e as divisões de escala, em cor preta, com 1/2pt de espessura das linhas, e títulos e valores nesses eixos devem ser grafados com o mesmo tipo e tamanho de letras contidas no texto (Times New Roman 12). Os gráficos não devem conter bordas e linhas de grade e a legenda deve ser colocada na posição inferior do mesmo. As linhas das curvas ou barras e dos pontos referentes aos dados obtidos, não devem ser colocados com cores claras, como amarelo, azul claro, marrom claro, que dificultam, em fundo branco, a perfeita distinção desses. A numeração da Figura deve ser sucessiva e em algarismos arábicos. Fotografias: podem ser coloridas. Tabelas: as tabelas devem sempre ser elaboradas utilizando a ferramenta de tabelas do Microsoft Word ou outro "software" compatível e devem ser colocadas na página em posição retrato, evitando tabelas extensas e dados supérfluos, privilegiando-se dados médios; adequar seus tamanhos ao espaço útil do papel e colocar, na medida do possível, apenas linhas contínuas horizontais no cabeçalho principal da tabela e na última linha fechando a tabela. Linhas verticais não devem aparecer. Assim como nas Figuras o título e outras informações contidas na tabela, devem ser concisas mas autoexplicativas (não deverá ser necessário recorrer ao texto para entender completamente a tabela). Resultados apresentados em Tabelas não devem ser repetidos em Figuras e vice-versa.

Equações: Todas as equações que fizerem parte do texto deverão ser alinhadas com o parágrafo e numeradas, como segue:

$$y = a x + b \tag{1}$$

em que,

- y velocidade, $m s^{-1}$;
- a coeficiente angular;
- x rotação, rad s^{-1} , e.
- b coeficiente linear.

Equações mais complexas deverão ser elaboradas com a ferramenta "Equação" do editor de texto Word, mantendo o mesmo tipo e o mesmo tamanho da fonte do texto (Times New Roman - 12).

2.2.2 Artigo Técnico

Deverá retratar avanços em teorias, metodologias e técnicas, sem apresentação de hipótese. Quando se tratar de estudo de caso, as conclusões devem apresentar proposições. Deve ser redigido em linguagem técnica, de fácil compreensão, sobre assuntos de interesse para a Engenharia Agrícola, por autor (es) que demonstre(m) experiência sobre o assunto tratado, permitindo orientação para os diferentes usuários da Engenharia Agrícola. Somente justificase a apresentação de artigos que tragam contribuição sobre o assunto e não simplesmente casos pessoais ou de interesse restrito. Com maior liberdade de estilo do que em artigos científicos, os artigos técnicos devem, na maioria das vezes, conter os seguintes itens: Título, Resumo, Palavras-Chave, Introdução, Descrição do Assunto, Conclusões e Referências.

Cabeçalho: ARTIGO TÉCNICO deve aparecer no cabeçalho da primeira página, em letras maiúsculas, sublinhadas, negritadas, centralizadas e espaçadas de 1,1 cm da margem superior.

Título, Resumo, Palavras-chave, devem seguir as mesmas normas descritas para artigo científico relatadas no item 2.2.1.

Introdução: deve conter breve histórico, esclarecendo a importância, o estágio atual do assunto, apoiando-se em revisão bibliográfica, e deixar claro o objetivo do artigo.

Descrição do Assunto: com diferentes títulos que podem ser divididos em subitens, deve-se discorrer sobre o assunto, apontando-se as bases teóricas, trazendo experiências e recomendações, discutindo e criticando situações, baseando-se ao máximo em bibliografia e normas técnicas sobre o assunto.

Conclusões: quando couberem, devem ser redigidas de forma clara e concisa, coerentes com o(s) objetivo(s) estabelecido(s). Não devem ser uma simples reapresentação de outros parágrafos do artigo.

2.2.3 Artigo de Revisão

É a apresentação, **exclusivamente a pedido do Conselho Editorial da revista**, de um estudo, reunindo, analisando e discutindo o estado da arte e propondo perspectivas futuras sobre um assunto de importância para a Engenharia Agrícola. Tal estudo deverá estar baseado em ampla pesquisa bibliográfica, permitindo compilação dos conhecimentos existentes. Embora com maior liberdade de estilo do que em artigos científicos, os artigos de Revisão devem conter os seguintes itens: Título, Resumo, Palavras-Chave, Introdução, Revisão, Conclusões e

Referências. Para a redação desse trabalho de revisão, devem ser seguidas as mesmas orientações para composição de artigos científicos, com as seguintes particularidades:

Cabeçalho: ARTIGO DE REVISÃO deve aparecer no cabeçalho da primeira página em letras maiúsculas, sublinhadas, negritadas, centralizadas e espaçadas de 1,1 cm da margem superior.

Introdução: deve conter breve histórico, situando a importância, o estágio atual do assunto e o objetivo da revisão.

Revisão: seguir as normas de citação da revista. Se necessário, pode ser dividida por assuntos em subitens. A redação deve ser crítica e não apenas mera exposição dos assuntos; deve apresentar sequência lógica por ordem de assuntos e/ou cronológica. Sempre que possível, deve conter uma análise comparativa dos trabalhos sobre o assunto tratado.

Conclusões: devem ser apresentadas de forma clara e concisa, coerentes com o(s) objetivo(s) estabelecido(s). Não devem ser uma simples reapresentação de parágrafos da revisão.

4. Modelos de termos de responsabilidade e declaração de originalidade do artigo

Abaixo, estão os modelos das declarações que o autor responsável deve enviar à <u>contato.sbea@gmail.com</u>, por ocasião da submissão do manuscrito.

Autorização da tramitação:

Autorização da tramitação: Eu, "_____", estou ciente de minha autoria do manuscrito intitulado "_____", bem assumo a responsabilidade pelos demais autores listados a seguir sobre a tramitação do referido manuscrito na revista Engenharia Agrícola, obedecendo ao Artigo 50 da Lei no 9.610, que trata do Direito Autoral.

Autores:

______, ______, ______, ______,

Declaração de originalidade:

Declaro que o artigo_______ é de natureza científica, é original e não foi submetido a outro periódico, quer seja em partes ou em sua totalidade. Declaro ainda que uma vez publicado na Revista Engenharia Agrícola, o mesmo jamais será submetido por mim ou pelos demais autores a qualquer outro periódico. Através deste instrumento, nos autores cedemos os direitos autorais do referido Artigo a Revista de Engenharia Agrícola, obedecendo ao artigo 50 da lei 9.610 que se trata dos direitos autorais.

ASSINATURAS

A revista Engenharia Agrícola é publicada sob acesso aberto e, portanto, seus artigos são livres para serem lidos, copiados e disseminados para propósitos educacionais.

A revista on-line tem acesso aberto e gratuito.

Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons.