TECNOLOGIA ALTERNATIVA PARA O MONITORAMENTO DE POLUENTES GASOSOS

ANDY AVIMAEL SAAVEDRA MENDOZA

TOLEDO – PR – BRASIL
Fevereiro de 2016
ANDY AVIMAEI SAAVEDRA MENDOZA

TECNOLOGIA ALTERNATIVA PARA O MONITORAMENTO DE POLUENTES GASOSOS

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Química em cumprimento parcial aos requisitos para a obtenção do título de Mestre em Engenharia Química, na área de concentração em Monitoramento e Controle Ambiental.

Orientador: Prof. Dr. Camilo Freddy Mendoza Morejon

TOLEDO – PR – BRASIL

Fevereiro de 2016
Esta é a versão final da dissertação de Mestrado apresentada por ANDY AVIMAEL SAAVEDRA MENDOZA a Comissão Julgadora do Curso de Mestrado em Engenharia Química em 29 de fevereiro de 2016.

COMISSÃO JULGADORA

Prof. Dr. Camilo Freddy Mendoza Morejon (Orientador)
Orientador

Prof. Dr. Elvio Antonio de Campos
Membro

Prof. Dr. Robson Luciano de Almeida
Membro
AGRADECIMENTOS

Quero agradecer primeiramente a DEUS pela força, pela sabedoria, pela iluminação e pela fortaleza que me deu no transcurso da realização do presente trabalho.

A minha mãe Eulogia e a meu pai Roberto que depositaram todo seu apoio e amor incondicional a pesar da distância, pois todo o que cheguei a conquistar nesta vida foi devido a eles.

A meu irmão Alberto, a minha noiva e primos, pela mostra de afeito, carinho, apoio e amor, pois foi uma fonte de energia para contínuar com este objetivo.

A meus tios Camilo, Sonia, Rosa, Joselene pelos conselhos, pelo amor, pelo carinho e pela ajuda incondicional, pois eles sempre estiveram junto a mim nos momentos bons e ruins e a eles devo uma vida inteira para devolver todo o que eles me deram.

A meu Orientador o Prof. Camilo Freddy Mendoza Morejon, por ser uma pessoa especial, trabalhadora, inteligente, paciente e fonte da minha inspiração, pois graças ao carinho, a paciência, a dedicação e a seu apoio foi possível a culminação deste trabalho. Agradeço imensamente por contribuir com meu crescimento profissional.

Agradeço a CAPES pelo suporte financeiro.

A meus amigos Jean, Jordana, Fernanda, Edneia, Joelmir e Gessica pela paciência e apoio incondicional.

Enfim, agradeço a todos os professores, funcionários, colegas e familiares que, direta e indiretamente, contribuíram com a realização deste trabalho.
SUMÁRIO

LISTA DE FIGURAS ... vi
LISTA DE TABELAS ... x
NOMENCLATURA ... xii
RESUMO .. xiii
ABSTRACT ... xv

CAPITULO 1 - INTRODUÇÃO ... 1
1.1. Contextualização ... 1
1.2. Objetivos .. 2
1.3. Definição do Escopo do Estudo ... 3

CAPITULO 2. REFERENCIAL TEÓRICO .. 4
2.1. Poluentes gasosos em estudo .. 4
 2.1.1. Gás Sulfídrico (H₂S) ... 5
 2.1.2. Dióxido de Enxofre (SO₂) .. 7
 2.1.3. Monóxido de Carbono (CO) .. 9
 2.1.4. Dióxido de Carbono (CO₂) .. 11
2.2. Métodos, processos e tecnologias convencionais para monitoramento transiente dos poluentes gasosos em estudo .. 14
2.3. Fundamentos teóricos dos dispositivos ou elementos convencionais de medição e monitoramento de poluentes gasosos (Estado da Arte) ... 16
 2.3.1. Características dos Sistemas de Aquisição de Dados Eletrônicos 16
 2.3.2. Sensores de Gás .. 17
 2.3.2.1 Características dos sensores de gás eletrônicos ... 19
 2.3.2.2 Sensor de gás eletroquímico .. 19
 2.3.2.3 Sensor de gás catalítico ... 20
 2.3.2.4 Sensor de gás semicondutor ... 21
 2.3.3. Condicionadores de Sinais .. 23
 2.3.4. Amplificadores Operacionais ... 24
 2.3.4.1 Amplificador Inversor ... 24
 2.3.4.2 Amplificador Não Inversor ... 25
 2.3.4.3 Amplificador Somador ... 26
 2.3.4.4 Amplificador de Diferença (subtração) .. 27
 2.3.5. Microcontroladores .. 27
 2.3.5.1 Alimentação .. 30
2.3.5.2 Oscilador

2.3.5.3 Conversor Analógico-Digital

2.3.5.4 Comunicação USART

2.3.6. Comunicação sem fio (sistema de radiofrequência)

2.3.7. Software de programação para aquisição de dados a partir de elementos eletrônicos

2.3.7.1 LABVIEW

2.3.7.2 Visual Studio.net

2.4. Bases para o desenvolvimento da tecnologia alternativa de monitoramento transiente de poluentes gasosos

CAPITULO 3. METODOLOGIA

3.1. Etapa 1 - Caracterização físico-química (qualitativa e quantitativa) dos poluentes gasosos e suas fontes geradoras de poluentes gasosos

3.2. Etapa 2 – Proposição, desenvolvimento, projeto, fabricação e montagem da tecnologia alternativa para o monitoramento transiente e remoto de poluentes gasosos

3.3. Etapa 3 - Testes operacionais na escala laboratorial e também na condição real de operação

3.4. Etapa 4 - Avaliação dos requisitos de patenteamento

CAPITULO 4. RESULTADOS

4.1. Resultados da Etapa 1 - Caracterização físico-química (qualitativa e quantitativa) dos poluentes gasosos e suas fontes geradoras de poluentes gasosos

4.1.1. Caracterização da fonte geradora de poluentes gasosos em atividades de criação e engorda de suínos

4.1.1.1 Ciclo produtivo para a criação e engorda de leitões

4.1.1.2 Balanço de matéria do ciclo produtivo da criação e engorda de suínos

4.1.1.3 Monitoramento da temperatura e umidade nas correntes dos poluentes gasosos provenientes das atividades de criação e engorda de suínos

4.1.2. Caracterização da fonte geradora de poluentes gasosos em uma indústria de processamento de resíduos de frigoríficos

4.1.2.1 Ciclo produtivo da indústria de processamento de resíduos de frigoríficos

4.1.2.2. Balanço de matéria do ciclo produtivo da indústria de processamento de resíduos de frigoríficos

4.1.2.3. Monitoramento da temperatura e umidade nas correntes dos poluentes gasosos da indústria de processamento de resíduos de frigoríficos
4.2. Resultado da Etapa 2 – Proposição, desenvolvimento, projeto, fabricação, e montagem da tecnologia alternativa para o monitoramento transiente e remoto de poluentes gasosos

4.2.1. Seleção de sensores eletrônicos

4.2.1.1 Identificação da característica operacional dos sensores eletrônicos para a detecção de gás sulfídrico

4.2.1.2 Identificação da característica operacional dos sensores eletrônicos para a detecção de dióxido de enxofre

4.2.1.3 Identificação da característica operacional dos sensores eletrônicos para a detecção de monóxido de carbono

4.2.1.4 Identificação da característica operacional dos sensores eletrônicos para a detecção de dióxido de carbono

4.2.2. Diagrama de fluxo do sistema eletrônico da tecnologia alternativa

4.2.3. Diagrama de fluxo do código desenvolvido para o microchip

4.2.4. Simulação computacional do sistema eletrônico

4.2.5. Codificação e Simulação do programa desenvolvido para o monitoramento, coleta e armazenamento de dados

4.2.6. Projeto, construção e montagem da parte física da tecnologia alternativa

4.2.6.1 Testes experimentais do sistema eletrônico

4.2.6.2 Desenho e construção das placas eletrônicas

4.2.6.3 Desenho e simulação da fluidodinâmica da carcaça do nariz eletrônico

4.3. Resultados da Etapa 3 - Testes operacionais na escala laboratorial e também na condição real de operação

4.3.1. Testes operacionais na escala laboratorial

4.3.2. Testes da tecnologia desenvolvida na condição real de operação

4.3.2.1 Teste do tempo de resposta na medição de gases

4.3.2.1 Monitoramento contínuo de gases produzidos em biodigestores

4.4. Resultados da etapa 4 - Avaliação dos requisitos de patenteamento

5. CONCLUSÕES

REFERÊNCIAS BIBLIOGRÁFICAS
LISTA DE FIGURAS

Figura 2.1 - Média do Crescimento Mensal da Concentração de dióxido de enxofre nas Estações de Monitoramento da IAP, 2015 (IAP, 2015) .. 8

Figura 2.2 - Média do Crescimento Mensal da Concentração de Monóxido de Carbono nas Estações de Monitoramento de Curitiba, 2015 (IAP, 2015) ... 11

Figura 2.3 - Média do Crescimento Anual da Concentração de Dióxido de Carbono medido pelo Observatório Mundial de Mauna Loa no período de 1960-2014 (NOAA/ESRL, 2015). ... 13

Figura 2.4 - Média do Crescimento Mensal da Concentração de Dióxido de Carbono no Observatório Mundial de Mauna Loa, 2010-2014 (NOAA/ESRL, 2015) 14

Figura 2.5 - Diagrama de Fluxo básico para o sistema de aquisição de dados (LYNXTEC, 2015) .. 17

Figura 2.6 – Avanços científicos com relação as pesquisas referentes ao desenvolvimento de sensores e sistemas de monitoramento de gases em função do tempo (SCOPUS, 2016). .. 18

Figura 2.7 - Países com maior número de pesquisas referentes a sensores e sistemas de monitoramento de gases (SCOPUS, 2016). .. 18

Figura 2.8 – Principais áreas de pesquisas referentes a sensores e sistemas de monitoramento de gases (SCOPUS, 2016). ... 19

Figura 2.9 - Sensor de Gás Eletroquímico .. 20

Figura 2.10 - Sensor de Gás Catalítico ... 21

Figura 2.11 - Sensor de Gás Semicondutor .. 23

Figura 2.12 - Símbolo do Amplificador Operacional op-amp (COUGHLIN e DRISCOLL 1993). ... 24

Figura 2.13 - Amplificador Inversor (FRANCO, 2005) ... 24

Figura 2.14 - Amplificador não inversor (FRANCO, 2005) ... 25

Figura 2.15 - Amplificador Somador (FRANCO, 2005) ... 26

Figura 2.16 - Amplificador de Diferença (FRANCO, 2005) 27

Figura 2.17 - Microcontrolador PIC16F877A (MICROCHIP, 2003) 29

Figura 2.18 - Esquema de conexão de um oscilador com base de um cristal e dois capacitores em um microcontrolador PIC16F877A ... 31

Figura 2.19 - Arquitetura do conversor analógico-digital de aproximações sucessivas (GIMENO, 2010). .. 32
Figura 2.20 - Sinais analógicos à entrada do comparador (GIMENO, 2010). .. 32
Figura 2.21 - Pinos de comunicação TX e RX do PIC16F877A (MICROCHIP, 2003). 33
Figura 2.22 - Interface de Programação Gráfica do LABVIEW ... 35
Figura 2.23 - Interface de Programação do Microsoft Visual Studio.net ... 36
Figura 2.24 - Representação do Sistema Sensorial Olfativo Biológico e Artificial no Processo da Recepção de Um Estimulo Seguido da Reação. ... 37
Figura 4.1 - Geração de poluentes gasosos. ... 43
Figura 4.2 – Diagrama de fluxo geral da fonte geradora de poluentes gasosos e suas formas de disposição. .. 44
Figura 4.3 - Diagrama de fluxo do processo e a disposição final dos resíduos ... 46
Figura 4.4 – Balanço de Matéria do ciclo produtivo da atividade rural de criação de suínos em estudo. ... 47
Figura 4.5 – Monitoramento da Temperatura do biogás e a temperatura do ambiente em função do tempo: a) inverno e b) verão. .. 48
Figura 4.6 - Esquema do ciclo produtivo global do processamento de resíduos de frigoríficos. ... 49
Figura 4.7 – Processo de transformação e beneficiamento das penas ... 50
Figura 4.8 – Processo de transformação e beneficiamento das vísceras de frango 50
Figura 4.9 – Processo de transformação e beneficiamento dos resíduos de bovinos 51
Figura 4.10 – Processo de transformação e beneficiamento dos resíduos de suínos 51
Figura 4.11 – Processo de transformação e beneficiamento dos resíduos de peixe 51
Figura 4.12 – Processo de transformação e beneficiamento do sangue .. 51
Figura 4.13 - Processo de transformação e beneficiamento dos lodos orgânicos .. 52
Figura 4.14 – Sistema de tratamento de resíduos gasosos desenvolvido pela UNIOESTE. ... 52
Figura 4.15 – Balanço de matéria do ciclo produtivo de um processo industrial 53
Figura 4.16 – Balanço de matéria: Geração de resíduos gasosos no ciclo produtivo do processamento de resíduos de frigoríficos ... 53
Figura 4.17 – Características operacionais dos sensores eletrônicos para a detecção do gás sulfídrico em função da marca e da a) temperatura de operação, b) umidade relativa de operação, c) pressão de operação e d) a faixa de detecção ... 55
Figura 4.18 – Características operacionais dos sensores eletrônicos para a detecção do dióxido de enxofre em função da marca e da a) temperatura de operação, b) umidade relativa de operação, c) pressão de operação e d) a faixa de detecção ... 56
Figura 4.19 – Características operacionais dos sensores eletrônicos para a detecção do monóxido de carbono em função da marca e da a) temperatura de operação, b) umidade relativa de operação, c) pressão de operação e d) a faixa de detecção. .. 57

Figura 4.20 – Características operacionais dos sensores eletrônicos para a detecção do dióxido de carbono em função da marca e da a) temperatura de operação, b) umidade relativa de operação, c) pressão de operação e d) a faixa de detecção. .. 58

Figura 4.21 – Diagrama de fluxo dos sistemas eletrônicos principais da tecnologia alternativa para o monitoramento da poluentes gasosos. ... 59

Figura 4.22 – Resultado: Diagrama de fluxo dos sistemas de condicionamento de sinal utilizados na tecnologia alternativa a) tipo 1 e b) tipo 2... 60

Figura 4.23 – Diagrama de fluxo do sistema eletrônico da tecnologia alternativa para o monitoramento transiente de poluentes gasosos com comunicação via rádio frequência... 61

Figura 4.24 – Diagrama de fluxo do programa codificado para o microchip. 62

Figura 4.25 – Diagrama de fluxo utilizado para a simulação computacional da tecnologia alternativa. .. 63

Figura 4.26 – Resultado: Simulação computacional da tecnologia alternativa.......... 64

Figura 4.27 – Resultado: Diagrama de fluxo do programa desenvolvido. 66

Figura 4.28 – Simulação virtual do programa desenvolvido e o sistema eletrônico..... 67

Figura 4.29 – Resultados: Testes experimentais dos sistemas eletrônicos.................. 68

Figura 4.30 – Ilustração dos ruídos eletrônicos dos sistemas eletrônicos.................. 69

Figura 4.31 – Resultados: Desenhos e construção das placas eletrônicas, a) desenho dos circuitos eletrônicos (linhas de conexão ou trilhas), b) impressão do negativo, c) impressão das trilhas na placa de cobre, e d) remoção do excesso de cobre. .. 70

Figura 4.32 – Placa eletrônica final... 70

Figura 4.33 – Desenho da carcaça para o sistema eletrônico.................................... 71

Figura 4.34 – Resultado: Simulação do comportamento do fluido na parte interna da carcaça para diferentes condições sendo a velocidade de entrada do fluido gasosos (CO₂) igual a: a) 1m/s, b) 5m/s, c) 10m/s, e d) 20m/s... 72

Figura 4.35 – Comportamento da seletividade dos sensores de gás sendo: a) o comportamento do sensor de gás sulfídrico exposto a outros gases em função ao tempo; b) o sensor de dióxido de enxofre exposto a outros gases em função ao tempo; c) o sensor de monóxido de carbono exposto a outros gases em função ao tempo; e d) o sensor de dióxido de carbono exposto a outros gases em função ao tempo. ... 74
Figura 4.36 – Comportamento dos sensores de gás expostos ao biogás gerado em três biodigestores em função do tempo de resposta sendo: a) o sensor de gás sulfídrico; b) o sensor de dióxido de enxofre; c) o sensor de monóxido de carbono; e d) o sensor de dióxido de carbono.

Figura 4.37 – Resultado: Comportamento dos sensores de gás função do tempo de exposição ao biogás sendo: a) o sensor de gás sulfídrico; b) o sensor de dióxido de enxofre; c) o sensor de monóxido de carbono; e d) o sensor de dióxido de carbono.
LISTA DE TABELAS

Tabela 2.1 - Propriedades físico-químicas do gás sulfídrico (WHITE MARTINS, 2006). ... 6

Tabela 2.2 - Efeitos na saúde por exposição ao gás sulfídrico (adaptado de IVHHN, 2015). ... 6

Tabela 2.3 - Propriedades físico-químicas do dióxido de enxofre (WHITE MARTINS, 2015). ... 7

Tabela 2.4 - Efeitos na saúde por exposição ao dióxido de enxofre (adaptado de IVHHN, 2015). ... 8

Tabela 2.5 - Propriedades físico-químicas do monóxido de Carbono (LINDE, 2013)..... 10

Tabela 2.6 - Efeitos na saúde pela exposição do monóxido de Carbono (adaptado de MALHEIRO, 1991). ... 10

Tabela 2.7 – Propriedades físico-químicas do dióxido de Carbono (WHITE MARTINS, 2014). ... 12

Tabela 2.8 - Efeitos na saúde humana pela exposição em diversas concentrações de dióxido de carbono (adaptado de IVHHN, 2015). ... 13

Tabela 2.9 – Características principais das tecnologias convencionais para análises de gases. ... 15

Nesse contexto, visando à reengenharia, foi necessário o estudo dos fundamentos e conceitos teóricos dos dispositivos e dos elementos convencionais de medição e monitoramento de poluentes gasosos. ... 16

Tabela 2.10 – Tabela de legendas dos pinos de conexão do Microcontrolador PIC16F877A (MICROCHIP, 2003). ... 29

Tabela 4.1 - Produção Média Diária de Dejetos (kg), dejeto + Urina (kg) e dejeto diluído (L) por Animal por Fase (adaptado de Oliveira *et al.* 1993). ... 46

Tabela 4.2 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado alemão............................ 78

Tabela 4.3 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado australiano............................ 79

Tabela 4.4 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado brasileiro............................ 80

Tabela 4.5 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado coreano............................ 81
Tabela 4.6 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado norte-americano. 82
NOMENCLATURA

<table>
<thead>
<tr>
<th>Acronimo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D</td>
<td>Conversor análogo digital</td>
</tr>
<tr>
<td>AO</td>
<td>amplificador operacional</td>
</tr>
<tr>
<td>C_i</td>
<td>Capacitores i ($i=1...n$) μF</td>
</tr>
<tr>
<td>F_i</td>
<td>Fluxo i ($i=1...n$)</td>
</tr>
<tr>
<td>i_i</td>
<td>Corrente i ($i=1...n$) Amp</td>
</tr>
<tr>
<td>M.O.</td>
<td>Material orgânico</td>
</tr>
<tr>
<td>M.P.</td>
<td>Matéria prima</td>
</tr>
<tr>
<td>OSC</td>
<td>Oscilador</td>
</tr>
<tr>
<td>ppmV</td>
<td>Partes por milhão por volume ml/m³</td>
</tr>
<tr>
<td>RF</td>
<td>Rádio frequência</td>
</tr>
<tr>
<td>RG</td>
<td>resíduo gasoso</td>
</tr>
<tr>
<td>Ri</td>
<td>Resistência i ($i=1...n$) Ohm</td>
</tr>
<tr>
<td>RL</td>
<td>Resíduo líquido</td>
</tr>
<tr>
<td>RS</td>
<td>Resíduo sólido</td>
</tr>
<tr>
<td>Sen1</td>
<td>Sinal do sensor 1</td>
</tr>
<tr>
<td>Sen2</td>
<td>Sinal do sensor 2</td>
</tr>
<tr>
<td>Sen3</td>
<td>Sinal do sensor 3</td>
</tr>
<tr>
<td>Sen4</td>
<td>Sinal do sensor 4</td>
</tr>
<tr>
<td>USART</td>
<td>Transmissor-receptor série síncrono-assíncrono universal</td>
</tr>
<tr>
<td>V_a</td>
<td>Tensão de entrada Volt</td>
</tr>
<tr>
<td>V_{adc}</td>
<td>Tensão entregada pelo conversor análogo digital Volt</td>
</tr>
<tr>
<td>V_{alim}</td>
<td>Tensão de alimentação Volt</td>
</tr>
<tr>
<td>$V_{C1, C2}$</td>
<td>Tensão condicionada Volt</td>
</tr>
<tr>
<td>V_i</td>
<td>Tensão inicial Volt</td>
</tr>
<tr>
<td>V_{ref}</td>
<td>Tensão de referência Volt</td>
</tr>
</tbody>
</table>
TECNOLOGIA ALTERNATIVA PARA O MONITORAMENTO DE POLUENTES GASOSOS

AUTOR: ANDY AVIMAEL SAAVEDRA MENDOZA

ORIENTADOR: PROF. DR. CAMILO FREDDY MENDOZA MOREJON

Dissertação de Mestrado; Programa de Pós-Graduação em Engenharia Química; Universidade Estadual do Oeste do Paraná; Rua da Faculdade, 645; CEP: 85903-000 – Toledo – PR, Brasil, defendida em 29 de fevereiro de 2016. 93 p.

RESUMO

No Brasil e em particular na Região Oeste do Estado do Paraná várias são as atividades que emitem poluentes gasosos. De maneira específica, pela proximidade das áreas urbanas, a suinocultura, a bovinocultura, a avicultura, as estações de tratamento de efluentes e as indústrias de beneficiamento de resíduos de frigoríficos e de abate de suínos, bovinos, aves e peixes têm incomodado a população com o mau cheiro predominante dessas atividades. A qualificação e a quantificação das emissões gasosas são de extrema importância para o diagnóstico ambiental e também para o aproveitamento/tratamento/controle da emissão dos poluentes gasosos, pois a escolha dos métodos preventivos e também dos métodos corretivos dependem dessas informações. Nesse contexto, o objetivo geral do trabalho foi o desenvolvimento de uma tecnologia alternativa para o monitoramento transiente, remoto, individual ou simultâneo de poluentes gasosos entre eles o H2S, SO2, CO e CO2. Para essa finalidade a metodologia contemplou a realização de 4 etapas: 1) caracterização físico-química (qualitativa e quantitativa) dos poluentes gasosos e suas fontes de geração (propriedades da suinocultura e indústrias de processamento de resíduos de frigoríficos); 2) proposição/desenvolvimento/projeto/fabricação/montagem da tecnologia alternativa; 3) testes operacionais, na escala laboratorial e na condição real de operação; e 5) avaliação dos requisitos de novidade e proteção intelectual na forma de patente. O resultado do trabalho foi uma tecnologia alternativa para o monitoramento transiente de poluentes gasosos dotado dos seguintes atributos: realiza o monitoramento contínuo (minuto a
minuto) das concentrações de H₂S, SO₂, CO e CO₂; os resultados do monitoramento são apresentados em forma de tabelas e gráficos dinâmicos e podem ser visualizados, de forma remota, numa distância de 500 m por meio de um sistema de comunicação por radiofrequência (RF); por meio de um programa computacional com uma interface visual a tecnologia possibilita armazenar e exportar os dados monitorados para uma planilha de Excel; e por último, na existência da conexão a internet, a tecnologia permite também o envio dos dados monitorados de forma contínua, para um servidor virtual e dessa forma viabiliza o monitoramento remoto sem limites de distância entre o ponto de monitoramento e o ponto de visualização/tratamento dos dados. De acordo com os resultados apresentados anteriormente e com base das características de caráter técnico e construtivo, a tecnologia alternativa desenvolvida foi objeto de patenteamento junto ao Instituto Nacional de Propriedade Industrial-INPI.

Palavras-chave: Monitoramento, poluentes gasosos, indústria, gás sulfídrico, dióxido de carbono.
ABSTRACT

In Brazil and in particular in the State of Paraná West Region there are several activities that emit gaseous pollutants. Specifically, the proximity of urban areas, pig farming, cattle raising, poultry, the wastewater treatment plants and processing industries of refrigerators waste and slaughter of pigs, cattle, poultry and fish have bothered the population the bad smell prevalent these activities. The qualification and quantification of gaseous emissions are of extreme importance for the environmental assessment and also to the use/treatment/control the emission of gaseous pollutants, because the choice of prevention methods and also the corrective methods depend on this information. In this context, the general objective of this study was to development an alternative technology for transient monitoring, remote, individual or simultaneous gaseous pollutants including H2S, SO2, CO and CO2. For this purpose the methodology included the realization of 4 steps: 1) Physical and chemical characterization (qualitative and quantitative) of gaseous pollutants and their sources of generation (properties of pig farming and refrigerators waste processing industries); 2) proposition/development/ design/manufacturing/assembly of alternative technology; 3) operational tests in laboratory scale and in real operating condition; and 5) evaluation of the requirements of novelty and intellectual property protection in the form of patent. The result of the work was an alternative technology for transient monitoring of gaseous equipped with the following attributes: performs continuous monitoring (every minute) concentrations of H2S, SO2, CO and CO2; The monitoring results are presented in tables and graphs and dynamic can be viewed remotely at a distance of 500 m by means of a communication radio frequency (RF) system; by means of a computer program with a visual interface technology enables storing and
exporting the monitored data to an Excel spreadsheet; and lastly, the existence of the Internet connection, the technology also allows the sending of data monitored continuously, to a virtual server and thus enables remote monitoring with unlimited distance between the point of monitoring and viewing point / data processing. According to the results presented above and based on the technical and constructive character features, the alternative technology developed was patenting object at the National Institute of Industrial Property-INPI.

Keywords: Monitoring, gaseous pollutants, industry, hydrogen sulfide, carbon of dioxide.
CAPÍTULO 1 - INTRODUÇÃO

1.1. Contextualização

De acordo com os últimos reportes, o Brasil conta com 329 mil atividades industriais, sendo as mais importantes às indústrias de alimentos, de petróleo e siderúrgicas. Do 100% das atividades industriais nacionais, 13,98% (45.988 atividades industriais) se encontram no estado do Paraná, os quais estão distribuídos nas áreas urbanas, rurais e industriais.

Uma das características comuns das atividades industriais e agroindustriais é a geração de resíduos sólidos, líquidos e gasosos. Por sua vez os sistemas de tratamento e aproveitamento dos resíduos sólidos, líquidos e gasosos se constituem também em fontes secundárias de geração de resíduos.

De todos os tipos de resíduos, os poluentes gasosos se constituem num dos principais responsáveis pelo comprometimento da qualidade do ar e da qualidade de vida da população. Na região Oeste do Paraná, em função da localização, direção do vento, e geração do mau cheiro proveniente das atividades da suinocultura, bovinocultura, avicultura, estações de tratamento de efluentes e as indústrias de processamento de carnes têm incomodado a população vizinha.

De acordo com o exposto, os resíduos gasosos necessitam de uma caracterização qualitativa e quantitativa, de preferência de maneira contínua, com o menor custo e esforço, para diversas finalidades, assim: para identificar o grau de periculosidade das emissões gasosas; para identificar o grau de insalubridade das emissões gasosas; para identificar o potencial de contaminação dos corpos receptores; para o atendimento da legislação ambiental; para a escolha e desenvolvimento do melhor processo de tratamento; para avaliar a eficiência dos processos produtivos (fontes geradoras); para identificar o valor comercial e industrial dos componentes que fazem parte das emissões gasosas; e para escolher ou desenvolver métodos, processos e tecnologias para o aproveitamento das emissões gasosas.

Para essa finalidade foi identificada a existência de tecnologias convencionais de bancada e de uso portátil.
Entre os equipamentos de bancada, os mais importantes são os cromatógrafos de gases, espectrômetros de massas e os espectrômetros Uv-Vis. Estas tecnologias permitem a análise de gases com elevada precisão, porém não oferecem praticidade na medição e análise contínuo dos gases e, além do mais, requerem mão de obra especializada para a utilização desses equipamentos. Outros agravantes são: o custo do equipamento e o custo operacional.

Entre as tecnologias convencionais portáteis encontram-se as tecnologias que utilizam um sistema de detecção baseada no uso de sensores catalíticos, eletroquímicos, e semicondutores. Estas tecnologias permitem a análise de gases de forma prática, contínua, e não requerem de mão de obra especializada para a sua utilização, porém estas tecnologias têm um elevado custo e na maioria dos casos possuem um sistema de monitoramento definido, o qual não pode ser modificado (seja no tempo de monitoramento, armazenamento de dados e outros) e também, na maioria dos casos, carecem de um sistema de monitoramento remoto.

Nesse contexto, é imprescindível o desenvolvimento de novas tecnologias para monitoramento de poluentes gasosos.

1.2. Objetivos

O objetivo geral do trabalho foi o desenvolvimento de uma tecnologia alternativa para o monitoramento transiente, remoto, individual ou simultâneo de poluentes gasosos, entre eles H₂S, SO₂, CO e CO₂.

Os objetivos específicos do trabalho foram:

- A caracterização físico-química (qualitativa e quantitativa) dos poluentes gasosos e suas fontes de geração (propriedades da suinocultura e indústrias de processamento de resíduos de frigoríficos);

- A prospecção tecnológica de sistemas de monitoramento de poluentes gasosos (estado da arte);
- A proposição, desenvolvimento, projeto, fabricação, montagem e codificação dos programas computacionais de interface de uma tecnologia alternativa para o monitoramento transiente e remoto de poluentes gasosos; e

- A operacionalização e testes experimentais na escala laboratorial e também na condição real de operação.

1.3. Definição do Escopo do Estudo

Embora os poluentes gasosos contenham vários componentes, sejam eles compostos sulfurosos, compostos nitrogenados, aldeídos e/ou cetonas, neste trabalho, limitou-se ao desenvolvimento de uma tecnologia alternativa para o monitoramento transiente, remoto, individual ou simultâneo de gás sulfídrico (H₂S), dióxido de enxofre (SO₂), monóxido de carbono (CO) e dióxido de carbono (CO₂).
CAPÍTULO 2. REFERENCIAL TEÓRICO

Para o atendimento dos objetivos do trabalho o referencial teórico compreendeu o estudo de conceitos e fundamentos da física, da química, da engenharia química, da eletrônica, das linguagens de programação computacional (software e hardware) e da ciência dos materiais, especificamente a revisão da teórica compreendeu: a) o levantamento de informações dos poluentes gasosos em estudo, em cada caso sendo explicitadas a sua forma de geração, suas características, suas propriedades físicas e químicas, o grau de toxicidade, periculosidade, insalubridade, a sua interação com outros materiais, aplicações e os limites de emissão e tolerância; b) o estudo das opções tecnológicas (métodos, processos e tecnologias) para o monitoramento transiente dos poluentes gasosos em estudo; c) o estudo dos fundamentos teóricos dos dispositivos e elementos convencionais de medição e monitoramento de poluentes gasosos; e d) a apresentação das bases teóricas para o desenvolvimento da tecnologia alternativa de monitoramento transiente de poluentes gasosos industriais.

2.1. Poluentes gasosos em estudo

O ar constitui um dos elementos básicos de todo ser vivo e desde tempos remotos a humanidade é exposta aos perigos que representa uma atmosfera contaminada, seja ela resultante de um processo natural ou resultante de um processo artificial. Com a chegada da era industrial o problema da contaminação atmosférica aumentou à sua máxima magnitude. A maioria das atividades industriais, de maneira direta ou indireta, emitem vários tipos de contaminantes atmosféricos. Em geral esse conjunto de gases pode conter compostos sulfurosos, compostos nitrogenados, aldeídos e cetonas e conforme definido no escopo do presente trabalho, o estudo se limitou especificamente ao monitoramento do gás sulfídrico (H$_2$S), dióxido de enxofre (SO$_2$), monóxido de carbono (CO) e dióxido de carbono (CO$_2$). Na sequência, para cada caso, são explicitadas a sua forma de geração, suas características, propriedades físicas e químicas, grau de toxicidade, periculosidade, insalubridade, a sua interação com outros materiais, aplicações e seus limites de emissão e tolerância.
2.1.1. Gás Sulfídrico (H$_2$S)

Segundo a Agencia para Sustâncias Tóxicas e Registro de Enfermidades dos EUA (ATSDR, 2006) o gás sulfídrico pode ser produzido de forma natural a partir do petróleo cru, gás natural, gases que são emitidos por vulcões e a partir da degradação da matéria orgânica. Pode também ser produzido a partir de atividades industriais tais como o processamento de alimentos, usinas de carvão, fornos de carvão, indústrias produtoras de papel de alta resistência e em refinarias de petróleo.

Segundo MAINIER & VIOLA (2005), o gás sulfídrico pode ser gerado a partir dos processos de remoção química, a partir de processos de lavagens de gases ácidos, a partir dos sistemas de tratamento de efluentes e a partir de processos de fermentação.

As reações químicas apresentadas nas Equações 1, 2, 3, 4, e 5, representam alguns processos de geração de gás sulfídrico em diversos processos industriais.

\[
CaS + 2HCl \rightarrow CaCl_2 + H_2S \quad \text{Eq. 1}
\]

\[
FeS + 2HCl \rightarrow FeCl_2 + H_2S \quad \text{Eq. 2}
\]

\[
CuS + H_2SO_4 \rightarrow CuSO_4 + H_2S \quad \text{Eq. 3}
\]

\[
CH_4 + 4S \rightarrow CS_2 + 2H_2S \quad \text{Eq. 4}
\]

\[
4Na_2SO_3 + 2H_2O \rightarrow 3Na_2SO_4 + 2NaOH + H_2S \quad \text{Eq. 5}
\]

O gás sulfídrico à temperatura ambiente e a pressão atmosférica se encontra em estado gasoso, é um gás incolor, é inflamável, é solúvel em água e o cheiro característico do H$_2$S é parecido ao cheiro de ovos podres. As propriedades físico-químicas do H$_2$S são apresentadas na Tabela 2.1.

Segundo a WHITE MARTINS (2006), o gás sulfídrico é um produto químico que pode reagir e entrar em combustão instantânea, quando se encontra em contato com as seguintes substâncias: amônia, pentafluoreto de bromo, trifluoreto de cloro, trióxido de cromo, cobre, flúor, chumbo, óxido de chumbo, mercúrio, ácido nítrico, trifluoreto de nitrogênio, sulfeto de nitrogênio, compostos orgânicos, agentes oxidantes, difluoreto de oxigênio, borracha, sódio, umidade e água.
Tabela 2.1 - Propriedades físico-químicas do gás sulfídrico (WHITE MARTINS, 2006).

<table>
<thead>
<tr>
<th>Propriedades físico-químicas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponto de fusão</td>
<td>-82,9 ºC</td>
</tr>
<tr>
<td>Calor molar específico, gás a 101,325 kPa e 25 ºC (p=cte.)</td>
<td>34,1038 J mol⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Calor molar específico, gás a 101,325 kPa e 25 ºC (v=cte.)</td>
<td>25,8898 J mol⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Densidade relativa, gás a 101,325 kPa e 15 ºC (ar=1)</td>
<td>1,189</td>
</tr>
<tr>
<td>Fator de compressibilidade</td>
<td>0,284</td>
</tr>
<tr>
<td>Massa molar</td>
<td>34,08 g mol⁻¹</td>
</tr>
<tr>
<td>Ponto de ebulição a 101,325 kPa</td>
<td>-60,2 ºC</td>
</tr>
<tr>
<td>Pressão crítica</td>
<td>8963 kPa</td>
</tr>
<tr>
<td>Pressão de vapor a -60,4 ºC</td>
<td>101,325 kPa</td>
</tr>
<tr>
<td>Razão do calor específico, gás a 101,325 kPa e 25 ºC, Cp/Cv</td>
<td>1,32</td>
</tr>
<tr>
<td>Solubilidade em água a 101,325 kPa e 20 ºC</td>
<td>38 kg H₂S por m³ de água</td>
</tr>
<tr>
<td>Temperatura crítica</td>
<td>373,5 K</td>
</tr>
<tr>
<td>Temperatura de Auto-ignição; 101,326 kPa</td>
<td>533,15 ºC</td>
</tr>
<tr>
<td>Volume crítico</td>
<td>0,0985 dm³ mol⁻¹</td>
</tr>
</tbody>
</table>

O gás sulfídrico possui diversas aplicações, tais como: a) na produção de compostos orgânicos do tipo metanotiol, etanotiol, e ácido tioglicólico; b) na degradação de biopolímeros; c) na análise qualitativa de íons metálicos; d) na produção de sulfetos metálicos; e) na separação do óxido de deutério, através do processo de Girdler; f) na indústria de celulose nos processos Kraft; e g) na indústria de couro como agente depilante.

Segundo PANTOJA FILHO (2008), o gás sulfídrico, devido a sua elevada toxicidade, corrosividade, odores indesejáveis e alta demanda de oxigênio é considerado veneno de amplo espectro, pois pode causar diversos danos se lançado diretamente ao meio ambiente. Segundo IVHHN (2015) o gás sulfídrico é um gás tóxico e o perigo à saúde depende do tempo de exposição e da concentração. Na Tabela 2.2 são apresentados os efeitos na saúde pela exposição ao gás sulfídrico.

Tabela 2.2 - Efeitos na saúde por exposição ao gás sulfídrico (adaptado de IVHHN, 2015).

<table>
<thead>
<tr>
<th>%H₂S(ppmV)</th>
<th>Efeitos na saúde</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,002-0,005(20-50)</td>
<td>Produz irritação nos olhos.</td>
</tr>
<tr>
<td>0,005(50)</td>
<td>A exposição prolongada pode causar faringite e bronquite.</td>
</tr>
<tr>
<td>0,006(60)</td>
<td>A exposição prolongada pode causar conjuntivite e dor ocular.</td>
</tr>
<tr>
<td>0,015(150)</td>
<td>Produz irritação no trato respiratório e perda do olfato.</td>
</tr>
<tr>
<td>0,025(250)</td>
<td>Produz um edema pulmonar, com risco de morte.</td>
</tr>
<tr>
<td>0,05(500)</td>
<td>Muito perigoso.</td>
</tr>
<tr>
<td>0,1(1000)</td>
<td>Provoca perda de consciência</td>
</tr>
<tr>
<td>0,1-0,2(1000-2000)</td>
<td>Provoca intoxicação aguda apresentando: respiração rápida, náuseas, vômitos, seguido de uma perda de consciência, coma e cessação da respiração.</td>
</tr>
<tr>
<td>0,2(2000)</td>
<td>Perda imediata dos sentidos e alta probabilidade de morte.</td>
</tr>
</tbody>
</table>

No Brasil, o Ministério de Emprego e Trabalho, por meio do anexo 11, norma nº. 15 (NR-15), impõe que o limite de tolerância de gás sulfídrico permitida no ambiente de trabalho é até 8 ppmV (12 mg/m³) num período de trabalho de 48 horas semanais.
2.1.2. Dióxido de Enxofre (SO$_2$)

Segundo a Secretaria do Meio Ambiente e Patrimônio do Governo Australiano (DEWHA, 2005) o 99% do dióxido de enxofre (SO$_2$) no ar é produzido a partir de atividades industriais. As principais fontes para a emissão de SO$_2$ no ar vêm de processos de geração de eletricidade a partir da queima de combustíveis fósseis (queima do carvão, óleo ou gás) que contem enxofre na sua composição (EPA, 2014). Segundo a IVHHN (2015) o SO$_2$ é também um dos gases comumente gerados durante as erupções vulcânicas.

O dióxido de enxofre à temperatura ambiente e à pressão atmosférica se encontra em estado gasoso, é um gás incolor, não é inflamável, é solúvel em água e o cheiro é pungente e asfixiante. As propriedades físico-químicas do SO$_2$ são apresentadas na Tabela 2.3.

Tabela 2.3 - Propriedades físico-químicas do dióxido de enxofre (WHITE MARTINS, 2015).

<table>
<thead>
<tr>
<th>Propriedades físico-químicas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calor latente de fusão a 197,31 °C</td>
<td>7,401 kJ mol$^{-1}$</td>
</tr>
<tr>
<td>Calor molar específico, gás a 101,325 kPa e 25 °C (p=cte.)</td>
<td>39,884 J mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Calor molar específico, gás a 101,325 kPa e 25 °C (v=cte.)</td>
<td>30,932 J mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Condutividade térmica, gás a 101,325 kPa e 15 °C</td>
<td>0,0088W m$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>Constan te dielétrica, gás a 101,325 kPa e 20 °C</td>
<td>1,0093</td>
</tr>
<tr>
<td>Densidade absoluta, gás a 101,325 kPa e 25 °C</td>
<td>2,668 kg m$^{-3}$</td>
</tr>
<tr>
<td>Densidade crítica</td>
<td>0,525 kg m$^{-3}$</td>
</tr>
<tr>
<td>Densidade relativa, gás a 101,325 kPa e 25 °C (ar=1)</td>
<td>2,263</td>
</tr>
<tr>
<td>Densidade do líquido a -10 °C</td>
<td>1,462 g L$^{-1}$</td>
</tr>
<tr>
<td>Fator de compressibilidade</td>
<td>0,268</td>
</tr>
<tr>
<td>Massa molar</td>
<td>64,064 g mol$^{-1}$</td>
</tr>
<tr>
<td>Ponto de ebulição a 101,325 kPa</td>
<td>263,134 K</td>
</tr>
<tr>
<td>Pressão crítica</td>
<td>7884 kPa</td>
</tr>
<tr>
<td>Pressão de vapor a 21,1 °C</td>
<td>339 kPa</td>
</tr>
<tr>
<td>Pressão no ponto triplo</td>
<td>1,67 kPa</td>
</tr>
<tr>
<td>Razão do calor específico, gás a 101,325 kPa e 25 °C, Cp/Cv</td>
<td>1,29</td>
</tr>
<tr>
<td>Solubilidade em água a 0 °C e 101,325 kPa</td>
<td>0,228 kg SO$_2$ kg$^{-1}$ de água</td>
</tr>
<tr>
<td>Temperatura crítica</td>
<td>430,75 K</td>
</tr>
<tr>
<td>Temperatura no ponto triplo</td>
<td>263,134 K</td>
</tr>
<tr>
<td>Viscosidade, gás a 101,325 kPa e 10 °C</td>
<td>0,01200 mPa</td>
</tr>
<tr>
<td>Volume crítico</td>
<td>1,904 dm3 kg$^{-1}$</td>
</tr>
</tbody>
</table>

Segundo a CHENTRADE (2015) e a GASOXY (2012), o dióxido de enxofre pode reagir quando se encontra em contato com as seguintes substâncias: umidade, fluoreto, trifluoreto de cloro, cloratos, alumínio em pó, zinco, manganês, metais alcalinos, nitratos metálicos, óxidos metálicos, óxido de estanho, sódio e inflamáveis.
O dióxido de enxofre possui diversas aplicações, tais como: na extração de solvents de óleos lubrificantes; como preservante de cervejas, vinhos e alimentos; na fabricação de papel sulfite na indústria de papel e celulose; como reagente em sínteses químicas; como agente refrigerante na indústria de gelo; como desinfetante; e como fumigante.

Segundo IVHHN (2015) o dióxido de enxofre é um gás tóxico que produz problemas respiratórios, e o perigo da saúde depende do tempo de exposição e concentração. Na Tabela 2.4 são apresentados os efeitos na saúde quando um ser humano se expõe ao dióxido de enxofre.

<table>
<thead>
<tr>
<th>%SO₂(ppmV)</th>
<th>Efeitos na saúde</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0006 (6)</td>
<td>Produz irritação imediata nos olhos, nariz e garganta.</td>
</tr>
<tr>
<td>0,001(10)</td>
<td>Produz maior irritação nos olhos, nariz e garganta.</td>
</tr>
<tr>
<td>0,001-0,0015(10-15)</td>
<td>Limite de exposição prolongada.</td>
</tr>
<tr>
<td>0,002(20)</td>
<td>Uma exposição prolongada produz paralise e morte.</td>
</tr>
</tbody>
</table>

De acordo com os últimos dados disponibilizados pela IAP, no mês de julho de 2015, na cidade de Curitiba/Pr a concentração de dióxido de enxofre no ar alcançou uma média de 0,53 ppmV nas proximidades das estações de monitoramento ambiental. A Figura 2.1 apresenta a média do crescimento mensal da concentração de dióxido de enxofre desde janeiro até julho de 2015.

Figura 2.1 - Média do Crescimento Mensal da Concentração de dióxido de enxofre nas Estações de Monitoramento da IAP, 2015 (IAP, 2015).
No Brasil, em particular no Estado do Paraná, conforme Resolução SEMA 016/2014, a qualidade do ar alcança um nível de emergência quando a concentração máxima média de SO₂ atinge 0,74 ppmV em 24 horas.

2.1.3. Monóxido de Carbono (CO)

O monóxido de carbono (CO) é um gás que pode ser gerado mediante a combustão incompleta de combustíveis (gás natural, lenha, materiais orgânicos), na produção de carvão vegetal, principalmente na etapa de carbonização e também pela emissão veicular.

Segundo a CETESB (2014), os veículos leves são as principais fontes de emissão de monóxido de carbono e aqueles automóveis movidos a gasolina contribuem com 44% de geração de CO. ROSA et al. (2012) identificaram que a emissão de monóxido de carbono na combustão varia altamente em função do tipo de combustível: a combustão do diesel produz uma média de 782 ppmV de CO; o biodiesel com base de óleo de soja bruto produz uma média de 754 ppmV de CO; o biodiesel com base de óleo de soja refinado produz uma média de 404 ppmV de CO; e o biodiesel com base de óleo residual de fritura produz 268 ppmV de CO. Segundo GHOBADIAN et al. (2009), o biodiesel possui oxigênio na sua estrutura molecular e este oxigênio, de certa forma, ajuda na combustão produzindo menores quantidades de emissão de CO.

O monóxido de carbono á temperatura ambiente e à pressão atmosférica se encontra em estado gasoso, é um gás incolor, inodoro, pode reagir violentamente com óxidos e em níveis elevados. As propriedades físico-químicas do CO são apresentadas na Tabela 2.5.

Segundo LINDE (2013), o monóxido de carbono pode reagir violentamente com agentes oxidantes, ferro, borracha natural, neopreno e níquel. Em contato com ar ou oxigênio o CO pode formar uma mistura explosiva.

Segundo a GAMAGASES (2005), o monóxido de carbono é utilizado em muitos processos industriais, tais como: a) como agente redutor, para a eliminação de oxigênio, por meio da formação de CO₂; b) em processos de recuperação/purificação de níquel a partir de mineiros de ferro; e c) também é utilizado na fabricação de catalisadores especiais para a síntese de hidrocarbonetos e na hidrogenação de óleos e gorduras.
Tabela 2.5 - Propriedades físico-químicas do monóxido de Carbono (LINDE, 2013)

<table>
<thead>
<tr>
<th>Propriedades físico-químicas</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calor de combustão, gás a 25 ºC, pressão constante.</td>
<td>282,989 kJ mol⁻¹</td>
</tr>
<tr>
<td>Calor latente de fusão a -205,1 ºC</td>
<td>835,54 J mol⁻¹</td>
</tr>
<tr>
<td>Calor latente de vaporização a -191,5 ºC</td>
<td>6,040 kJ mol⁻¹</td>
</tr>
<tr>
<td>Calor latente de transição a -211,5 ºC</td>
<td>633,04 J mol⁻¹</td>
</tr>
<tr>
<td>Calor molar específico, gás a 101,325 kPa e 25 ºC (P=cte.)</td>
<td>29,204 J mol⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Calor molar específico, gás a 101,325 kPa e 25 ºC (V=cte.)</td>
<td>20,794 J mol⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Condutividade térmica, gás a 101,325 kPa e 0 ºC</td>
<td>0,0232 W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Constante dielétrica, gás a 101,325 kPa e 27 ºC</td>
<td>1,0029</td>
</tr>
<tr>
<td>Densidade absoluta, gás a 101,325 kPa e 27 ºC</td>
<td>1,2504 kg m⁻³</td>
</tr>
<tr>
<td>Densidade crítica</td>
<td>0,301 kg m⁻³</td>
</tr>
<tr>
<td>Densidade relativa, gás a 101,325 kPa (ar=1)</td>
<td>0,967</td>
</tr>
<tr>
<td>Densidade do líquido a -191,5 ºC</td>
<td>0,789 kg L⁻¹</td>
</tr>
<tr>
<td>Fator de compressibilidade</td>
<td>0,295</td>
</tr>
<tr>
<td>Limites de inflamabilidade no ar</td>
<td>12,5-74,2 % (molar)</td>
</tr>
<tr>
<td>Massa molar</td>
<td>28,0104 g mol⁻¹</td>
</tr>
<tr>
<td>Ponto de ebulição a 101,325 kPa</td>
<td>81,63 K</td>
</tr>
<tr>
<td>Pressão Crítica</td>
<td>3499 kPa</td>
</tr>
<tr>
<td>Pressão no ponto tripo</td>
<td>15,3 kPa</td>
</tr>
<tr>
<td>Razão do calor específico, gás a 101,325 kPa e 25 ºC, Cp/Cv</td>
<td>1,404</td>
</tr>
<tr>
<td>Solubilidade em água 0 ºC a 101,325 kPa</td>
<td>3,537 cm³ em 100 cm³ de água</td>
</tr>
<tr>
<td>Temperatura crítica</td>
<td>132,92 K</td>
</tr>
<tr>
<td>Temperatura de auto-ignição</td>
<td>925,2 K</td>
</tr>
<tr>
<td>Temperatura no ponto tripo</td>
<td>68,14 K</td>
</tr>
<tr>
<td>Viscosidade, gás a 101,325 kPa a 0 ºC</td>
<td>0,01657 mPa</td>
</tr>
<tr>
<td>Volume crítico</td>
<td>3,322 dm³kg⁻¹</td>
</tr>
</tbody>
</table>

Segundo DIAZ (2011) a hemoglobina do sangue tem maior afinidade com o monóxido de carbono numa relação de 200 a 250 vezes comparado com o oxigênio. A absorção de monóxido de carbono no sangue forma um composto chamado carboxiemoglobinemia. MALHEIRO (1991) indica que os efeitos da toxicidade do monóxido de carbono estão diretamente relacionados com a formação de carboxiemoglobinemia no sangue. Na Tabela 2.6 se apresenta os efeitos na saúde quando um ser humano se expõe a elevadas concentrações de monóxido de carbono.

Tabela 2.6 - Efeitos na saúde pela exposição do monóxido de Carbono (adaptado de MALHEIRO, 1991).

<table>
<thead>
<tr>
<th>% de CO (ppmV)</th>
<th>Efeitos na saúde</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,02(200)</td>
<td>Produz pequenos dores de cabeça.</td>
</tr>
<tr>
<td>0,05(500)</td>
<td>Produz dor de cabeça, tontura e náuseas.</td>
</tr>
<tr>
<td>0,08(800)</td>
<td>Produz dor de cabeça, tontura, náuseas, e perda da consciência.</td>
</tr>
<tr>
<td>0,16-0,64(1600-6400)</td>
<td>Produz deficiência auditiva, náuseas, vômitos, perda de consciência, e morte.</td>
</tr>
<tr>
<td>1,28(12800)</td>
<td>Produz perda de consciência, e morte.</td>
</tr>
</tbody>
</table>
De acordo com dados disponibilizados pelo IAP, no mês de julho de 2015, em Curitiba, a concentração de monóxido de carbono no ar alcançou uma média de 8,41ppmV nas estações de monitoramento ambiental. A Figura 2.2 apresenta a média do crescimento mensal da concentração de monóxido de carbono desde janeiro até julho de 2015 nas estações de monitoramento de Curitiba-PR.

![Gráfico de Barras](image)

Figura 2.2 - Média do Crescimento Mensal da Concentração de Monóxido de Carbono nas Estações de Monitoramento de Curitiba, 2015 (IAP, 2015).

No Brasil e em particular no Estado do Paraná a Resolução SEMA 016/2014 determina que a qualidade do ar alcança um nível de emergência quando a concentração máxima média é maior o igual a 37 ppmV de CO em 6 horas.

2.1.4. Dióxido de Carbono (CO2)

O dióxido de carbono (CO2) é um gás que pode ser gerado por meio da combustão completa ou incompleta de combustíveis (gás natural, lenha, carvão, etc) ou pela síntese resultante de processos fermentativos ou de decomposição de materiais orgânicos (M.O.).

A equação 6 apresenta a combustão completa da transformação de hidrocarbonetos e/ou matéria orgânica para a geração do dióxido de carbono.

\[M.O. + O_2 \rightarrow CO_2 + H_2O \]

Eq. 6

Conforme reação química das equações 7 e 8 a combustão incompleta também pode gerar o CO2.
\[M.O. + O_2 \rightarrow CO + H_2O \] \hspace{1cm} \text{Eq. 7} \\
\[CO + \frac{1}{2} O_2 \rightarrow CO_2 \] \hspace{1cm} \text{Eq. 8}

O CO₂ à temperatura ambiente e à pressão atmosférica se encontra em estado gasoso, o dióxido de carbono é um gás incolor, inodoro, não é inflamável e tem um sabor levemente ácido. As propriedades físico-químicas do CO₂ são apresentadas na Tabela 2.7.

Tabela 2.7 – Propriedades físico-químicas do dióxido de Carbono (WHITE MARTINS, 2014).

<table>
<thead>
<tr>
<th>Propriedades físico-químicas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calor latente de fusão a -56,6 °C e 518 kPa</td>
<td>7,95 kJ mol⁻¹</td>
</tr>
<tr>
<td>Calor latente de sublimação a -78,45 °C e 101,325 kPa</td>
<td>25,23 kJ mol⁻¹</td>
</tr>
<tr>
<td>Calor molar específico, gás a 101,325 kPa e 20 °C pressão constante</td>
<td>37,564 J mol⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Calor molar específico, gás a 101,325 kPa e 20 °C volume constante</td>
<td>28,541 J mol⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Condutividade térmica, gás a 101,325 kPa e 26,85 °C</td>
<td>0.0166 W m⁻¹ K⁻¹</td>
</tr>
<tr>
<td>Densidade absoluta, gás a 101,325 kPa e 0 °C</td>
<td>1,9770 kg m⁻³</td>
</tr>
<tr>
<td>Densidade crítica</td>
<td>0,468 kg m⁻³</td>
</tr>
<tr>
<td>Densidade relativa, gás a 101,325 kPa e 0 °C (ar=1)</td>
<td>1,53</td>
</tr>
<tr>
<td>Densidade do líquido a 25 °C; 6430 kPa</td>
<td>0,713 kg L⁻¹</td>
</tr>
<tr>
<td>Fator de compressibilidade</td>
<td>0,274</td>
</tr>
<tr>
<td>Massa molar</td>
<td>44,011 g mol⁻¹</td>
</tr>
<tr>
<td>Ponto de ebulição a 101,325 kPa</td>
<td>194,7 K</td>
</tr>
<tr>
<td>Pressão crítica</td>
<td>7381,5 kPa</td>
</tr>
<tr>
<td>Pressão de vapor a 21,1 °C</td>
<td>5824 kPa</td>
</tr>
<tr>
<td>Pressão no ponto triplo</td>
<td>517,97 kPa</td>
</tr>
<tr>
<td>Razão do calor específico, gás a 101,325 kPa e 20 °C, Cp/Cv</td>
<td>1,316</td>
</tr>
<tr>
<td>Solubilidade em água 0 °C a 101,325 kPa</td>
<td>0,759 cm³ em 1 cm³ de água</td>
</tr>
<tr>
<td>Temperatura crítica</td>
<td>304,19 K</td>
</tr>
<tr>
<td>Temperatura no ponto triplo</td>
<td>216,55 K</td>
</tr>
<tr>
<td>Viscosidade, gás a 101,325 kPa e 26,85 °C</td>
<td>0,01501 mPa</td>
</tr>
<tr>
<td>Volume crítica</td>
<td>2,137 dm³ kg⁻¹</td>
</tr>
</tbody>
</table>

Segundo a WHITE MARTINS (2014), o dióxido de carbono pode reagir com metais alcalinos, metais alcalino-terrosos, acetilenos, cromo, titânio acima de 550 °C, urânio acima de 750 °C e com magnésio acima de 775 °C.

Segundo a GAMAGASES (2005), o dióxido de carbono pode ser utilizado em equipamentos de refrigeração, na produção de gelo seco para preservar alimentos, como agente extintor; na neutralização de efluentes alcalinos e também é utilizado na área laboratorial para análises químicas.

Segundo MOTA et al. (2014), o dióxido de carbono também é utilizado na carbonatação de bebidas, na produção da uréia (reação entre CO₂ e amônia) usada como
fertilizante e na produção de metanol, por meio da hidrogenação do dióxido de carbono em presença de catalisadores a base de cobre e zinco.

A concentração de dióxido de carbono no ar varia desde 0,03 até 0,05 % (300 até 500 ppmV). Segundo IVHHN (2015), o dióxido de carbono é um gás tóxico quando se encontra a elevadas concentrações. Na Tabela 2.8 são apresentados os efeitos na saúde devido a exposição de um ser humano em diversas concentrações de dióxido de carbono.

Tabela 2.8 - Efeitos na saúde humana pela exposição em diversas concentrações de dióxido de carbono (adaptado de IVHHN, 2015).

<table>
<thead>
<tr>
<th>%CO₂(ppmV)</th>
<th>Efeitos na saúde</th>
</tr>
</thead>
<tbody>
<tr>
<td>5(5000)</td>
<td>A respiração torna-se pesada e o pulso se acelera.</td>
</tr>
<tr>
<td>7,5(7500)</td>
<td>Produz dores de cabeça, agitação, falta de ar, aumento da frequência cardíaca e da pressão arterial, e distorção visual.</td>
</tr>
<tr>
<td>10(1000)</td>
<td>Produz deficiência auditiva, náuseas, vômitos, e perda de consciência.</td>
</tr>
<tr>
<td>30(30000)</td>
<td>Produz convulsões e morte.</td>
</tr>
</tbody>
</table>

A Figura 2.4 apresenta o comportamento mensal da concentração de dióxido de carbono desde o 2010 até o 2014.

![Gráfico da Figura 2.4]

Figura 2.4 - Média do Crescimento Mensal da Concentração de Dióxido de Carbono no Observatório Mundial de Mauna Loa, 2010-2014 (NOAA/ESRL, 2015).

No Brasil, segundo o Ministério de Emprego e Trabalho, no anexo 11, norma regulamentadora n. 15 (NR-15), impõe-se como limite de tolerância do dióxido de carbono no ambiente de trabalho em até 3.900 ppmV (7.020 mg m⁻³) correspondente ao período de trabalho de 48 horas semanais.

2.2. Métodos, processos e tecnologias convencionais para monitoramento transiente dos poluentes gasosos em estudo

Segundo SKOOG *et al.* (2006) a química analítica surgiu para atender as demandas de caracterização de materiais em diversas áreas do conhecimento.

No campo analítico de elementos e compostos químicos gasosos existe uma grande variedade de equipamentos que possibilitam a realização de vários tipos de análise como os espectrômetros Uv-Vis, espectrômetros de massa, cromatógrafos, e equipamentos portáteis de medição baseados em sensores eletrônicos.

HIGARASHI *et al.* (2010), mencionam que existem inúmeras metodologias para quantificar a emissão de gases, porém, essas metodologias variam em termos da complexidade, do custo e da precisão analítica. Esse mesmo autor menciona que não existe um consenso com relação a um método padrão para realizar a análise de gases.

Na sequência apresenta-se o estudo das opções tecnologias para o monitoramento transiente de poluentes gasosos (métodos, processo e tecnologias).
Devido ao avanço tecnológico hoje existem vários tipos de equipamentos portáteis para análises químicas de gases. Fabricantes como a DRAEGUER, ODALOG, INSTRUMENT, HIGMED, e a SENKO, vêm desenvolvendo analisadores de gases portáteis. A Tabela 2.9 apresenta um resumo das características principais de todas as tecnologias convencionais.

Tabela 2.9 – Características principais das tecnologias convencionais para análises de gases.

<table>
<thead>
<tr>
<th>Característica</th>
<th>DRAEGUER X-am 7000</th>
<th>ODALOG OdaLog Type L2</th>
<th>INSTRUMENT DG-500</th>
<th>HIGMED HM-864</th>
<th>SENKO SP12C7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faixa de detecção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permite a medição de 5 tipos de gases de maneira simultânea</td>
<td>Permite a medição de 4 tipos de gases de maneira simultânea</td>
<td>Pode identificar e quantificar as concentrações de gás sulfído (H₂S) numa faixa de detecção de 0 até 100 ppmV, metano (CH₄) de 0 até 100 %v/v, monóxido de carbono (CO) de 0 até 1000 ppmV e atmosfera explosiva (EX) numa faixa de medição de 0 até 100 %v/v.</td>
<td>Pode identificar e quantificar as concentrações de gás sulfído (H₂S) numa faixa de detecção de 0 até 100 ppmV, metano (CH₄) de 0 até 100 %v/v, monóxido de carbono (CO) de 0 até 1000 ppmV e atmosfera explosiva (EX) numa faixa de medição de 0 até 100 %v/v.</td>
<td>Pode identificar e quantificar as concentrações de gás sulfído (H₂S) numa faixa de detecção de 0 até 1000 ppmV.</td>
</tr>
<tr>
<td></td>
<td>Pode identificar e quantificar as concentrações de metano (CH₄) numa faixa de detecção de 0 até 100 %v/v, dióxido de carbono (CO₂) de 0 até 100 %v/v, oxigênio (O₂) de 0 até 25 %v/v, gás sulfídrico (H₂S) de 0 até 1000 ppmV e hidrogênio (H₂) de 0 até 2000 ppmV.</td>
<td>Pode identificar e quantificar as concentrações de metano (CH₄) numa faixa de detecção de 0 até 1000 ppmV, monóxido de carbono (CO) de 0 até 1000 ppmV, e oxigênio (O₂) de 0 até 30 %v/v.</td>
<td>Pode identificar e quantificar as concentrações de metano (CH₄) numa faixa de detecção de 0 até 1000 ppmV, monóxido de carbono (CO) de 0 até 1000 ppmV, e oxigênio (O₂) de 0 até 30 %v/v.</td>
<td>Pode identificar e quantificar as concentrações de metano (CH₄) numa faixa de detecção de 0 até 1000 ppmV, monóxido de carbono (CO) de 0 até 1000 ppmV, e oxigênio (O₂) de 0 até 30 %v/v.</td>
<td>Pode identificar e quantificar as concentrações de metano (CH₄) numa faixa de detecção de 0 até 1000 ppmV, monóxido de carbono (CO) de 0 até 1000 ppmV, e oxigênio (O₂) de 0 até 30 %v/v.</td>
</tr>
<tr>
<td>Tipo de sensores eletrônicos</td>
<td>Este tipo de tecnologia utiliza sensores eletroquímicos, catalíticos, infravermelhos e (PID) fotoionizadores.</td>
<td>Este tipo de tecnologia utiliza sensores eletroquímicos e catalíticos.</td>
<td>Este tipo de tecnologia utiliza sensores eletroquímicos e catalíticos.</td>
<td>Este tipo de tecnologia utiliza um eletroquímico.</td>
<td>Esta tecnologia utiliza sensores eletroquímicos, catalíticos e galvânicos.</td>
</tr>
<tr>
<td>Temperatura de operação</td>
<td>-20 até 55 ºC</td>
<td>-20 até 50 ºC</td>
<td>-40 até 70 ºC</td>
<td>-20 até 50 ºC</td>
<td>-20 até 50 ºC</td>
</tr>
<tr>
<td>Pressão de operação</td>
<td>70 até 130 kPa</td>
<td>101,3 kPa</td>
<td>101,3 kPa</td>
<td>101,3 kPa</td>
<td>101,3 kPa</td>
</tr>
<tr>
<td>Umidade relativa de operação</td>
<td>10 a 95%</td>
<td>15 a 90%</td>
<td><90 %</td>
<td><95%</td>
<td>15 a 90%</td>
</tr>
</tbody>
</table>
O resultado do levantamento de dados mostra que existem vários produtos tecnológicos que conseguem monitorar e identificar gases de maneira seletiva, qualitativa e quantitativa, porém, cada produto tecnológico possui uma estrutura funcional (sistemas eletrônicos de aquisição de dados e sensores de gás) e características operacionais pré-definidas (modo de operação, tempos de coleta de dados, armazenamento de dados, comunicação e outros) não permitindo a sua modificação.

Nesse contexto, visando à reengenharia, foi necessário o estudo dos fundamentos e conceitos teóricos dos dispositivos e dos elementos convencionais de medição e monitoramento de poluentes gasosos.

2.3. Fundamentos teóricos dos dispositivos ou elementos convencionais de medição e monitoramento de poluentes gasosos (Estado da Arte)

Nos últimos tempos Estados Unidos, China e Alemanha vêm desenvolvendo componentes e dispositivos que são utilizados nas Tecnologias de medição e monitoramento de poluentes gasosos (SCOPUS 2016). Neste tópico apresenta-se o estudo das características técnicas referentes aos sistemas de aquisição de dados eletrônicos, dos sensores de gás, dos condicionadores de sinais, dos amplificadores operacionais, dos microcontroladores, da comunicação sem fio e dos softwares de programação utilizados para a aquisição de dados a partir de elementos eletrônicos.

2.3.1. Características dos Sistemas de Aquisição de Dados Eletrônicos

O controle de dados e sistemas de aquisição de dados em tempo real é uma prática amplamente utilizada na indústria. A função principal da maioria dos sistemas de controle é a medida e a geração de sinais para o mundo real (CARDOSO, 2007).

Os sistemas de aquisição de dados são produtos eletrônicos utilizados para coletar, guardar e analisar informações de um determinado fenômeno físico ou químico de maneira eletrônica (magnitudes de tensão ou corrente). Com o avanço tecnológico, este tipo de processo foi simplificado e tornou-se cada vez mais preciso versátil e confiável (OMEGA, 2015).
OSORIO et al. (2010) mencionam que a evolução e o desenvolvimento dos microcontroladores permitem alcançar novas características com relação à funcionalidade na realização da coleta e do controle de leituras de medidas digitais e analógicas mediante periféricos de comunicação.

A LYNXTEC (2015) indica que um sistema de aquisição de dados básico está composto por quatro partes básicas: sensores ou transdutores; condicionador de sinais; conversor análogo-digital A/D e controles associados; e o programa que é responsável por o controle do sistema. Na Figura 2.5 se ilustra o diagrama de fluxo básico para o sistema de aquisição de dados.

![Diagrama de Fluxo básico para o sistema de aquisição de dados](LYNXTEC, 2015)

2.3.2. Sensores de Gás

Os primeiros sensores utilizados para a detecção de gases começaram no século XVIII. Os mineiros alemães utilizavam os canários para a detecção de gases tóxicos na extração do carvão. Na primeira guerra mundial os canários também foram utilizados para a detecção de gases venenosos.

O olfato do ser humano e de alguns cães é empregado até hoje na indústria como ferramenta para distinguir diversos odores de alimentos, combustíveis, cosméticos, produtos químicos perigosos e muitos outros, porém, esse procedimento não é preciso e o tempo de exposição não é ilimitado (MAY et al. 2007).

O aumento das emissões de gases contaminantes e da ameaça resultante para a saúde pública, especialmente em ambientes urbanos, tem estimulado a pesquisa e o desenvolvimento de sensores altamente sensíveis e seletivos, adequados para o monitoramento do ar (SUMAN et al. 2013).

A Figura 2.6 apresenta os avanços científicos com relação as pesquisas referentes ao desenvolvimento de sensores e sistemas de monitoramento de gases de maneira histórica.
Figura 2.6 – Avanços científicos com relação as pesquisas referentes ao desenvolvimento de sensores e sistemas de monitoramento de gases em função do tempo (SCOPUS, 2016).

Por meio do levantamento de dados, na atualidade, os Estados Unidos é o maior produtor de trabalhos referentes a sistemas de monitoramento de gases atualmente possui 6.408 trabalhos publicados, seguido de China com 2.077, Alemanha com 1.783, e Brasil com 319. Na Figura 2.7 são apresentados os países com maior número de pesquisas referentes a sensores e sistemas de monitoramento de gases.

Figura 2.7 - Países com maior número de pesquisas referentes a sensores e sistemas de monitoramento de gases (SCOPUS, 2016).

A Figura 2.8 apresenta as principais áreas de pesquisas referentes a sensores e sistemas de monitoramento de gás.
Figura 2.8 – Principais áreas de pesquisas referentes a sensores e sistemas de monitoramento de gases (SCOPUS, 2016).

2.3.2.1 Características dos sensores de gás eletrônicos

Os sensores de gás eletrônicos são dispositivos que transformam um sinal químico em um sinal elétrico. Este tipo de tecnologias está composta por elementos metálicos e compostos químicos que são sensibilizados para reagir quando é exposta a um gás produzindo desta forma uma variação física mensurável. O crescimento deste tipo de tecnologia nos últimos anos tem sido muito importante, devido ao grande número de aplicações que possui na área industrial.

Desde 1950 até hoje, existem vários tipos de sensores de gás, com características próprias e usos específicos. Entre os principais sensores de detecção de gases encontram-se os sensores eletroquímicos, catalíticos e semicondutores. Na sequência serão descritas as características dos sensores de gás eletrônicos do tipo eletroquímicos, catalíticos, e semicondutores.

2.3.2.2 Sensor de gás eletroquímico

Segundo SAFFELL et al. (2009) na patente EP1154267, os sensores de gás eletroquímicos podem ser utilizados para detecção e quantificação de gases tóxicos tais como dióxido de enxofre (SO₂), gás sulfídrico (H₂S), monóxido de carbono (CO), dióxido de nitrogênio (NO₂), cloro gás (Cl₂) e hidrogênio (H₂). Os sensores eletroquímicos produzem reações espontâneas de oxidação e redução, o produto da reação gera uma corrente entre os eletrodos, sendo que esta corrente é proporcional à concentração do gás.
Segundo a DRAEGUER (2015) os sensores eletroquímicos possuem baixo limite de detecção, possuem uma seletividade elevada, têm excelente precisão na medição, alta estabilidade, longa vida útil, e rápida resposta nas medições normalmente entre 30 e 60 segundos.

a) uma membrana permeável que permite controlar o número de moléculas de gás que alcançam à superfície do eletrodo. As membranas utilizadas geralmente são feitas de Politetrafluoretileno (PTFE ou chamado também teflon) ou de algum material polimérico;

b) um eletrodo, que serve de catalisador para a reação de oxidação e redução. A maioria dos sensores eletroquímicos utilizam eletrodos de ouro, platina, zinco ou outros materiais nobres;

c) um eletrólito, capaz de proporcionar o contato elétrico entre os eletrodos; e

d) um filtro capaz de remover gases indesejáveis. Segundo SAFFEL et al. (2010) na patente US7651597 indicam que utiliza carvão ativo para remover o gás sulfídrico.

Na Figura 2.9 se ilustra um sensor de gás eletroquímico.

Figura 2.9 - Sensor de Gás Eletroquímico.

2.3.2.3 Sensor de gás catalítico

Os sensores de gás do tipo catalíticos são utilizados geralmente para a detecção de gases explosivos ou inflamáveis no ar, são modernos e de baixo custo.

Os sensores de gás catalíticos são elementos pequenos chamados também de “pellistor”. Segundo POLI (1989) na patente US4854155, os sensores catalíticos contêm um detector dotado de um fio metálico que tem um revestimento catalítico sensível a um
gás. Quando o sensor é exposto a um gás combustível, tal como o metano, o revestimento catalítico começa a queimar o gás (reação exotérmica), aumentando desta forma a temperatura do elemento de detecção. À medida que a temperatura do elemento de detecção aumenta, também aumenta a resistência do fio metálico, portanto, a quantidade do gás pode ser determinada a partir da mudança do valor da resistência.

Segundo a ALPHASENSE (2015) os sensores catalíticos possuem um fio de platina que aquece o material catalítico de 400 até 500 °C. Este tipo de sensores não possui seletividade nas medições dos gases combustíveis, sendo que irá responder a todos os gases combustíveis.

Segundo WHITE (2003) na patente EP1307731 este tipo de tecnologia tem sido utilizada com sucesso em muitas aplicações industriais, mas os sensores catalíticos são suscetíveis à intoxicação por produtos químicos, como sulfetos e silicones, sendo que este tipo de produtos químicos é encontrado em minas de carvão, plataformas de petróleo e nos combustíveis. Na Figura 2.10 se apresenta um sensor de gás catalítico.

Figura 2.10 - Sensor de Gás Catalítico.

2.3.2.4 Sensor de gás semicondutor

BARDEEN et al. (1950), com base de experimentos, conseguiam identificar que a absorção de um gás na superfície do germânio produz variações nas propriedades físicas do metal, concluindo que o efeito deste contato entre o sólido e o gás, produz uma variação significante no valor da condutividade. Os sensores de gás semicondutores estão baseados principalmente nesta propriedade.

A primeira proposta para a realização de sensores de gás semicondutores foi introduzida por SEIYAMA et al. (1960), onde no princípio dos anos 60 do século XX
descobriu que existe uma alteração da condutividade elétrica do óxido de zinco (ZnO) pela presença de gases reativos no ar.

Os sensores de gás do tipo semicondutores geralmente podem ser utilizados para detecção e quantificação de gases tóxicos tais como monóxido de carbono (CO), propano (C₃H₈), hidrogênio (H₂), gás sulfídrico (H₂S), dióxido de nitrogênio (NO₂), e ozônio (O₃). Estes utilizam resistências feitas de um material óxido, tais como dióxido de estanho (SnO₂), trióxido de tungstênio (WO₃), óxido de zinco (ZnO), óxido de índio (In₂O₃) e outros.

Segundo YAMAZOE et al. (2003) o processo de detecção do gás por um sensor semicondutor envolve duas funções principais: a) o reconhecimento de um gás através de uma interação entre gás-sólido na superfície do óxido, e b) o fenômeno de transdução (processo pelo qual uma energia se transforma em outra de natureza diferente) da superfície em função da variação da resistência elétrica do sensor.

A maioria dos sensores de gás semicondutores é aquecida até uma temperatura constante para acelerar a taxa de reação entre o gás e o sólido e para reduzir os efeitos da mudança da temperatura por efeito da troca térmica entre o sensor e o meio ambiente.

YAMAUARA et al. (1996), a fim de desenvolver um semicondutor sensível ao monóxido de carbono (CO), indicam que o óxido de índio (In₂O₃), dióxido de estanho (SnO₂), e o óxido de zinco (ZnO) são bastante sensíveis ao (CO). Mediante isso verificou-se que o In₂O₃ e o rubídio respondem razoavelmente bem no intervalo de concentração de 200 até 4000 ppmV a uma temperatura de 300 °C.

KANAZAWA et al. (2001), a fim de desenvolver um semicondutor sensível ao óxido nitroso (N₂O) no ar, entre os 23 tipos de semicondutores testados, o (SnO₂) pôde detectar ao (N₂O) no ar razoavelmente bem, no intervalo de concentração de 10 até 300 ppmV a uma temperatura de 500 °C.

WANG et al. (2010), descobriram que o dióxido de estanho detecta a presença de etanol C₂H₅OH de 0,6 a 11 segundos para uma concentração de 50 ppmV a uma temperatura de operação de 300 °C. A Figura 2.11 apresenta o sensor de gás do tipo semicondutor.
2.3.3. Condicionadores de Sinais

Os condicionadores de sinais são circuitos eletrônicos dotados de resistores, capacitores e amplificadores operacionais. São utilizados principalmente para a adequação dos sinais analógicos.

Na atualidade existem vários tipos de sensores ou transdutores que ao serem sensibilizados por alguma grandeza física ou química, produzem um sinal elétrico. Na maioria dos casos o sinal elétrico proveniente dos sensores ou transdutores não é o suficientemente grande para ser mensurável pelo microcontrolador. Nesse contexto o tipo do condicionador de sinal dependerá das características operacionais do sensor ou transdutor.

Segundo BOLTON (2001), o processo de acondicionamento do sinal pode ser utilizado como:

i) um sistema de proteção para evitar a danificação do seguinte elemento por efeito de eventuais problemas na variação da tensão, corrente e na polaridade;

ii) um sistema que pode converter um sinal em um tipo de sinal adequado, por exemplo, na conversão de um sinal de corrente para um sinal de tensão;

iii) um sistema para a adequação do sinal, por exemplo, para amplificar tensões pequenas medidas em mV para V ou quando se quer reduzir tensões de V para mV;

iv) para a eliminação de ruídos elétricos; e

v) para manipular a característica do sinal, por exemplo, para converter um sinal não linear em um sinal linear.
2.3.4. Amplificadores Operacionais

Um dos dispositivos eletrônicos de maior uso em aplicações lineares é o amplificador operacional chamado também *operational amplifier* ou *op-amp*. Trata-se de um elemento que permite uma série de operações matemáticas com os sinais elétricos tais como a soma, diferença (subtração), multiplicação, integração, diferenciação e outras aplicações. A Figura 2.12 apresenta o símbolo do amplificador operacional.

![Figura 2.12 - Símbolo do Amplificador Operacional op-amp (COUGHLIN e DRISCOLL 1993).](image)

A continuação será apresentada às características dos principais tipos de amplificadores operacionais que são utilizados geralmente nos condicionadores de sinal.

2.3.4.1 Amplificador Inversor

O amplificador inversor é um circuito eletrônico que aumenta e inverte a sinal de entrada, o aumento do sinal está em função à razão entre R₂ e R₁. O circuito amplificador inversor é apresentado na Figura 2.13.

![Figura 2.13 - Amplificador Inversor (FRANCO, 2005).](image)
Segundo a lei de Kirchoff a soma de todas as correntes que entram e saem de uma união deve ser igual à zero. A equação da soma das correntes é apresentada na Equação 9.

\[i_i + i_f = 0 \]
Eq. 9

Com uso da lei de Ohm encontra-se a relação da corrente \(i_i \) e \(i_f \) as quais são apresentadas nas Equações 10 e 11.

\[i_i = \frac{V_i}{R_i} \]
Eq. 10

\[i_f = \frac{V_0}{R_2} \]
Eq. 11

Combinando as Equações 10 e 11 na Equação 9 encontra-se a relação da tensão da entrada e da saída.

\[V_0 = -\frac{R_2}{R_i} V_i \]
Eq. 12

2.3.4.2 Amplificador Não Inversor

O amplificador não inversor é um circuito eletrônico que amplifica e não inverte o sinal de entrada. O aumento do sinal está relacionado com a razão entre \(R_2 \) e \(R_1 \). O circuito amplificador não inversor é apresentado na Figura 2.14.

![Figura 2.14 - Amplificador não inversor (FRANCO, 2005).](Image)

A equação da soma das correntes é apresentada na Equação 13.

\[i_i + i_f = 0 \]
Eq. 13

A relação entre as correntes \(i_i \) e \(i_f \) os quais são apresentadas nas Equações 14 e 15.
\[i_i = \frac{V_a}{R_i} \quad \text{Eq. 14} \]

\[i_f = \frac{V_a - V_0}{R_2} \quad \text{Eq. 15} \]

Combinando as Equações 14 e 15 na Equação 13 encontra-se a Equação 16.

\[V_0 = \left(1 + \frac{R_2}{R_1} \right) V_a \quad \text{Eq. 16} \]

Com uso das regras dos amplificadores operacionais se assume que \(V_a \) é igual a \(V_i \).

Combinando essa condição com a Equação 16, o resultado mostra a relação entre a tensão de entrada e saída e esta relação entre as tensões e representada pela Equação 17.

\[V_0 = \left(1 + \frac{R_2}{R_1} \right) V_i \quad \text{Eq. 17} \]

2.3.4.3 Amplificador Somador

O amplificador somador permite somar algebricamente vários sinais analógicos. A tensão de saída é expressa em termos da soma das tensões de entrada. O circuito amplificador somador é apresentado na Figura 2.15.

A equação que representa a soma dos sinais analógicos da entrada em função do sinal de saída está representada pela Equação 18.

\[V_0 = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \quad \text{Eq. 18} \]
2.3.4.4 Amplificador de Diferença (subtração)

O amplificador de diferença permite subtrair algebricamente vários sinais analógicos. A tensão de saída é expressa em termos da diferença das tensões de entrada. O circuito amplificador de diferença é apresentado na Figura 2.16.

Figura 2.16 - Amplificador de Diferença (FRANCO, 2005).

A Equação 19 representa a diferença dos sinais analógicos da entrada em função do sinal de saída.

\[
V_0 = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{R_4}{R_3 + R_4} V_2 - \frac{R_3}{R_1 + R_2} V_1\right) \\
\text{Eq. 19}
\]

Na Equação 20 apresenta-se a relação da resistência \(R_4 \) e \(R_3 \) em função de \(R_2 \) e \(R_1 \).

\[
\frac{R_4}{R_3} = \frac{R_2}{R_1} \\
\text{Eq. 20}
\]

Combinando as Equações 20 e 19 o resultado é representado na Equação 21, no qual a tensão da saída está em função da diferença das tensões de entrada e das resistências \(R_1 \) e \(R_2 \).

\[
V_0 = \frac{R_2}{R_1} (V_2 - V_1) \\
\text{Eq. 21}
\]

2.3.5. Microcontroladores

Um microcontrolador é um circuito integrado, que consegue armazenar instruções na memória, interpretar as instruções e executá-los. A sua estrutura contém características parecidas aos computadores podendo ser considerados como microcomputadores (PEREZ & ARENY, 2009).
Os microcontroladores geralmente são empregados para controlar o funcionamento de alguma tarefa específica por meio de uma configuração pré-estabelecida acionado por meio de um código computacional (SALAZAR et al., 2008).

Os microcontroladores são utilizados em uma grande variedade de aplicações, podendo ser encontrados na indústria da automatização, instrumentação eletrônica, equipamentos industriais e outros.

Segundo USATÉGUI & MARTINEZ (2003), dos 100% dos microcontroladores fabricados no mundo, 30% é utilizado na indústria de comunicação, 27% é utilizado em produtos de consumo doméstico, 18% é utilizado na indústria automóvel e 15% é utilizado na indústria de computadores.

Um microcontrolador possui em seu interior 3 unidades importantes: a) uma central de processamento; b) memória; e c) periféricos de entrada e saída.

A unidade central de processamento tem a característica de poder realizar cálculos matemáticos, controle do fluxo das tarefas programadas, bem como o controle e administração dos periféricos.

A unidade de memória do microcontrolador é utilizada para armazenar as instruções aritméticas e lógicas para uma determinada aplicação, cujas instruções podem ser programadas com base de uma linguagem de programação do tipo “c” ou do tipo “Assembly”.

Os periféricos do microcontrolador se caracterizam por ter funcionalidades específicas para a interação com vários dispositivos eletrônicos. O microcontrolador possui periféricos com diversas funções, assim possibilita: o controle lógico do tipo I/O; as conversões do tipo analógico e digital, por meio do qual se traduz uma grandezza elétrica (tensão) numa representação numérica; e a comunicação por meio de portas do tipo serial ou paralela, para realizar a comunicação e o envio de dados a um computador ou em certo caso para outro microcontrolador. A Figura 2.17 apresenta um microcontrolador modelo PIC16F877A e Na Tabela 2.10 são apresentados às legendas dos pinos de conexão do microcontrolador modelo PIC16F877A.

| Pino 1. MCLR | M étier Clear – Quando em nível baixo (0V), define situação de RESET. Quando em nível alto (5V), determina programa em execução. VPP – Tensão de programação – Quando este pino estiver em 13.4V, o microcontrolador entra em modo gravação, permitindo a transferência de um programa via ICSP.
| Pino 2. RA0 | Entrada / saída digital. AN0 – Entrada analógica canal 0 para o ADC interno.
| Pino 3. RA1 | Entrada / saída digital. AN1 – Entrada analógica canal 1 para o ADC interno.
| Pino 4. RA2 | Entrada / saída digital. AN2 – Entrada analógica canal 2 para o ADC interno. Vref – Uso do pino para definir a referência negativa para o conversor AD.
| Pino 5. RA3 | Entrada / saída digital. AN3 – Entrada analógica canal 3 para o ADC interno. Vref+ – Uso do pino para definir a referência positiva para o conversor AD.
| Pino 8. RE0 | Entrada / saída digital. RD – Entrada de controle de leitura para porta paralela escrava. AN5 – Entrada analógica canal 5.
| Pino 11. VDD | Alimentação (preferência 3V a 5V)
| Pino 12. VSS | Referência ou terra (0V / GND)

| Pino 22. RD3 | Entrada / saída digital. PSP3 – Pino 3 da porta paralela escrava.
| Pino 24. RC5 | Entrada / saída digital. SD0 – Saída de dados SPI.
| Pino 25. RC6 | Entrada / saída digital. TX – Pino para transmissão serial assíncrona. CK – Clock para transmissão síncrona.
| Pino 27. RD4 | Entrada / saída digital. PSP4 – Pino 4 da porta paralela escrava.
| Pino 29. RD6 | Entrada / saída digital. PSP6 – Pino 6 da porta paralela escrava.
| Pino 30. RD7 | Entrada / saída digital. PSP7 – Pino 7 da porta paralela escrava.
| Pino 31. VSS | Referência ou terra (0V / GND).
| Pino 32. VDD | Tensão de alimentação (mesma que pino 11)
Continuação da Tabela 2.10

<table>
<thead>
<tr>
<th>Pino 13. OSC1/CLKIN</th>
<th>Pino para ligação do circuito oscilador externo (entrada). Usado em conjunto com o pino OSC/CLKOUT. Recomendado usar cristal de 4 a 20 MHz</th>
</tr>
</thead>
</table>

Por meio das informações técnicas da MICROCHIP (2003), o microcontrolador PIC16F877A, possui as seguintes características: permite realizar a execução de uma instrução em 200 ns, possui uma memória interna de 4 kbytes disponibilizada para o armazenamento do código do programa, possui 8 canais de 10-bit do tipo analógico/digital (A/D), possui 2 comparadores análogos, possui 5 tipos de portas (equivalentes a 33 canais) lógicas I/O, e possui portas de comunicação do tipo serial e paralela.

2.3.5.1 Alimentação

Os microcontroladores possuem dois pinos de alimentação, onde o pino VSS é o pino de tensão neutra chamando também pino de referência ou terra (Ground ou GND), e o pino VDD chamado pino de alimentação de tensão positiva. Segundo SOUZA (2000), menciona que é importante que a fonte não tenha grandes variações de tensão e ruídos, a maioria dos microcontroladores podem ser alimentados com tensões de 2 até 6V. Segundo informações técnicas da MICROCHIP (2003), o microcontrolador PIC16F877A pode suportar uma alimentação de 2,0 até 5,5V.
2.3.5.2 Oscilador

O oscilador é o coração de um microcontrolador. Para PEREZ & ARENY (2009) este elemento determina o ritmo preciso e a velocidade de execução das instruções.

Segundo SOUZA (2000), os cristais são os osciladores mais precisos que podem ser utilizados atualmente, sendo que podem ser ligados diretamente a os pinos OSC1 e OSC2, com capacitores para melhorar a estabilidade dos microcontroladores. Na Figura 2.18 se ilustra o esquema para a conexão de um oscilador em um microcontrolador PIC16F877A.

Figura 2.18 - Esquema de conexão de um oscilador com base de um cristal e dois capacitores em um microcontrolador PIC16F877A.

2.3.5.3 Conversor Analógico-Digital

O conversor análogo-digital (A/D) é um dispositivo que oferece uma saída digital a partir de um sinal analógica de entrada. Estes dispositivos têm a função de quantificar e codificar um sinal analógico (ARENY, 1993).

Segundo GIMENO (2010), o conversor analógico-digital de aproximações sucessivas (SAR ADC) é aquele que têm uma arquitetura composta por três blocos: um conversor digital-análogo (DAC), um comparador e um controle lógico (SAR). O diagrama de fluxo do conversor analógico-digital de aproximações sucessivas é apresentado na Figura 2.19.
Figura 2.19 - Arquitetura do conversor analógico-digital de aproximações sucessivas (GIMENO, 2010).

Segundo BREIJO (2008), a maioria dos microcontroladores PIC possui um modulo de conversão A/D interno. A conversão dos sinais realiza-se por meio do método de aproximações sucessivas. Este método realiza comparações sucessivas de forma ascendente e descendente até encontrar um valor que seja igual a um valor digital que iguale à tensão (Vdac) entregada pelo conversor (DAC) e a tensão de entrada (Va). Na Figura 2.20 se ilustra o funcionamento do conversor de aproximações sucessivas apresentando o comportamento iterativo para encontrar uma igualdade nas tensões Vdac e Va na entrada do comparador.

Figura 2.20 - Sinais analógicos à entrada do comparador (GIMENO, 2010).

2.3.5.4 Comunicação USART

A comunicação USART (transmissor-receptor série síncrono–assíncrono universal) é utilizada principalmente para transmitir ou receber dados em série.
Segundo PEREZ e ARENY (2009), a comunicação em série consiste em enviar os bits (números binários) de uma palavra, de uma forma consecutiva e utilizando os mesmos pinos de comunicação.

A comunicação USART pode ser dividida em duas categorias: síncrona ou assíncrona. A comunicação síncrona utiliza um sinal de relógio para sincronizar o envio de dados entre um receptor e um transmissor. Para o caso da comunicação assíncrona a sinal de relógio não é utilizado para sincronizar o envio de dados entre o receptor e o transmissor. Segundo BREIJO (2008) quando a distância de comunicação entre o emissor e o receptor é pequena geralmente se utiliza a transmissão síncrona e, para distâncias maiores de comunicação utiliza-se a transmissão assíncrona.

Nos microcontroladores que possuem um sistema de comunicação USART incorporado, os pinos característicos para realizar a comunicação em série são os pinos TX (linha transmissora) e RX (linha receptora). Para o caso do microcontrolador PIC16F877A os pinos de comunicação característicos TX e RX são os pinos 25 e 26, respectivamente.

Na Figura 2.21 se ilustram os pinos de comunicação USART TX e RX.

![Figura 2.21 - Pinos de comunicação TX e RX do PIC16F877A (MICROCHIP, 2003).](attachment:image.png)

2.3.6. Comunicação sem fio (sistema de radiofrequência).

A comunicação sem fio consiste numa transferência de dados sem a utilização de cabos. As distâncias de comunicação podem ser curtas (comprimento pequeno de comunicação entre o receptor e o transmissor em torno de metros) ou longas (comprimento longo de comunicação entre o receptor e o transmissor em torno de quilômetros).
A comunicação sem fio pode ser realizada por meio de um sistema de rádio frequência (RF). Estes tipos de sistemas (RF) utilizam ondas eletromagnéticas como elemento base para a comunicação entre o transmissor e o receptor. As ondas eletromagnéticas têm a capacidade de se propagar pelo espaço, podendo transcender ou ultrapassar algumas barreiras físicas no processo de comunicação (MATTOS, 2004 e TOOLEY, 2006).

2.3.7. Software de programação para aquisição de dados a partir de elementos eletrônicos.

Atualmente existem vários tipos de softwares computacionais e a maioria dos softwares de programação permite desenvolver programas específicos para a aquisição ou manipulação de dados a partir de um determinado sistema eletrônico. Cada software de programação possui uma característica especial seja na estrutura de programação dos códigos ou na característica da forma da programação podendo ser, de forma literal, por meio de códigos ou em certo caso de forma gráfica.

2.3.7.1 LABVIEW

O LABVIEW (Laboratory Virtual Instrument Engineering Workbench) é um software ou linguagem de programação gráfica, desenvolvido pela National Instruments Corporation, e criado especificamente para desenvolver aplicações para sistemas de engenharia e ciências.

O LABVIEW possui uma estrutura de programação gráfica, dotada de uma paleta de ícones, os quais são responsáveis de uma determinada operação. A estrutura dos programas é gerada na forma de diagramas de blocos (FERREIRA et al. 1998).

O LABVIEW permite desenvolver programas específicos para realizar a aquisição de dados, o processamento de sinais, o controle de instrumentos, a automatização de sistemas e o monitoramento e controle de sistemas a partir de qualquer tipo Hardware (National Instrument, 2015).

Segundo MARCELINO (2007), o LABVIEW é considerado como uma linguagem de programação gráfica com características multiplataforma, podendo funcionar em diversos sistemas operativos (WINDOWS, MAC OS X, e LINUX).

Na Figura 2.22 se ilustra a interface de programação gráfica do LABVIEW.
2.3.7.2 Visual Studio.net

O Visual Studio.net é um software de programação popular em nível mundial e foi desenvolvido pela Microsoft. É uma ferramenta que permite, entre outros, a criação de aplicações para Windows. O Visual Studio.net é um software que desenvolve programas a partir de uma estrutura de programação literal, está dotada de códigos ou comandos que permitem o desenvolvimento de aplicações atrativas mediante uma interface visual.

Na Figura 2.23 se ilustra a interface de programação do software Visual Studio.net.
2.4. Bases para o desenvolvimento da tecnologia alternativa de monitoramento transiente de poluentes gasosos

Para melhor entendimento do objeto da proposta, no trabalho, prevaleceu como base o comportamento dos organismos vivos. Por exemplo, o corpo humano possui sentidos fundamentais como: a visão, a audição, o olfato, o tato e o paladar, os quais permitem a interação entre o ser humano com o meio ambiente. Este tipo de receptores sensoriais biológicos está composto por células nervosas que possibilitam a conversão desses estímulos em impulsos elétricos ou nervosos, que posteriormente são processados e analisados pelo sistema nervoso central e o cérebro.

Conforme Figura 2.24, para o contexto do trabalho, o comportamento do olfato será reproduzido de maneira artificial, por meio de uma “tecnologia alternativa”. Esse dispositivo será capaz de reproduzir as características do sentido do olfato do corpo humano ou em certo caso superá-los. Para essa finalidade a tecnologia alternativa foi dotada, principalmente, de sensores eletrônicos e microcontroladores conectados numa placa eletrônica, um sistema de aquisição de dados, um sistemas de comunicação por rádio freqüência, condicionadores de sinais, programa de coleta, armazenamento e tratamento de dados num computador com comunicação remota. Os sensores de gás podem ser
eletroquímicos, catalíticos, ou semicondutores, os quais possuem elementos metálicos e compostos químicos que reagem quando são expostos a um determinado gás. Esta reação química, produzida entre os elementos do sensor e o gás, é convertida a variações físicas elétricas mensuráveis, que posteriormente são processados e analisados pelos micro-controladores. Segundo JIMENEZ et al. (2010) na patente ES2380472 indica que um “nariz eletrônico” é uma tecnologia ou um instrumento que pode sentir o cheiro, e que é capaz de realizar análises qualitativas e quantitativas de uma mistura de gases.

Na Figura 2.24 se mostra as características do sistema sensorial olfativo biológico e artificial no processo da recepção de um estímulo seguido da reação.

Figura 2.24 - Representação do sistema sensorial olfativo biológico e artificial no processo da recepção de um estímulo seguido da reação.

Com base no referencial teórico pode-se constatar a existência de limitações nas tecnologias convencionais, tais como: a estrutura funcional (sistemas eletrônicos de aquisição de dados e sensores de gás), as características operacionais pré-definidas (modo de operação, tempos de coleta de dados, armazenamento de dados, comunicação e outros) não permitindo a sua modificação e por último a incorporação destas tecnologias em processos de monitoramento de poluentes gasosos industriais, assim justifica-se a necessidade da proposição de novas tecnologias para a finalidade do monitoramento remoto de poluentes gasosos de diversas fontes.
CAPITULO 3. METODOLOGIA

Para o desenvolvimento da tecnologia alternativa que visa a qualificação e a quantificação transiente dos principais poluentes, entre eles o H₂S, SO₂, CO e o CO₂, a metodologia do trabalho contemplou a realização de 4 etapas: 1) a caracterização físico-química (qualitativa e quantitativa) dos poluentes gasosos e suas fontes de geração (propriedades da suinocultura e indústrias de processamento de resíduos de frigoríficos); 2) a proposição, desenvolvimento, projeto, fabricação, montagem e codificação dos programas computacionais de interface de uma tecnologia alternativa para o monitoramento transiente e remoto de poluentes gasosos; 3) testes operacionais na escala laboratorial e também na condição real de operação; e a 4) Avaliação dos requisitos de patenteamento.

3.1. Etapa 1 - Caracterização físico-química (qualitativa e quantitativa) dos poluentes gasosos e suas fontes geradoras de poluentes gasosos.

A caracterização da fonte geradora de poluentes gasosos compreendeu o estudo das seguintes atividades: criação e engorda de suínos; e a indústria de processamento de resíduos de frigoríficos.

Esta caracterização foi realizada por meio de informações encontradas na literatura, e por meio de visitas técnicas. As informações encontradas foram apresentadas por médio de esquemas, identificando assim as principais etapas geradoras de poluentes gasosos, nos processos primários e também nos processos secundários; na sequência foram realizados balanços de matéria dos processos produtivos; e por último foi realizado o monitoramento da temperatura e umidade dos gases produzidos nos processos produtivos. Esta caracterização permitiu conhecer o comportamento das principais etapas dos processos produtivos e sua relação com a geração dos poluentes gasosos emitidos em cada etapa.

Esses resultados foram utilizados para identificar a faixa de detecção da concentração dos poluentes emitidos, a temperatura de operação, a umidade relativa de operação e também para a especificação técnica dos sensores de gás e demais componentes da tecnologia em fase de desenvolvimento.
3.2. Etapa 2 – Proposição, desenvolvimento, projeto, fabricação e montagem da tecnologia alternativa para o monitoramento transiente e remoto de poluentes gasosos.

Para realizar a proposição e o desenvolvimento da tecnologia alternativa se realizou os seguintes estudos:

Primeiro, foram pesquisados e analisados vários tipos de sensores de gás eletrônicos para a detecção de H₂S, SO₂, CO e CO₂ existentes no mercado nacional e internacional, por meio de fichas técnicas que se encontram disponibilizadas pelos fabricantes. A caracterização dos sensores de gás foi realizada em função das características operacionais em termos da temperatura de operação, umidade de operação, pressão de operação e da faixa de medição identificando assim as vantagem e desvantagem de cada elemento para sua posterior aquisição;

Segundo, foram especificados os elementos eletrônicos necessários, para o desenvolvimento do sistema de aquisição de dados eletrônicos, sistema de condicionador de sinais e o sistema de comunicação sem fio;

Terceiro, foram construídos um diagrama de fluxo do sistema eletrônico (tecnologia alternativa) em função das características dos elementos eletrônicos necessários para o desenvolvimento da tecnologia, considerando os sensores, o sistema de aquisição de dados, o sistema de condicionador de sinais e o sistema de comunicação sem fio;

Quarto, foi realizado um código específico para o microcontrolador utilizando o software PIC C Compiler;

Quinto, se identificou o comportamento dos componentes eletrônicos distribuídos no diagrama de fluxo mediante uma simulação computacional (sistema de aquisição de dados, sistema de condicionador de sinais, e o sistema de comunicação sem fio) da tecnologia alternativa. Esta simulação computacional foi realizada no software Proteus 7.8;

Sexto, foi desenvolvido um programa computacional para a interface de coleta de dados, armazenamento dos dados e apresentação dos resultados do monitoramento. O programa computacional foi realizado mediante o software Visual Studio.net. Este possui uma linha de códigos que permite a recepção de dados a partir da tecnologia alternativa, a apresentação dos dados recebidos através de uma interface visual (os dados são
apresentados por meio de tabelas e gráficos), a exportação dos dados monitorados a uma planilha do Microsoft Excel e por último o código computacional conseguirá o envio contínuo dos dados monitorados a um servidor alojado na internet, permitindo assim maior acessibilidade aos dados monitorados pela tecnologia alternativa de maneira contínua e através de qualquer computador com entrada a internet. Para verificar as características ou possíveis erros no código computacional desenvolvido foram feitos vários testes utilizando uma comunicação virtual entre a tecnologia alternativa (sistema eletrônico) mediante o programa Proteus 7.8 e o programa desenvolvido no Visual Studio.net. Este estudo virtual possibilitou conhecer o comportamento da comunicação de maneira ideal com relação à recepção e o envio de dados entre a tecnologia alternativa e o computador;

Sétimo, foi realizada a prototipagem por meio do projeto, construção e montagem da parte física da tecnologia alternativa. Com base nos resultados anteriores nesta parte do trabalho se realizou os testes dos elementos eletrônicos de maneira real utilizando placas de prova. Com base do diagrama de fluxo estudado anteriormente se procedeu a realização da montagem da parte física da tecnologia alternativa considerando a ordem e a distribuição dos elementos entre eles: os sensores de gás, os sistemas de aquisição de dados (resistores, capacitores, microchips, cristais, e reguladores de tensão), os sistemas de condicionadores de sinais (resistores, amplificadores operacionais, capacitores), e o sistema de comunicação sem fio (radiofrequência). Com base dos testes realizados de maneira real e posterior verificação do funcionamento da tecnologia alternativa, foram realizados a construção da placa final e montagem da parte física da tecnologia alternativa;

Oitavo, de acordo com os resultados da etapa anterior, foi realizado o desenho da carcaça para a tecnologia alternativa, em função do tamanho da placa final (sistema eletrônico) e as dimensões dos elementos eletrônicos. Para essa finalidade foi utilizado o software Autodesk Inventor;

Nono, na sequência foi feito análises do comportamento da fluidodinâmica do fluido gasoso na parte interna da carcaça utilizando o software Solidworks e por ultimo foi realizado a construção da carcaça utilizando uma impressora 3D.
3.3. Etapa 3 - Testes operacionais na escala laboratorial e também na condição real de operação

Para conhecer e avaliar o comportamento da tecnologia alternativa, os testes operacionais foram divididos em duas partes: uma de caráter laboratorial ou em sistemas estáveis e outra de caráter real de operação ou em sistemas instáveis.

Para avaliar o comportamento da tecnologia alternativa, os testes operacionais na escala laboratorial contemplaram a produção de gases para análise da sensibilidade e seletividade dos sensores. Foi produzido gás sulfídrico (reação química da Equação 22), dióxido de enxofre (reação química da Equação 23) e dióxido de carbono com base da reação química da Equação 24.

\[
FeS + 2HCl \rightarrow FeCl_2 + H_2S\uparrow \quad 22
\]

\[
Cu + 2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2\uparrow \quad 23
\]

\[
CaCO_3 + calor \rightarrow CaO + CO_2\uparrow \quad 24
\]

Os gases produzidos por meio das reações químicas apresentadas anteriormente, foram utilizados para conhecer as características seletivas dos sensores, estes gases foram expostos de forma parcial ou independente aos sensores de H\textsubscript{2}S, SO\textsubscript{2}, CO e CO\textsubscript{2}.

Para avaliar o comportamento da tecnologia alternativa em sistemas instáveis (sistemas onde se têm uma mistura de gases diferentes) ou na escala real foi realizado o monitoramento de gases em regime transiente a partir do biogás gerado nos biodigestores anaeróbicos. Para realizar os testes operacionais, a tecnologia desenvolvida foi instalada em uma tubulação de biogás gerado por um biodigestor instalado na GLOBOSUINOS, no qual foi realizado o monitoramento. Os testes realizados na escala real permitiram a identificação das qualidades operacionais da tecnologia alternativa em regime transiente.

3.4. Etapa 4 - Avaliação dos requisitos de patenteamento

Para a realização da avaliação dos requisitos de patenteamento foi realizado o estudo das tecnologias convencionais por meio de consultas na literatura (patentes, manuais e informações técnicas). Foram identificadas, desta forma, as características qualitativas e quantitativas de cada tecnologia. Depois foram realizadas as comparações
entre cada tecnologia para identificar a vantagem e desvantagem de cada produto tecnológico. Os resultados foram apresentados por meio de tabelas.

O trabalho prospectivo em bancos de patentes serviu para identificar os requisitos de patenteamento da tecnologia desenvolvida. A busca de anterioridade contemplou 3 critérios: 1) diferença da tecnologia convencional com a tecnologia a ser desenvolvida; 2) problemas técnicos da tecnologia existente; e 3) as características construtivas.
CAPÍTULO 4. RESULTADOS

4.1. Resultados da Etapa 1 - Caracterização físico-química (qualitativa e quantitativa) dos poluentes gasosos e suas fontes geradoras de poluentes gasosos.

De modo geral a fonte geradora de poluentes gasosos compreende os processos primários e também os processos secundários. O esquema da Figura 4.1 representa todas as possibilidades de geração de poluentes gasosos.

![Figura 4.1 - Geração de poluentes gasosos.](image)

Os resíduos gasosos podem ser gerados a partir de atividades industriais nos processos da transformação da matéria em produto e também a partir dos processos de tratamento e aproveitamento dos resíduos sólidos e líquidos.

Na Figura 4.2 apresenta-se uma síntese dos modelos de gestão de efluentes gasosos com 3 tipos de disposição: a) sem tratamento; b) com tratamento e c) com tratamento e aproveitamento.
Figura 4.2 – Diagrama de fluxo geral da fonte geradora de poluentes gasosos e suas formas de disposição.

Na sequência são apresentados os resultados da caracterização das duas fontes de geração de poluentes gasosos contempladas no estudo: a) da fonte geradora de poluentes gasosos em uma atividade de criação e engorda de suínos; e b) da fonte geradora de poluentes gasosos de uma indústria de processamento de resíduos de frigoríficos.

4.1.1. Caracterização da fonte geradora de poluentes gasosos em atividades de criação e engorda de suínos

A fonte geradora de poluentes gasosos da criação e engorda de suínos, foi a uma atividade rural de criação de suínos localizada no município de Toledo Paraná. Essa atividade rural de criação de suínos tem como principal atividade à criação e engorda de suínos, especificamente para a produção de leitões.

4.1.1.1 Ciclo produtivo para a criação e engorda de leitões

Esta empresa conta com uma infraestrutura dotada de galpões de gestação, maternidade, creche e também de sistemas de tratamento de dejetos denominados biodigestores anaeróbicos modelo canadense.

O biodigestor modelo canadense instalado na atividade rural possui um volume de 4.410 m³ para o tratamento de dejetos diluídos, medindo 70 m de comprimento, 15 m de largura e 4,2 m de profundidade.
Segundo KUNZ et al. (2005), KUNZ (2006) e SILVA et al. (2012), o biodigestor anaeróbico, permite a degradação e a remoção dos componentes orgânicos em um 87% com relação ao DQO e de 90% com relação ao DBO de maneira microbiológica, produzindo dessa forma dois tipos de produtos um efluente líquido utilizado como biofertilizante e um produto gasoso denominado biogás.

Segundo PERGHER (2006) o biogás produzido em biodigestores anaeróbicos aproximadamente tem a seguinte composição química: de 50-80% é metano (CH₄), de 0,01-0,15% (1.000-15.000 ppm) é gás sulfídrico (H₂S), e de 25-45% é dióxido de carbono (CO₂). A variação da porcentagem de metano no biogás pode ser influenciada diretamente pela presença de oxigênio dentro dos biodigestores (CATARINO et al., 2009).

Segundo LINS et al. (2015), chegou a determinar que o biogás gerado a partir de dejetos de suínos, especificamente na produção de leitões, tem a seguinte composição química: 68,4% de metano (CH₄), 0,01309% (1.309,1 ppm) de gás sulfídrico (H₂S), e 30,6% de dióxido de carbono (CO₂).

O ciclo produtivo da atividade rural funciona da seguinte forma: cada matriz passa por um período de reprodução ou inseminação artificial (esse processo ocorre duas vezes ao ano), seguidamente cada matriz passa de 110 a 114 dias na etapa de gestação, após da etapa de gestação cada matriz pode dar entre 12 a 14 leitões, na sequência cada matriz e os leitões passam 21 dias na etapa de maternidade, após a etapa de maternidade os leitões são desmamados, seguidamente os leitões são encaminhados para a etapa da creche por um lapso de 37 a 40 dias até atingir a um peso de 25 kg e posterior comercialização.

Na Figura 4.3 se apresenta o diagrama de fluxo do processo e a disposição final dos resíduos, esse fluxograma foi gerado com base das informações coletadas nas visitas técnicas. Assim: em todas as fases do processo produtivo existe a geração de resíduos sólidos, líquidos e resíduos gasosos; os resíduos sólidos e líquidos gerados a partir do ciclo produtivo, passam por um processo de tratamento; e os resíduos gasosos fugitivos, gerados a partir da digestão dos dejetos em trânsito, são dissipados no meio ambiente, porém, para diminuir essas emissões gasosas no ar e no espaço confinado, os responsáveis pela higienização retiram esses dejetos continuamente. Em cada galpão possui um sistema de ventilação, a fim de evitar possíveis infecções e contaminações nos animais.
O monitoramento dos dados do mês de julho de 2015 apontou um total de 3.000 matrizes (530 da fase de gestação/maternidade e o restante da etapa da reposição e reprodução); 8.000 leitões (3.180 da fase da maternidade e o restante da creche), e 15 porcos machos.

Tabela 4.1 - Produção Média Diária de Dejetos (kg), dejeto + Urina (kg) e dejet diluido (L) por Animal por Fase (adaptado de Oliveira et al. 1993).

<table>
<thead>
<tr>
<th>Categoria de Suínos</th>
<th>Esterco</th>
<th>Esterco + urina</th>
<th>Dejetos líquidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-100 kg</td>
<td>2,3</td>
<td>4,9</td>
<td>7</td>
</tr>
<tr>
<td>Porcas em Gestação</td>
<td>3,6</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>Porcas em Lactação</td>
<td>6,4</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Machos</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Leitão desmamado</td>
<td>0,35</td>
<td>0,95</td>
<td>1,4</td>
</tr>
<tr>
<td>Média</td>
<td>2,35</td>
<td>5,8</td>
<td>8,6</td>
</tr>
</tbody>
</table>

De acordo a informação apresentada na Tabela 4.1 e os dados contabilizados com relação ao número de suínos na empresa, a geração de resíduos sólidos atingiu aproximadamente a um total de 10.557 kg dia\(^{-1}\) (equivalente a 10,66 m\(^3\) dia\(^{-1}\)) e os resíduos líquidos atingiu a um total de 44.845 L dia\(^{-1}\) (equivalentes a 44,85m\(^3\) dia\(^{-1}\)).
4.1.1.2 Balanço de matéria do ciclo produtivo da criação e engorda de suínos

A realização do balanço de matéria do ciclo produtivo da criação e engorda de suínos considerou que:

a) a população de suínos contabilizada no mês de julho de 2015, referente à quantidade de matrizes (quantidade de matrizes em gestação/maternidade e matrizes na etapa de reposição/reprodução), a quantidade de leitões (na fase de maternidade e na fase da creche), e por último a quantidade de machos;

b) as informações da produção média diária de dejetos, urina com dejetos e dejetos líquidos, fornecidas por Oliveira et al. (1993) os quais se encontram na Tabela IV.1;

c) os dados fornecidos pela IPCC, 2006 com relação aos sólidos voláteis, produção de metano em função do peso do suíno; e

d) por último a composição química do biogás com base das informações fornecidas por PERGHER (2006) e LINS et al. (2015).

Na Figura 4.4 são apresentados os resultados do balanço de matéria do ciclo produtivo de uma atividade rural de criação de suínos localizada no município de Toledo Paraná.

Figura 4.4 – Balanço de Matéria do ciclo produtivo da atividade rural de criação de suínos em estudo.
O resultado do balanço de matéria mostrou que os resíduos tratados no biodigestor geram aproximadamente 671,52 m³.dia⁻¹ de biogás contendo 459,31 m³.dia⁻¹ de metano (CH₄), 205,45 m³.dia⁻¹ de dióxido de carbono (CO₂), e 87,90 L.dia⁻¹ de gás sulfídrico (H₂S).

4.1.1.3 Monitoramento da temperatura e umidade nas correntes dos poluentes gasosos provenientes das atividades de criação e engorda de suínos

A Figura 4.5 mostra o resultado do monitoramento da temperatura e da umidade relativa do biogás em função do tempo para duas estações para inverno e verão.

![Figura 4.5 - Monitoramento da Temperatura do biogás e a temperatura do ambiente em função do tempo: a) inverno e b) verão.](image)

Conforme os dados apresentados nas Figuras 4.5.a e 4.5.b é possível observar que o comportamento do biogás no período do inverno e verão apresenta comportamentos diferentes com relação as variáveis monitoradas (temperatura e umidade relativa do biogás). Essas mudanças nos valores das variáveis mostrou que no período de inverno a temperatura do biogás varia de 20,6 a 30,6 °C e a umidade relativa do biogás varia de 34 a 48 %; e no período de verão a temperatura do biogás varia de 26,6 a 36,6 °C e a umidade relativa varia de 38 a 60 %. Estes valores foram utilizados como base para busca dos sensores de gás que possam suportar estas condições de operação.
4.1.2. Caracterização da fonte geradora de poluentes gasosos em uma indústria de processamento de resíduos de frigoríficos

A caracterização da fonte geradora de poluentes gasosos em atividades industriais de processamento de resíduos de frigoríficos foi realizada numa empresa localizada no município de Toledo-PR.

A empresa caracterizada possui uma atividade industrial dedicada à produção de farinhas e óleos a partir do processamento de resíduos de frigoríficos (penas, vísceras de frango, resíduo bovino, resíduo de suínos, resíduo de peixe, sangue, e lodos orgânicos).

Esta empresa conta com uma infraestrutura dotada de equipamentos de processos para a transformação e beneficiamento da matéria prima (equipamentos para a fragmentação dos resíduos, sistema de digestão, equipamentos de extrusão, sistemas de secagem, moinhos, ciclones, condensadores de gases, e filtros) e também para o tratamento de efluentes líquidos e gasosos.

4.1.2.1 Ciclo produtivo da indústria de processamento de resíduos de frigoríficos

Os ciclos produtivos para o processamento de resíduos de frigoríficos englobam cinco fases. A primeira fase consiste na recepção e no armazenamento de matéria prima e dos insumos. A segunda fase trata-se da preparação e a terceira do processo principal de transformação da matéria prima em produtos de valor agregado. A quarta fase é a finalização e acabamento, e por último a fase de armazenamento e expedição. A Figura 4.6 ilustra o esquema do ciclo produtivo global do processamento de resíduos de frigoríficos.

Figura 4.6 - Esquema do ciclo produtivo global do processamento de resíduos de frigoríficos.
O ciclo produtivo da empresa de processamento de resíduos de frigoríficos funciona da seguinte forma:

i) Todos os dias são processados resíduos de penas, vísceras de frango, resíduo bovino, resíduo de suínos, resíduos de peixe, sangue e também lodos orgânicos;

ii) seguidamente cada matéria prima passa por um processo de transformação e beneficiamento diferenciado;

iii) o processo produtivo gera farinha, óleo e graxas.

Nas Figuras 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, e 4.13 são apresentados as principais etapas de geração de resíduos no ciclo produtivo da FARICON.

Figura 4.7 – Processo de transformação e beneficiamento das penas.

Figura 4.8 – Processo de transformação e beneficiamento das vísceras de frango.
Figura 4.9 – Processo de transformação e beneficiamento dos resíduos de bovinos.

Figura 4.10 – Processo de transformação e beneficiamento dos resíduos de suínos.

Figura 4.11 – Processo de transformação e beneficiamento dos resíduos de peixe.

Figura 4.12 – Processo de transformação e beneficiamento do sangue.
Figura 4.13- processo de transformação e beneficiamento dos lodos orgânicos.

Por meio das Figuras 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 e 4.13 e com uso da informação encontrada nas visitas técnicas constatou-se que, em todos os processos produtivos existem a geração de resíduos sólidos, líquidos e resíduos gasosos. Os resíduos sólidos e líquidos gerados a partir do ciclo produtivo, são conduzidos para um sistema de tratamento dotado de biodigestores e lagoas, e por último os resíduos gasosos gerados a partir do ciclo produtivo, são coletados e conduzidos para um sistema de tratamento de gases desenvolvido pela UNIOESTE.

Na Figura 4.14 se ilustra o sistema de tratamento dos resíduos gasosos desenvolvido pela UNIOESTE e implementado na empresa processadora de resíduos de frigoríficos.

Figura 4.14 – Sistema de tratamento de resíduos gasosos desenvolvido pela UNIOESTE.

4.1.2.2. Balanço de matéria do ciclo produtivo da indústria de processamento de resíduos de frigoríficos

Na Figura 4.15 e 4.16 são apresentados os resultados do balanço de matéria do ciclo produtivo da empresa processadora de resíduos de frigoríficos. Nesses cálculos foram considerados os dados hipotéticos de captação e armazenamento diário das matérias primas (penas, vísceras de frango, resíduos bovinos, resíduos de suínos, resíduos de peixe, sangue.
e lodo orgânico) e também os dados da produção diária de óleos e farinha a partir dos diversos processos produtivos.

Figura 4.15 – Balanço de matéria do ciclo produtivo de um processo industrial.

Figura 4.16 – Balanço de matéria: Geração de resíduos gasosos no ciclo produtivo do processamento de resíduos de frigoríficos.

Com base nas Figuras 4.15 e 4.16 pode-se identificar que a geração de resíduos sólidos, líquidos e gasosos depende diretamente do processamento dos resíduos e da quantidade de matéria prima a se transformar ou beneficiar. Os resultados do balanço mostram que a maior geração de poluentes gasosos ocorre no processamento das vísceras de frango (180.000 kg.dia⁻¹) equivalentes a 52,75 % das emissões totais, seguido do processamento das penas (34.125,4 kg.dia⁻¹) equivalentes a 28,43 % das emissões totais.
4.1.2.3. Monitoramento da temperatura e umidade nas correntes dos poluentes gasosos da indústria de processamento de resíduos de frigoríficos

O monitoramento realizado na indústria de processamento de resíduos de frigoríficos demonstrou que a temperatura das correntes gasosas varia em função das etapas do ciclo produtivo. Para o caso do monitoramento foram consideradas as correntes gasosas que saem dos digestores e as correntes gasosas que saem do processo de tratamento de gases.

O resultado do monitoramento demonstrou que a temperatura das correntes gasosas do processo de digestão da matéria prima varia de 110 a 120 °C e na corrente gasosa que sai do sistema de tratamento de gases varia de 38 a 45 °C.

4.2. Resultado da Etapa 2 – Proposição, desenvolvimento, projeto, fabricação, e montagem da tecnologia alternativa para o monitoramento transiente e remoto de poluentes gasosos

Os resultados da proposição, desenvolvimento, projeto, fabricação e montagem da tecnologia alternativa contemplam os resultados do estudo e seleção dos sensores eletrônicos necessários para a tecnologia alternativa, o desenvolvimento do diagrama de fluxo do sistema eletrônico, o desenvolvimento do diagrama de fluxo do código para o microchip, o resultado da simulação computacional do sistema eletrônico e do código do microchip, a codificação do programa de monitoramento para a coleta e armazenamento de dados e por último o resultado do projeto e construção (Modelo UNIOESTE).

4.2.1. Seleção de sensores eletrônicos

A seleção dos sensores eletrônicos necessários para a tecnologia alternativa foi realizada com uso de fichas técnicas onde contemplaram a análise das características operacionais de 13 marcas com 22 modelos de sensores para a detecção do gás sulfídrico (H₂S), do dióxido de enxofre (SO₂), do monóxido de carbono (CO) e do dióxido de carbono (CO₂).
4.2.1.1 Identificação da característica operacional dos sensores eletrônicos para a detecção de gás sulfídrico

De forma global na Figura 4.17 são apresentados os resultados da caracterização operacional dos sensores eletrônicos avaliados para a detecção de gás sulfídrico. A Figura 4.17.a refere-se a temperatura de operação, a Figura 4.17.b refere-se a umidade relativa de operação, a Figura 4.17.c refere-se a pressão de operação e por fim, na Figura 4.17.d é apresentada a faixa de detecção dos sensores.

Figura 4.17 – Características operacionais dos sensores eletrônicos para a detecção do gás sulfídrico em função da marca e da a) temperatura de operação, b) umidade relativa de operação, c) pressão de operação e d) a faixa de detecção.

As informações apresentadas na Figura 4.17, mostram que o sensor denominado SENSOR-H2S-6 possui características operacionais superiores (com relação a temperatura, umidade relativa, pressão e faixa de medição) quando comparado aos demais sensores avaliados.

O SENSOR-H2S-6 é um sensor eletroquímico que permite a medição do gás sulfídrico sobre a faixa de 0 a 6000 ppmV. Este pode ser utilizado em correntes de gás onde a temperatura pode variar de -30 a 50 °C, a umidade relativa do gás de 15 a 90 %, e pressão do gás de 0,8 a 1,2 atm.
4.2.1.2 Identificação da característica operacional dos sensores eletrônicos para a detecção de dióxido de enxofre

De forma global na Figura 4.18 são apresentados os resultados da caracterização operacional dos sensores eletrônicos avaliados para a detecção de dióxido de enxofre. A Figura 3.18.a refere-se a temperatura de operação, a Figura 4.18.b refere-se a umidade relativa de operação, a Figura 4.18.c refere-se a pressão de operação e por fim, na Figura 4.18.d e apresentada a faixa de detecção dos sensores.

![Diagrama mostrando características operacionais dos sensores eletrônicos para detecção de dióxido de enxofre](image_url)

Figura 4.18 – Características operacionais dos sensores eletrônicos para a detecção do dióxido de enxofre em função da marca e da a) temperatura de operação, b) umidade relativa de operação, c) pressão de operação e d) a faixa de detecção.

As informações apresentadas na Figura 4.18, mostram que o sensor denominado SENSOR-SO2-5 possui características operacionais superiores (com relação a temperatura, umidade relativa, pressão e faixa de medição) quando comparado aos demais sensores avaliados.

O SENSOR-SO2-5 é um sensor eletroquímico que permite a medição do dióxido de enxofre sobre a faixa de 0 a 6000 ppmV. Este pode ser utilizado em correntes de gás onde a temperatura pode variar de -30 a 50 ºC, umidade relativa do gás de 15 a 90 %, e pressão do gás de 0,8 a 1,2 atm.
4.2.1.3 Identificação da característica operacional dos sensores eletrônicos para a deteção de monóxido de carbono

De forma global na Figura 4.19 são apresentados os resultados da caracterização operacional dos sensores eletrônicos avaliados para a detecção de monóxido de carbono. A Figura 4.19.a refere-se a temperatura de operação, a Figura 4.19.b refere-se a umidade relativa de operação, a Figura 4.19.c refere-se a pressão de operação e por fim, na Figura 4.19.d e apresentada a faixa de detecção dos sensores.

Figura 4.19 – Características operacionais dos sensores eletrônicos para a detecção do monóxido de carbono em função da marca e da a) temperatura de operação, b) umidade relativa de operação, c) pressão de operação e d) a faixa de detecção.

As informações apresentadas na Figura 4.19, mostra que o sensor denominado como SENSOR-CO-6 possui características operacionais superiores (com relação a temperatura, umidade relativa, pressão e faixa de medição) quando comparado aos demais sensores avaliados.

O SENSOR-CO-6 é um sensor eletroquímico que permite a medição do monóxido de carbono sobre a faixa de 0 a 5000 ppmV. Este pode ser utilizado em correntes de gás onde a temperatura pode variar de -30 a 50 °C, umidade relativa do gás de 15 a 90 %, e pressão do gás de 0,8 a 1,2 atm.
4.2.1.4 Identificação da característica operacional dos sensores eletrônicos para a detecção de dióxido de carbono

De forma global na Figura 4.20 são apresentados os resultados da caracterização operacional dos sensores eletrônicos avaliados para a detecção de dióxido de carbono. A Figura 4.20.a refere-se a temperatura de operação, a Figura 4.20.b refere-se a umidade relativa de operação, a Figura 4.20.c refere-se a pressão de operação e por fim, na Figura 4.20.d é apresentada a faixa de detecção dos sensores.

Figura 4.20 – Características operacionais dos sensores eletrônicos para a detecção do dióxido de carbono em função da marca e da a) temperatura de operação, b) umidade relativa de operação, c) pressão de operação e d) a faixa de detecção.

As informações apresentadas na Figura 4.20, mostram que o sensor denominado como SENSOR-CO2-5 possui características operacionais superiores (com relação à temperatura, umidade relativa, pressão e faixa de medição) quando comparado aos demais sensores avaliados.

O SENSOR-CO2-5 é um sensor eletroquímico que permite a medição do dióxido de carbono sobre a faixa de 0,5 a 100 %v/v. Este pode ser utilizado em correntes de gás onde a temperatura pode variar de -10 a 35 °C, umidade relativa do gás de 15 a 90 %, e pressão do gás de 0,8 a 1,2 atm.
4.2.2. Diagrama de fluxo do sistema eletrônico da tecnologia alternativa

Na Figura 4.21 se mostra o diagrama de fluxo dos sistemas eletrônicos que foram utilizados no desenvolvimento da tecnologia alternativa.

Figura 4.21 – Diagrama de fluxo dos sistemas eletrônicos principais da tecnologia alternativa para o monitoramento da poluentes gasosos.

O diagrama de fluxo apresentado na Figura 4.21 mostra de forma geral os sistemas principais da tecnologia alternativa segundo a ordem e a distribuição dos elementos e componentes.

Os sistemas eletrônicos da tecnologia alternativa desenvolvida se encontram divididos em quatro sistemas: o primeiro dotado de um sistema de detecção de gases (sensores de H₂S, SO₂, CO e CO₂), o segundo dotado de sistemas de condicionamento de sinais para cada sensor, o terceiro dotado de um sistema de aquisição de dados e por último um sistema de comunicação sem fio.

Na Figura 4.22 são mostrados os sistemas de condicionamento de sinais utilizados na tecnologia alternativa.
Os sistemas de condicionamento de sinais apresentados na Figura 4.22 têm duas finalidades: uma para converter os sinais da corrente em sinais de tensão e a outra para converter sinais de tensão negativos para sinais de tensão positivos amplificados. Esses sistemas de condicionamento de sinais utilizados na tecnologia alternativa desenvolvida foram desenhados em função das características operacionais em termos das variáveis físicas mensuráveis dos sensores de gás utilizados, possibilitando assim uma boa precisão e estabilidade com relação aos sinais eletrônicos fornecidos pelo sensor.

Na Figura 4.23 são apresentados os resultados do sistema eletrônico da tecnologia alternativa para o monitoramento transiente dos poluentes gasosos com comunicação via rádio frequência. Nessa figura, por meio do diagrama de fluxo, se ilustram os elementos principais e auxiliares e o arranjo final do sistema que compreende o “Sistema eletrônico para monitoramento transiente de poluentes gasosos com comunicação via rádio frequência”. Nessa figura cada componente foi representado por números, sendo: (1) tomada de corrente alternada; (2) transformador de corrente alternada para corrente contínua; (3) fonte de energia a partir do uso pilhas ou baterias para o circuito eletrônico; (4) DIP Switch que controlará o tipo de alimentação; (5) diodo 1n4001; (6) capacitor cerâmico 100nf; (7) capacitor eletrolítico 100µf; (8) regulador de voltagem 7815; (9) capacitor eletrolítico 100µf; (10) capacitor cerâmico 100nf; (11) capacitor cerâmico 100nf;...
(12) capacitor eletrolítico 100µf; (13) regulador de voltagem 7805; (14) capacitor eletrolítico 100µf; (15) capacitor cerâmico 100nf; (16) capacitor cerâmico 22pf; (17) capacitor cerâmico 22pf; (18) cristal 4MHz; (19) sensor de temperatura; (20) capacitor eletrolítico 100µf; (21) capacitor eletrolítico 100µf; (22) resistor de 240 Ω; (23) o resistor de 10 Ω; (24) resistor de 4,7 kΩ; (25) microchip PIC16F877A; (26) sistema de radiofreqüência para o sistema eletrônico; (28) sistema de radiofreqüência para o computador; (30) comprimento de comunicação da tecnologia e o computador; (31) computador; (32) sensor de gás; (33) conector no ponto de entrada do poluente gasoso para a caixa de contato; (34) cano de conexão para a coleta de poluentes gasosos; (35) conector no ponto de coleta de poluente gasoso; (36) conector no ponto de saída do poluente gasoso da caixa de contato; (37) cano de conexão para a recirculação do poluente medido; (38) conector no ponto de recirculação do poluente gasoso coletado; (39) ponto de saída do poluente gasoso coletado; (40) chaminé; (41) ponto de amostragem contínua de poluente gasoso; e (42) indústria geradora de poluentes gasosos.

Figura 4.23 – Diagrama de fluxo do sistema eletrônico da tecnologia alternativa para o monitoramento transiente de poluentes gasosos com comunicação via rádio frequência
4.2.3. Diagrama de fluxo do código desenvolvido para o microchip

A Figura 4.24 mostra o diagrama de fluxo do código desenvolvido para o microchip. A tecnologia alternativa desenvolvida possui quatro sistemas eletrônicos os quais são controlados principalmente pelo sistema de aquisição de dados. Este sistema possui um microchip, o qual faz o papel do cérebro e se encarrega do controle das portas analógicas, da conversão dos sinais A/D, dos cálculos matemáticos, e do envio de dados.

\[
x = 5 \times \frac{y}{1024}
\]

\[
z = a \times x + b
\]

Figura 4.24 – Diagrama de fluxo do programa codificado para o microchip.

A Figura 4.24 mostra o resultado e as características do código desenvolvido para o microchip. Para melhor entendimento, o código funciona da seguinte forma: i) Em primeiro lugar, o código permite o ingresso de dados de forma assíncrona (dado necessário para o envio dos dados monitorados); ii) o dado ingressado é guardado na variável N; iii) seguidamente o microchip abre a porta analógica (porta conectada ao condicionador de sinal do sensor) para a leitura da tensão do condicionador de sinal; iv) na sequência o microchip faz a leitura da porta em termos de bytes (de 1 a 1024); v) seguidamente os
bytes lidos são convertidos a números decimais equivalentes à tensão de medida real do condicionador; vi) na sequência o valor convertido é utilizado em uma equação com o fim de calcular o valor da concentração do gás medido pelo sensor; e vii) por fim, o valor calculado com uso da equação é enviado e transmitido para o computador.

4.2.4. Simulação computacional do sistema eletrônico

A simulação computacional do sistema eletrônico foi realizada mediante o software PROTEUS 7.0. Para esta simulação foram utilizadas o diagrama de fluxo apresentado na Figura 4.23 e o código desenvolvido para o microchip. Por meio dessas informações inicialmente foram realizados a construção do diagrama de fluxo do sistema eletrônico no simulador. A Figura 4.25 apresenta o resultado do diagrama de fluxo do sistema eletrônico utilizado para a simulação, e na Figura 4.26 se mostra a simulação do sistema eletrônico.

Figura 4.25 – Diagrama de fluxo utilizado para a simulação computacional da tecnologia alternativa.
Figura 4.26 – Resultado: Simulação computacional da tecnologia alternativa.

Conforme os resultados apresentados nas Figuras 4.25 e 4.26 pode-se constatar que o diagrama de fluxo e o código desenvolvido para o microchip conseguem converter corretamente os sinais analógicos em sinais digitais. Isto pode ser percebido por meio da comparação dos dados mostrados com relação a tensão medida pelos voltímetros virtuais e a janela do terminal virtual (a janela do terminal virtual permite conhecer os dados enviados pelo microchip através da porta de comunicação serial).

4.2.5. Codificação e Simulação do programa desenvolvido para o monitoramento, coleta e armazenamento de dados.

Na Figura 4.27 são apresentados o diagrama de fluxo do programa desenvolvido no Visual Studio. Net. Com base nessa figura e a complexidade do código desenvolvido (1.200 linhas de código), o funcionamento do código se resume nas seguintes etapas:
1) as linhas do código do programa quando executado, primeiramente buscam automaticamente as portas de comunicação abertas no computador, posteriormente mediante a interface visual, o programa permite a configuração da porta de comunicação entre o sistema eletrônico e o programa;

2) seguidamente no começo do monitoramento das variáveis o código automaticamente verifica se existe uma configuração pré-estabelecida da porta de comunicação;

3) no caso de que exista na sequência;

4) o código enviara um dado por meio da porta de comunicação para o sistema eletrônico;

5) seguidamente o sistema eletrônico enviará automaticamente uma linha de dados quase instantâneo (nessa linha de dados se encontram os valores das concentrações dos gases);

6) seguidamente o código do programa recepcionara os dados enviados pelo sistema eletrônico;

7) na sequência a linha de códigos recebida será dividida e armazenada em diferentes variáveis;

8) posteriormente os dados armazenados nas variáveis serão apresentados por meio de tabelas na interface visual indicando o tempo e o dia da coleta dos dados;

9) seguidamente esses mesmos dados serão apresentados na forma de gráficos na mesma interface visual;

10) na sequência esses mesmos dados guardados nas variáveis serão enviadas a uma planilha de Excel e ao servidor;

11) posteriormente o código possui uma linha dedicada à temporização da aquisição de dados (este temporizador realiza o controle do tempo da aquisição dos novos dados);

12) depois de transcorridas o tempo do temporizador serão realizados os passos descritos no ponto 6, 7, 8, 9, 10 e 11 continuamente;

13) no caso onde se queira parar o sistema de monitoramento, o código permite o ingresso de um dado booleano (dado da variável i podendo ser 1 ou 0);
14) depois de ingressado o dado booleano o código fechará a porta de comunicações;

15) posteriormente o código guardará o arquivo gerado na planilha de Excel e por último o programa deixará de funcionar.

Figura 4.27 – Resultado: Diagrama de fluxo do programa desenvolvido.

Para realizar a simulação e verificação do código desenvolvido, foi utilizado o diagrama de fluxo do sistema eletrônico construído no software PROTEUS 7.0 e o programa desenvolvido. Na Figura 4.28 se ilustra o resultado da simulação virtual do programa desenvolvido e o sistema eletrônico.
Conforme os resultados apresentados na Figura 4.28 pode-se constatar que o diagrama de fluxo do sistema eletrônico construído no simulador Proteus 7.0, o código desenvolvido para o microchip e o programa desenvolvido em Visual Studio.Net para a interface visual conseguem comunicar-se corretamente. Isto pode ser percebido por meio da comparação dos dados mostrados com relação a tensão medida pelos voltímetros virtuais e os dados apresentados na tabela, no gráfico do programa desenvolvido e também no dado apresentado na planilha do Excel.

4.2.6. Projeto, construção e montagem da parte física da tecnologia alternativa

Os resultados do projeto, construção e montagem da parte física da tecnologia compreenderam: os testes experimentais dos sistemas eletrônicos, os desenhos das placas por meio do software ARES, a montagem dos elementos e componentes eletrônicos nas placas construídas, o desenho da carcaça por meio do programa de desenho Autodesk Inventor e por último o resultado do comportamento fluidodinâmico do poluente gasoso na parte interna da carcaça da tecnologia alternativa, este realizado por meio do software SolidWorks.
4.2.6.1 Testes experimentais do sistema eletrônico

A Figura 4.29 apresenta uma ilustração dos testes experimentais do sistema eletrônico. Para essa finalidade foram utilizados os resultados dos diagramas de fluxo (Figura IV.23) e as simulações dos sistemas eletrônicos desenvolvidos (Figura IV.26). Por meio dessa informação, e para comprovar o funcionamento dos sistemas eletrônicos de forma real, foi realizada a montagem da parte física dos elementos eletrônicos seguindo a ordem lógica dos sistemas e as conexões, para isso foram utilizadas placas de prova, resistores, capacitores cerâmicos, capacitores eletrolíticos, reguladores de tensão, amplificadores operacionais, microchips, cristal, sistemas de radiofrequência (RF), transformadores de corrente alterna para contínua e cabos de conexão.

Figura 4.29 – Resultados: Testes experimentais dos sistemas eletrônicos.

Depois de realizado a montagem da parte física dos elementos eletrônicos nas placas de prova e posterior experimentação da tecnologia alternativa, num princípio o resultado mostrou uma elevada interferência na forma de ruídos eletrônicos na medição dos sensores, este tipo de interferência provocava oscilações nos valores medidos da tecnologia. A Figura 4.30 apresenta às características dos ruídos eletrônicos provocando oscilações nas medições dos sensores de gases.
Figura 4.30 – Ilustração dos ruídos eletrônicos dos sistemas eletrônicos.

Com base dos resultados dos testes experimentais e os ajustes realizados nos sistemas eletrônicos, posteriormente foram realizados os desenhos e a construção das placas eletrônicas.

4.2.6.2 Desenho e construção das placas eletrônicas

O desenho e a construção das placas eletrônicas contemplou: i) a realização do desenho e projeto das placas eletrônicas por meio do software ARES, cujos resultados são apresentados na Figura 4.31.a; ii) a impressão dos negativos dos circuitos eletrônicos (linhas de conexão ou trilhas), foi realizada com o uso de uma folha couchê e por meio de uma impressora laser, cujos resultados são apresentados na Figura 4.31.b; iii) a realização da impressão do circuito eletrônico, numa placa de cobre (placa de fenolite), utilizando o método de revelado, cujos resultados são apresentados na Figura 4.31.c; iv) a realização da remoção do excesso de cobre utilizando uma solução de percloro de ferro, cujos resultados são apresentados na Figura 4.31.d; e v) por último a realização da montagem dos elementos e componentes eletrônicos na placa eletrônica, cujos resultados são apresentados na Figura 4.32.
Figura 4.31 – Resultados: Desenhos e construção das placas eletrônicas, a) desenho dos circuitos eletrônicos (linhas de conexão ou trilhas), b) impressão do negativo, c) impressão das trilhas na placa de cobre, e d) remoção do excesso de cobre.

Figura 4.32 – Placa eletrônica final.

4.2.6.3 Desenho e simulação da fluidodinâmica da carcaça do nariz eletrônico

Os resultados do desenho da carcaça da tecnologia alternativa são apresentados na Figura 4.33. O desenho da carcaça para o sistema eletrônico foi realizado no programa de
desenho Autodesk Inventor e o desenho foi executado em função do tamanho da placa eletrônica, da altura dos elementos ou componentes e do fenômeno de transporte com relação à movimentação do fluido na parte interna da carcaça (especificamente para que exista o contato entre o sensor e o gás).

Figura 4.33 – Desenho da carcaça para o sistema eletrônico.

Para conhecer e avaliar o comportamento da fluidodinâmica do poluente gasoso na parte interna da carcaça foi utilizado o software SolidWorks. Por meio desse programa conseguiu-se identificar o movimento e o comportamento do fluido gasoso para diferentes condições de operação (1m/s, 5m/s, 10m/s e 20m/s). Essa ferramenta utiliza a equação de quantidade de movimento (Eq. 25) em coordenadas cilíndricas e em regime transitivo com condições iniciais e de contorno definidas em função das características operacionais e geométricas do nariz digital desenvolvido.

\[
\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + v_\theta \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} \right) = -\frac{\partial p}{\partial r} - \left(\frac{1}{r} \frac{\partial}{\partial r}(r \tau_{rr}) + \frac{1}{r} \frac{\partial}{\partial \theta}(r \tau_{r\theta}) + \frac{\partial \tau_{zr}}{\partial z} \right) + \rho g_z \tag{25}
\]

Na Figura 4.34 são apresentados a simulação do comportamento do fluido gasoso (CO₂) na parte interna da carcaça para diferentes condições (1m/s, 5m/s, 10m/s e 20m/s).
Figura 4.34 – Resultado: Simulação do comportamento do fluido na parte interna da carcaça para diferentes condições sendo a velocidade de entrada do fluido gasosos (CO₂) igual a: a) 1m/s, b) 5m/s, c) 10m/s, e d) 20m/s.

Conforme resultados apresentados na Figura 4.34 (Simulação do comportamento do fluido na parte interna da carcaça para diferentes condições), pode-se constatar que a característica geométrica da parte interna da carcaça gera uma resistência ao movimento do gás para todas as condições de operação analisadas. Dependendo da velocidade do fluido, na parte interna da carcaça pode-se constatar o acúmulo do gás, que o caso pode propiciar um maior tempo de contato entre o sensor e o gás a ser medido ou simplesmente dificultar a renovação do fluido. O tempo de contato entre o sensor e o gás é altamente influenciado pela velocidade de movimentação do gás, este deve ser mantida na faixa de 5 a 20 m/s para não propiciar a saturação do sensor. Esta simulação computacional foi constatada por meio de um experimento da fluidodinâmica, na carcaça da tecnologia alternativa, utilizando uma bomba de ar, mangueiras e anemômetros.
4.3. Resultados da Etapa 3 - Testes operacionais na escala laboratorial e também na condição real de operação

Os resultados dos testes operacionais na escala laboratorial e também na condição real de operação compreenderam: 1) a análise do comportamento e a seletividade dos sensores em função dos gases quase puros produzidos com reações químicas; 2) a análise dos resultados dos testes com relação ao tempo de resposta na medição dos gases; e 3) por último o resultado do monitoramento contínuo de gases produzidos em biodigestores.

4.3.1. Testes operacionais na escala laboratorial.

Na Figura 4.35 se apresenta de forma geral os resultados do comportamento da seletividade dos sensores de gás, utilizando em cada um, os gases produzidos com as reações químicas (Equações 22, 23 e 24). A Figura 4.35.a refere-se ao comportamento do sensor de gás sulfídrico exposto a outros gases em função do tempo, Figura 4.35.b, refere-se ao comportamento do sensor de dióxido de enxofre exposto a outros gases em função do tempo, a Figura 4.35.c, refere-se ao comportamento do sensor de monóxido de carbono exposto a outros gases em função do tempo e por fim, a Figura 4.35.d, apresenta o comportamento do sensor de dióxido de carbono exposto a outros gases em função do tempo.

Com base da Figura 4.35 de forma geral em todos os casos constatou-se que os sensores possuem um comportamento estável e quase seletivo quando são expostos a diferentes tipos de gases (três tipos de gases experimentados).

No caso do sensor de gás sulfídrico (Figura 4.35.a) quando foi exposto ao dióxido de enxofre e ao dióxido de carbono, foi identificado um erro na leitura do sensor de 5 a 50 ppm.

No caso do sensor de dióxido de enxofre (Figura 4.35.b) quando foi exposto ao gás sulfídrico e ao dióxido de carbono, foi identificado um erro na leitura do sensor de 10 a 45 ppm.

No caso do sensor do monóxido de carbono (Figura 4.35.c) quando foi exposto ao gás sulfídrico e ao dióxido de enxofre foi identificado um erro na leitura do sensor de 12 a
20 ppm e quando o sensor de CO foi exposto ao dióxido de carbono foi identificado um erro na leitura do sensor de 200 a 310 ppm neste último caso possivelmente a reação química para produzir o CO\(_2\) também pode haver produzido uma pequena quantidade de CO.

No caso do sensor de dióxido de carbono (Figura 4.35.d) quando foi exposto ao gás sulfídrico e ao dióxido de enxofre foi identificado um erro na leitura uma variação da tensão de saída do sensor de -15,2 a -14,8 mV respectivamente.

![Diagramas de comportamento de sensores de gás](image)

Figura 4.35 – Comportamento da seletividade dos sensores de gás sendo: a) o comportamento do sensor de gás sulfídrico exposto a outros gases em função ao tempo; b) o sensor de dióxido de enxofre exposto a outros gases em função ao tempo; c) o sensor de monóxido de carbono exposto a outros gases em função ao tempo; e d) o sensor de dióxido de carbono exposto a outros gases em função ao tempo.

4.3.2. Testes da tecnologia desenvolvida na condição real de operação.

Conforme procedimento metodológico, os testes operacionais, na condição real, contemplaram a avaliação do tempo de resposta na medição e monitoramento da composição dos poluentes gasosos e o monitoramento real do biogás produzido em biodigestores, cujos resultados são apresentados na sequência.
4.3.2.1 Teste do tempo de resposta na medição de gases

De forma geral na Figura 4.36 se apresenta os resultados do comportamento do tempo de resposta no monitoramento do biogás produzido em três biodigestores, na condição real de operação. A Figura 4.36.a apresenta o comportamento do sensor de gás sulfídrico em função do tempo de resposta na exposição do biogás. A Figura 4.36.b apresenta o comportamento do sensor de dióxido de enxofre em função do tempo de resposta na exposição do biogás. A Figura 4.36.c apresenta o comportamento do sensor de monóxido de carbono em função do tempo de resposta na exposição do biogás e na Figura 4.36.d são apresentados o comportamento do sensor de dióxido de carbono em função do tempo de resposta na exposição do biogás.

Figura 4.36 – Comportamento dos sensores de gás expostos ao biogás gerado em três biodigestores em função do tempo de resposta sendo: a) o sensor de gás sulfídrico; b) o sensor de dióxido de enxofre; c) o sensor de monóxido de carbono; e d) o sensor de dióxido de carbono.

Conforme os resultados apresentados na Figura 4.36, pode-se constatar que o comportamento dos sensores analisados apresentam uma resposta rápida quando são
expostos à presença de gases reais, apresentando uma resposta de medição em torno de 60 segundos, comprovando assim a eficácia.

4.3.2.1 Monitoramento contínuo de gases produzidos em biodigestores

De forma geral, na Figura 4.37 se apresenta os resultados dos testes experimentais do monitoramento da composição do biogás produzido em biodigestores, na condição real de operação. A Figura 4.37.a apresenta o comportamento do sensor de gás sulfídrico em função do tempo de exposição ao biogás. A Figura 4.37.b apresenta o comportamento do sensor de dióxido de enxofre em função do tempo de exposição ao biogás. A Figura 4.37.c apresenta o comportamento do sensor de monóxido de carbono em função do tempo de exposição ao biogás e na Figura 4.37.d se apresenta o comportamento do sensor de dióxido de carbono em função do tempo de exposição ao biogás.

Figura 4.37 – Resultado: Comportamento dos sensores de gás função do tempo de exposição ao biogás sendo: a) o sensor de gás sulfídrico; b) o sensor de dióxido de enxofre; c) o sensor de monóxido de carbono; e d) o sensor de dióxido de carbono.

Conforme os resultados apresentados na Figura 4.37. O monitoramento realizado com a tecnologia alternativa apresenta um comportamento estável (livre de interferências
com relação a ruídos eletrônicos e também na comunicação remota) na medição das concentrações dos gases. O monitoramento transiente mostrou que os sensores acompanham a mudança de estado com relação à variação da composição química do biogás. O monitoramento mostrou que os sensores precisam em torno de 2 minutos para dessaturar o gás medido no sensor e a tecnologia alternativa apresenta versatilidade na obtenção de dados de forma contínua.

Considerando que a vida útil dos sensores e para preservar a sua integridade na utilização no monitoramento de outros sistemas de emissão de poluentes gasosos, teve-se que interromper o monitoramento no tempo após as linhas pontilhadas das figuras IV.36, a, b, c e d.

4.4. Resultados da etapa 4 - Avaliação dos requisitos de patenteamento

Após o desenvolvimento da tecnologia foi realizado um estudo prospectivo para avaliar a novidade e os requisitos de patenteamento do produto tecnológico desenvolvido. Para essa finalidade a busca das tecnologias similares foram realizadas em manuais, informações técnicas e também nos bancos de patentes (Derwent, Esp@cenet e USPTO). Foram identificadas 7 marcas, 15 modelos de produtos tecnológicos e 5 patentes. Em cada caso, as tecnologias foram avaliadas com base de 8 critérios sendo eles: 1) as características operacionais relacionadas com o monitoramento/detecção de gases; 2) a faixa de medição dos gases; 3) a precisão das medições; 4) a forma de armazenamento/coleta dos dados; 5) a sua forma de apresentação dos dados; 6) a sua forma de comunicação; 7) a capacidade de instalação num sistema de monitoramento e/ou controle de processos; e 8) o custo.

Após o processo prospectivo foi identificada várias tecnologias desenvolvidas em 5 países (Alemanha, Austrália, Brasil, Coréia e Norte América). Nas tabelas 4.2, 4.3, 4.4, 4.5 e 4.6 são apresentados, respectivamente, os resultados da avaliação das tecnologias de monitoramento e detecção de gases desenvolvidas nesses países.
Tabela 4.2 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado alemão.

<table>
<thead>
<tr>
<th>Critérios</th>
<th>Vantagem</th>
<th>Desvantagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) características operacionais relacionadas com o monitoramento e detecção de gases</td>
<td>As tecnologias convencionais avaliadas, conseguem detectar até 5 tipos de gases de forma contínua e simultaneamente. Estas tecnologias convencionais permitem a seleção e o uso de uma gama de mais de 25 tipos de sensores, permitindo assim a detecção de diferentes tipos de gases e vapores. Entre eles o dióxido de carbono (CO$_2$), monóxido de carbono (CO), gás sulfídrico (H$_2$S), e o dióxido de enxofre (SO$_2$).</td>
<td>A faixa de medição das tecnologias convencionais avaliadas: com relação ao dióxido de carbono (CO$_2$) é de 0 até 100%v/v, e com relação ao monóxido de carbono (CO) é de 0 até 2000ppmV.</td>
</tr>
<tr>
<td>2) a faixa de medição dos gases</td>
<td>A faixa de medição das tecnologias convencionais avaliadas: com relação ao dióxido de carbono (CO$_2$) é de 0 até 100%v/v, e com relação ao monóxido de carbono (CO) é de 0 até 2000ppmV.</td>
<td>A faixa de medição das tecnologias convencionais avaliadas: com relação ao gás sulfídrico (H$_2$S) é de 0 até 1000ppmV, e com relação ao dióxido de enxofre (SO$_2$) é de 0 até 100ppmV.</td>
</tr>
<tr>
<td>3) a precisão das medições</td>
<td>Segundo os manuais das tecnologias convencionais avaliadas, indicam que as tecnologias possuem uma alta precisão, porém não foram encontrados dados numéricos exatos.</td>
<td></td>
</tr>
<tr>
<td>4) a forma de armazenamento/coleta dos dados</td>
<td>As tecnologias convencionais avaliadas permitem o armazenamento dos dados monitorados na memória interna e de forma contínua.</td>
<td>As tecnologias convencionais avaliadas, não permitem o armazenamento e coleta de dados de forma contínua mediante um computador.</td>
</tr>
<tr>
<td>5) a sua forma de apresentação dos dados</td>
<td>As tecnologias convencionais apresentam os dados do monitoramento e detecção dos gases de forma contínua através de uma tela LCD fixada na tecnologia.</td>
<td>As tecnologias convencionais não permitem a apresentação dos dados monitorados através de uma interface visual instalada no computador.</td>
</tr>
<tr>
<td>6) a sua forma de comunicação</td>
<td>As tecnologias convencionais avaliadas possuem uma interface de comunicação infravermelha, utilizada somente para o envio dos dados armazenados na memória interna da tecnologia para o computador.</td>
<td>As tecnologias convencionais avaliadas não permitem o envio contínuo e remoto dos dados monitorados para um computador.</td>
</tr>
<tr>
<td>7) a capacidade de instalação num sistema de monitoramento e/ou controle de processos</td>
<td></td>
<td>As tecnologias convencionais avaliadas não podem ser instaladas a um sistema de monitoramento e/ou controle de processos. O custo da tecnologia convencional está acima dos R$10,300,00.</td>
</tr>
<tr>
<td>8) o custo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

78
<table>
<thead>
<tr>
<th>Critérios</th>
<th>Vantagem</th>
<th>Desvantagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) características operacionais relacionadas com o monitoramento/detecção de gases</td>
<td>As tecnologias convencionais avaliadas, conseguem detectar até 6 tipos de gases de forma contínua e simultânea. Estas tecnologias convencionais permitem a seleção e o uso de uma gama de mais de 9 tipos de sensores, permitindo assim a detecção de diferentes tipos de gases e vapores. Entre eles o dióxido de carbono (CO₂), monóxido de carbono (CO), gás sulfídrico (H₂S), e o dióxido de enxofre (SO₂).</td>
<td>A faixa de medição das tecnologias convencionais encontradas: com relação ao gás sulfídrico (H₂S) é de 0 até 100 ppmV, e com relação ao dióxido de enxofre (SO₂) é de 0 até 50 ppmV.</td>
</tr>
<tr>
<td>2) a faixa de medição dos gases</td>
<td>A faixa de medição das tecnologias convencionais encontradas: com relação ao dióxido de carbono (CO₂) é de 5 até 100%v/v, e com relação ao monóxido de carbono (CO) a faixa de medição é de 0 até 500 ppmV.</td>
<td></td>
</tr>
<tr>
<td>3) a precisão das medições</td>
<td>As fichas técnicas das tecnologias convencionais avaliadas indicam que as tecnologias possuem uma precisão de: 1% relacionado com o dióxido de carbono (CO₂); 1 ppmV relacionado com o monóxido de carbono (CO); 1 ppmV relacionado com o gás sulfídrico (H₂S); e de 0,1 ppmV relacionado com o dióxido de enxofre (SO₂).</td>
<td>As tecnologias convencionais encontradas não permitem o armazenamento e coleta de dados de forma contínua mediante um computador.</td>
</tr>
<tr>
<td>4) a forma de armazenamento/coleta dos dados.</td>
<td>As tecnologias convencionais avaliadas permitem o armazenamento contínuo dos dados monitorados na memória interna.</td>
<td>As tecnologias convencionais encontradas não permitem a apresentação dos dados monitorados através de uma interface visual instalada no computador.</td>
</tr>
<tr>
<td>5) a sua forma de apresentação dos dados.</td>
<td>As tecnologias convencionais encontradas apresentam os resultados do monitoramento dos gases de forma contínua através de uma tela LCD fixada na tecnologia.</td>
<td>As tecnologias convencionais não permitem a apresentação dos dados monitorados através de uma interface visual instalada no computador.</td>
</tr>
<tr>
<td>6) a sua forma de comunicação</td>
<td>As tecnologias convencionais avaliadas possuem uma interface de comunicação infravermelha para o envio dos dados armazenados da memória interna para o computador.</td>
<td>As tecnologias convencionais avaliadas não permitem o envio contínuo e remoto dos dados monitorados para um computador.</td>
</tr>
<tr>
<td>7) a capacidade de instalação num sistema de monitoramento e/ou controle de processos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) o custo</td>
<td></td>
<td>O custo da tecnologia convencional está acima dos R$13.300,00.</td>
</tr>
</tbody>
</table>
Tabela 4.4 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado brasileiro.

<table>
<thead>
<tr>
<th>Critérios</th>
<th>Vantagem</th>
<th>Desvantagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) características operacionais relacionadas com o monitoramento/detecção de gases</td>
<td>A tecnologia convencional avaliada permite o monitoramento/detecção de 4 tipos de gases de forma simultânea e contínua.</td>
<td>A tecnologia convencional encontrada permite somente a detecção de 4 tipos de gases. Entre eles metano (CH₄), monóxido de carbono (CO), gás sulfídrico (H₂S), e oxigênio O₂. A faixa de medição da tecnologia convencional avaliada: com relação ao monóxido de carbono (CO) é de 0 até 1000 ppmV, e com relação ao gás sulfídrico (H₂S) é de 0 até 100 ppmV.</td>
</tr>
<tr>
<td>2) a faixa de medição dos gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) a precisão das medições</td>
<td>A ficha técnica da tecnologia convencional indica que a tecnologia possui uma precisão ±5%.</td>
<td></td>
</tr>
<tr>
<td>4) a forma de armazenamento/coleta dos dados.</td>
<td>A tecnologia convencional permite o armazenamento dos valores na memória interna.</td>
<td>A tecnologia convencional avaliada somente consegue fazer o registro dos valores máximos e mínimos previamente programados. A tecnologia convencional encontrada, não permite o armazenamento e coleta de dados de forma contínua mediante um computador.</td>
</tr>
<tr>
<td>5) a sua forma de apresentação dos dados.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) a sua forma de comunicação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) a capacidade de instalação num sistema de monitoramento e/ou controle de processos.</td>
<td></td>
<td>A tecnologia convencional avaliada não pode ser instalada a um sistema de monitoramento e/o controle de processos. O custo da tecnologia convencional está acima dos R$3.392,18.</td>
</tr>
<tr>
<td>8) o custo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

80
Tabela 4.5 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado coreano.

<table>
<thead>
<tr>
<th>Critérios</th>
<th>Vantagem</th>
<th>Desvantagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) características operacionais relacionadas com o monitoramento/detecção de gases</td>
<td>A tecnologia convencional encontrada permite o monitoramento/detecção de 4 tipos de gases de forma simultânea e contínua.</td>
<td>A tecnologia convencional encontrada permite somente a medição do gás sulfídrico (H₂S), oxigênio (O₂), monóxido de carbono (CO), e atmosfera explosiva (EX).</td>
</tr>
<tr>
<td>2) a faixa de medição dos gases</td>
<td>A faixa de medição da tecnologia convencional avaliada: com relação ao monóxido de carbono (CO) é de 0 até 1000 ppmV, e com relação ao gás sulfídrico (H₂S) é de 0 até 200 ppmV.</td>
<td></td>
</tr>
<tr>
<td>3) a precisão das medições</td>
<td>A ficha técnica da tecnologia convencional indica que a tecnologia possui uma precisão ±3%.</td>
<td>A tecnologia convencional avaliada permite o registro das concentrações máximas e mínimas, porém, não permite o envio de dados a um computador.</td>
</tr>
<tr>
<td>4) a forma de armazenamento/coleta dos dados</td>
<td>A tecnologia convencional avaliada apresenta os dados do monitoramento dos gases de forma contínua através de uma tela LCD fixada na tecnologia.</td>
<td>A tecnologia convencional não permite a apresentação dos dados monitorados através de uma interface visual instalada no computador.</td>
</tr>
<tr>
<td>5) a sua forma de apresentação dos dados</td>
<td>A tecnologia convencional avaliada permite o envio contínuo e remoto dos dados monitorados para um computador.</td>
<td>A tecnologia convencional entra no sistema de monitoramento e/ou controle de processos.</td>
</tr>
<tr>
<td>6) a sua forma de comunicação</td>
<td>A tecnologia convencional encontrada não pode ser instalada a um sistema de monitoramento e/ou controle de processos.</td>
<td>O custo da tecnologia convencional está acima dos R$2.980,00.</td>
</tr>
<tr>
<td>7) a capacidade de instalação num sistema de monitoramento e/ou controle de processos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) o custo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 4.6 – Vantagem e Desvantagem das tecnologias convencionais para a medição e monitoramento de gases encontrados no mercado norte-americano.

<table>
<thead>
<tr>
<th>Critérios</th>
<th>Vantagem</th>
<th>Desvantagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) características operacionais relacionadas com o monitoramento/detecção de gases</td>
<td>As tecnologias convencionais avaliadas conseguem detectar até 6 tipos de gases de forma contínua e simultânea. Estas tecnologias convencionais permitem a seleção e o uso de uma gama de mais de 25 tipos de sensores, permitindo assim a detecção de diferentes tipos de gases e vapores. Entre eles o dióxido de carbono (CO₂), monóxido de carbono (CO), gás sulfídrico (H₂S), e o dióxido de enxofre (SO₂).</td>
<td>A faixa de medição das tecnologias convencionais avaliadas: com relação ao dióxido de carbono (CO₂) é de 0 até 5%v/v; com relação ao monóxido de carbono (CO) é de 0 até 1500ppmV; com relação ao gás sulfídrico (H₂S) é de 0 até 500ppmV; e com relação ao dióxido de enxofre (SO₂) é de 0 até 150ppmV.</td>
</tr>
<tr>
<td>2) a faixa de medição dos gases</td>
<td>A ficha técnica das tecnologias convencionais avaliadas indica que a precisão: do dióxido de carbono (CO₂) é igual a 0,01%; de monóxido de carbono (CO) é igual a 1ppmV; de gás sulfídrico (H₂S) é igual a 0,1ppmV; e de dióxido de enxofre (SO₂) é igual a 0,1ppmV.</td>
<td></td>
</tr>
<tr>
<td>3) a precisão das medições</td>
<td>As tecnologias convencionais avaliadas permitem o armazenamento contínuo dos dados monitorados mediante um computador de maneira remota.</td>
<td>As tecnologias convencionais encontradas necessitam de um acessório adicional para a comunicação entre o computador e a tecnologia.</td>
</tr>
<tr>
<td>4) a forma de armazenamento/coleta dos dados</td>
<td>As tecnologias convencionais avaliadas apresentam os dados do monitoramento dos gases de forma contínua através de uma tela LCD fixada na tecnologia e através de uma interface visual instalada numa tela de um computador.</td>
<td></td>
</tr>
<tr>
<td>5) a sua forma de apresentação dos dados</td>
<td>As tecnologias convencionais avaliadas possuem uma interface comunicação infravermelha.</td>
<td></td>
</tr>
<tr>
<td>6) a sua forma de comunicação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) a capacidade de instalação num sistema de monitoramento e/ou controle de processos</td>
<td></td>
<td>As tecnologias convencionais encontradas não podem ser instaladas a um sistema de monitoramento e/o controle de processos. O custo das tecnologias convencionais encontradas está acima dos R$13.340,25.</td>
</tr>
<tr>
<td>8) o custo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
De modo geral o resultado da etapa de prospecção apontou as seguintes limitações, nas tecnologias tradicionais:

a) as tecnologias convencionais avaliadas têm uma limitação técnica com relação à baixa faixa de detecção do gás sulfídrico e do dióxido de enxofre, limitando dessa forma sua utilização em diferentes atividades industriais, onde se têm emissões desses gases por acima dos 1500ppmV;

b) as tecnologias convencionais encontradas, não permitem o armazenamento e coleta de dados de forma contínua através de um computador;

c) a maioria das tecnologias convencionais avaliadas não permite a apresentação dos resultados (dados de monitoramento) de forma contínua e de forma remota por meio de uma interface visual instalada no computador;

d) as tecnologias convencionais encontradas não podem ser instaladas em um sistema de monitoramento e/ou controle de processos; e

e) o custo das tecnologias convencionais está por acima dos R$ 2.980,00.

Nas tabelas 4.7, 4.8, 4.9, 4.10 e 4.11 são apresentados, respectivamente, os resultados da busca de anterioridade em bancos de patentes.

Tabela 4.7 – Avaliação técnica da Patente US 8717161B1 (CROOK, 2014).

<table>
<thead>
<tr>
<th>Diferença(s)</th>
<th>Problema(s) técnico(s) da tecnologia já existente</th>
<th>A característica construtiva da tecnologia já existente</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tecnologia serve especificamente para realizar o monitoramento da qualidade do ar em ambientes de trabalho. A tecnologia possui um sistema de alarme do tipo sonoro, para indicar a presença de concentrações elevadas de gás sulfídrico.</td>
<td>A tecnologia mede baixas concentrações de gás sulfídrico.</td>
<td>A patente da tecnologia não mostra os esquemas construtivos a detalhe com relação a placa eletrônica.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diferença(s)</th>
<th>Problema(s) técnico(s) da tecnologia já existente</th>
<th>A característica construtiva da tecnologia já existente</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tecnologia permite o monitoramento de vários tipos de gases.</td>
<td>A tecnologia não especifica os tipos de gases que poderiam ser medidos.</td>
<td>A patente da tecnologia não mostra os esquemas construtivos com relação a placa eletrônica.</td>
</tr>
<tr>
<td>A tecnologia transmite a informação da localização e o nível da concentração dos gases de maneira periódica e remota.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diferença(s)</th>
<th>Problema(s) técnico(s) da tecnologia já existente</th>
<th>A característica construtiva da tecnologia já existente</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tecnologia pode monitorar vários tipos de gases tóxicos.</td>
<td>A tecnologia não especifica a faixa de medição com relação aos gases tóxicos.</td>
<td>A patente da tecnologia mostra esquemas construtivos com relação à placa eletrônica, porém, não especifica os valores e códigos dos elementos utilizados na tecnologia.</td>
</tr>
<tr>
<td>A tecnologia possui um sistema de alarme sonoro para indicar a presença de gases tóxicos em um determinado local ou em lugares onde existe vazamento de gases.</td>
<td>A tecnologia não especifica o comprimento de conexão remota entre o dispositivo portátil e o computador.</td>
<td></td>
</tr>
<tr>
<td>A tecnologia tem um painel solar, para fornecer de energia elétrica à tecnologia.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diferença(s)</th>
<th>Problema(s) técnico(s) da tecnologia já existente</th>
<th>A característica construtiva da tecnologia já existente</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tecnologia pode identificar vários tipos de gases.</td>
<td>A tecnologia não foi desenhada para medir um tipo de gás específico.</td>
<td>A patente da tecnologia não mostra os esquemas construtivos a detalhe com relação a placa eletrônica.</td>
</tr>
<tr>
<td>A tecnologia é portátil e permite monitorar, armazenar e apresentar os dados medidos por meio de uma tela LCD.</td>
<td>A tecnologia não especifica as faixas de medição dos gases a ser monitorados.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A tecnologia não especifica o comprimento de conexão via radiofrequência entre o dispositivo portátil e o computador.</td>
<td></td>
</tr>
</tbody>
</table>
Tabela 4.11 – Avaliação técnica da Patente US 6182497 (KRAJCI et al. 1999).

<table>
<thead>
<tr>
<th>Diferença(s)</th>
<th>Problema(s) técnico(s) da tecnologia já existente</th>
<th>A característica construtiva da tecnologia já existente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realiza o monitoramento de vários tipos de poluentes gasosos. A tecnologia possui um sistema de alarme sonoro para indicar a presença de gases tóxicos em um determinado local ou em lugares onde existe vazamento de gases.</td>
<td>A tecnologia possui uma comunicação remota limitada para a comunicação entre o sistema central de monitoramento e os detectores de gás. A tecnologia não especifica as faixas de medição para cada gás.</td>
<td>A patente da tecnologia não mostra os esquemas construtivos a detalhe com relação a placa eletrônica.</td>
</tr>
</tbody>
</table>

Por meio da busca de anterioridade nas patentes, não foi constatada técnica semelhante da tecnologia desenvolvida, o método/tecnologia mais próxima foi o “aparelho e método para o monitoramento de gás sem fio” apresentado na patente “US 20040056771 A1”, porém essa tecnologia não especifica a faixa de medição das concentrações dos gases a medir, o que confere uma limitação importante com relação ao uso e incorporação desse tipo de tecnologias na indústria.

A maioria das patentes e suas tecnologias desenvolvidas estão sendo utilizados como sistemas de controle da qualidade do ar em ambientes de trabalho, permitindo assim detectar concentrações baixas de gás sulfídrico e gases tóxicos, os sistemas de monitoramento possuem um alarme sonoro que é ativado quando as concentrações de H$_2$S ou dos gases tóxicos atingem valores por acima dos limites permissíveis de respiração, a configuração e o fim da tecnologia impossibilita o uso para outros fins conforme reportado nas patentes US 8717161B1; US 20040056771A1; US 6182497.

Outras tecnologias, conforme reportado nas patentes US 20040056771 A1; US 6422061; US 6182497, possuem um sistema de monitoramento remoto para a detecção de vários tipos de gases tóxicos, incluído o gás sulfídrico, porém essas tecnologias não apresentam flexibilidade na faixas de medição das concentrações dos gases e/ou na distância de comunicação sem fio.

De modo geral pode-se constatar os elementos que justificaram a novidade, a atividade inventiva, a aplicação industrial e a suficiência descritiva da tecnologia alternativa que resultou da presente dissertação de mestrado. Em função disso foi concretizado a proteção intelectual da tecnologia desenvolvida no Instituto Nacional de Propriedade Industrial-INPI.
5. CONCLUSÕES

Com base nos resultados apresentados pode-se concluir que foi possível atingir o objetivo do trabalho. Assim, a tecnologia alternativa desenvolvida para o monitoramento de poluentes gasosos, atendeu as premissas do projeto, com os seguintes atributos: 1) versatilidade na sua utilização em várias áreas, seja na área industrial ou agroindustrial; 2) permite a detecção de até quatro tipos de gases de forma contínua e simultânea; 3) de acordo com as características dos sensores apresenta uma faixa de medição, com relação ao gás sulfídrico (H₂S), de 0 até 6000 ppmV, com relação ao dióxido de enxofre (SO₂), de 0 até 6000 ppmV, com relação ao monóxido de carbono (CO), de 0 até 5000 ppmV, e com relação ao dióxido de carbono (CO₂), de 0,5 até 100 %v/v; 4) favorece a sua utilização em diversas condições de operação, temperatura de -30 a 50ºC, umidades relativas de 15 a 90 %, e pressões de 0,8 a 1,2 atm; 5) possui também a incorporação de sensores de temperatura e umidade; 6) possui um software computacional desenvolvido especificamente para realizar o monitoramento, armazenamento, e exportação de dados; 7) permite o armazenamento e coleta de dados de forma contínua mediante um computador; 8) permite a apresentação dos resultados (dados de monitoramento) de forma contínua através de uma interface visual instalada no computador o qual é apresentado na forma de gráficos e tabelas; 9) permite a exportação de dados tanto para uma planilha de Excel e para um servidor alojado na internet de forma contínua; 10) permite a conectividade entre a tecnologia e o computador de forma contínua, remota (comunicação sem fio num comprimento de 500m), e através de um servidor alojado na internet; e 11) pode ser instalado em sistemas de monitoramento e/ou controle de processos. Além do mais, devido a suas características inovadoras, foi objeto de proteção intelectual junto ao Instituto Nacional de Propriedade Industrial (INPI) por meio do qual foi criado a expectativa de uma carta patente.

Desta forma, o presente trabalho de dissertação de mestrado contribui com o desenvolvimento da ciência e tecnologia brasileira.
REFERÊNCIAS BIBLIOGRÁFICAS

PANTOJA FILHO, J. L. R. **Avaliação da utilização de diferentes materiais suporte na biofiltração de sulfeto de hidrogênio.** Escola de Engenharia de São Carlos da Universidade de São Paulo, 198 p. 2008. Dissertação (Mestrado em Engenharia na Área de Hidráulica e Saneamento)

PEREZ, F. E. V.; ARENY, R. P. **Microcontrolers fundamentals and application with PIC.** Taylor & Francis Group, 2009.

POLI, A. A. **Combustible gas detector having catalytic sensor stabilizing network.** United Statés patênt US4854155A. 1989 Ago. 8.

SOUZA, D. J. Desbravando o PIC16F84. 4. ed. São Paulo: Érica, 2000

WHITE MARTINS (2015). **Dióxido de enxofre: Ficha de informações de segurança de produtos químicos.** Disponível em: <http://www.medigas.com/sa/br/WMSEGPRO.NSF/43419c9f92323ddf83257a8e004a0d1e/56e7ddbe0fa0a4a6032571f8004a8c7c/$FILE/P4655.pdf> Acesso em: 20 agosto de 2015.

