EFEITO DA COBERTURA PLÁSTICA NO DESEMPENHO DE UMA LAGOA ANAERÓBIA TRATANDO EFLUENTE DE INDÚSTRIA DE FÉCULA DE MANDIOCA

CLORI JOSÉ PONTELLO

CASCABEL – PARANÁ – BRASIL

MAIO/2005
EFEITO DA COBERTURA PLÁSTICA NO DESEMPENHO DE UMA LAGOA ANAERÔBIA TRATANDO EFLUENTE DE INDÚSTRIA DE FÉCULA DE MANDIOCA

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Agrícola em cumprimento parcial aos requisitos para obtenção do título de Mestre em Engenharia Agrícola, área de concentração em Engenharia de Sistemas Agroindustriais.

Orientadora: Profª. Dra. Simone Damasceno Gomes

CASCAVEL – Paraná – Brasil

MAIO/2005
CLORI JOSÉ PONTELLO

“Efeito da cobertura plástica no desempenho de uma lagoa anaeróbia tratando efluente de indústria de fécula de mandioca”

Dissertação aprovada como requisito parcial para obtenção do grau de Mestre no Curso de Pós-Graduação em Engenharia Agrícola da Universidade Estadual do Oeste do Paraná – UNIOESTE, pela comissão formada pelos professores:

Orientadora: Profª. Drª. Simone Damasceno Gomes
UNIOESTE/CCET – Cascavel - PR

Profª. Drª. Ana Claudia Barana
UEPG – Ponta Grossa - PR

Prof. Dr. Ajadir Fazolo
UNIOESTE/CCET – Cascavel - PR

Prof. Dr. Manoel Moisés Ferreira de Queiroz
UNIOESTE/CCET – Cascavel - PR

Cascavel, 31 de maio de 2005.
AGRADECIMENTOS

Aos funcionários do IAP - Instituto Ambiental do Paraná, sediados em Umuarama e Toledo.

Aos funcionários da Empresa Pinduca Ltda, pelo apoio na realização do experimento.

À Professora Doutora Simone Damasceno Gomes, pela orientação, compreensão e amizade.

Aos demais professores do Mestrado pelos ensinamentos passados.

À coordenação do Curso de Pós-Graduação em Engenharia Agrícola, UNIOESTE - PR, campus de Cascavel, pelo apoio durante a realização do curso.

Aos colegas de mestrado pela amizade e companheirismo.

Aos inúmeros colaboradores anônimos, que de alguma forma contribuíram para a realização deste trabalho.
Tabela A8 Temperaturas diárias referente ao mês de julho de 2004...........66
Tabela A9 Temperaturas diárias referente ao mês de agosto de 2004.......... 67
Tabela A10 Temperaturas diárias referente ao mês de setembro de 2004..... 68
Tabela A11 Temperaturas diárias referente ao mês de outubro de 2004....... 69
LISTA DE TABELAS

Tabela 1 Composição de água residual da fecularia Fleischmann-Royal de Conchal – SP.. 8
Tabela 2 Métodos de determinação dos parâmetros analisados...............28
Tabela 3 Tabela de dados do afluente..31
Tabela 4 Comparativo da composição do substrato estudado com dados de literatura...33
Tabela 5 Dados de temperaturas médias mensais do ar, do afluente e dos efluentes dos reatores..34
Tabela 6 Tabela de dados dos efluentes dos reatores.........................44
Tabela 7 Eficiências de remoção de DQO, DBO₅, ST e STV para os reatores...46
LISTA DE FIGURAS

Figura 1 Fluxograma de produção de fécula pelo sistema EBS – Elétrica Bio Solar Ltda (2004)... 5
Figura 2 Esquema da digestão anaeróbia, mostrando o metabolismo seqüencial, adaptado de CHERNICHARO (1997).................... 11
Figura 3 Peneira para remoção de sólidos da água de lavagem da raiz...17
Figura 4 Recepção do afluente (água vegetal + água de lavagem de raiz) 18
Figura 5 Lagoa anaeróbia do sistema de tratamento da fecularia...........18
Figura 6 Lagoa facultativa do sistema de tratamento da fecularia........ 19
Figura 7 Filtro de retro-lavagem para o efluente final...........................19
Figura 8 Esquema ilustrativo do experimento..20
Figura 9 Detalhe da construção do reator I – coberto........................... 21
Figura 10 Detalhe da construção do reator II – descoberto.....................22
Figura 11 Detalhe da cobertura do Reator I..22
Figura 12 Vista dos dois reatores instalados, bem como das linhas de alimentação... 23
Figura 13 Medidor de vazão com fluxo para cada reator.......................... 23
Figura 14 Esquema ilustrativo da alimentação e descargas dos reatores.24
Figura 15 Pontos de amostragem de efluente dos reatores......................24
Figura 16 Caminhão auto-fossa utilizado no enchimento dos reatores......25
Figura 17 Reatores RI – coberto (ao fundo) e RII – descoberto (em primeiro plano).. 27
Figura 18 Detalhe do reator descoberto.. 27
Figura 19 Relação entre a DQO e DBO₅ efluente................................. 31
Figura 20 Relação entre os Sólidos Totais Voláteis e os Sólidos Totais do afluente no período estudado............................. 32
Figura 21 Comportamento das temperaturas médias dos efluentes em relação à temperatura do afluente às 10 horas............ 35
Figura 22 Comportamento das temperaturas médias dos efluentes em relação à temperatura do afluente às 15 horas............. 35
Figura 23 Temperatura diária do ar e efluente dos reatores do mês de julho de 2003 a abril de 2004................................. 37
Figura 24 Temperatura diária do ar e efluente dos reatores do mês de maio de 2004 a outubro de 2004................................. 38
Figura 25 Temperatura diária do ar e efluente dos reatores do mês de julho de 2003 a abril de 2004................................. 39
Figura 26 Temperatura diária do ar e efluente dos reatores do mês de maio de 2004 a outubro de 2004................................. 40
Figura 27 Variação do pH do sistema ao longo do período de amostragem 45
Figura 28 Eficiência de Remoção de DQO durante o período estudado...46
Figura 29 Eficiência de remoção da DBO₅ ao longo do período estudado..48
Figura 30 Eficiência de remoção de Sólidos Totais ao longo do período de estudo... 49
Figura 31 Eficiência de remoção de Sólidos Totais Voláteis ao longo do experimento.
LISTA DE ABREVIATURAS E SÍMBOLOS

DBO₅ - Demanda Bioquímica de Oxigênio
DQQ - Demanda Química de Oxigênio
RC - Reator Coberto
RD - Reator Descoberto
STV - Sólidos Totais Voláteis
STF - Sólidos Totais Fixos
ST - Sólidos Totais
SSS - Sólidos Suspensos Sedimentáveis
TDH - Tempo de Detenção Hidráulico
T₀ - Temperatura do Ar Ambiente
T₁ - Temperatura do Afluente
T₂ - Temperatura do Efluente do Reator Coberto
T₃ - Temperatura do Efluente do Reator Descoberto
T₀' - Temperatura média do Ar Ambiente
T₁' - Temperatura média do Afluente
T₂' - Temperatura média do Efluente do Reator Coberto
T₃' - Temperatura média do Efluente do Reator Descoberto
RESUMO

As fecularias de mandioca geram um volume de efluente significativo e de elevada preocupação ambiental, devido a sua elevada carga poluidora. É muito comum a utilização de lagoas de estabilização para o tratamento de águas residuárias do setor de transformação de raiz de mandioca. Entretanto, nos períodos de inverno, coincidindo com o período de safra e esmagamento, observa-se uma queda na eficiência dos sistemas de tratamento que podem ocorrer em razão da diminuição da temperatura ambiente. O presente trabalho buscou avaliar o efeito da cobertura plástica na estabilidade e manutenção da temperatura de lagoa anaeróbica, tratando efluente de fecularia de mandioca. O sistema foi constituído de dois reatores alimentados em paralelos, com volume útil de 15,98m³ cada, tempo de detenção hidráulico de 10 dias, alimentação contínua, sem correção de pH e sem controle de temperatura. Durante o período de um ano, foram monitoradas as temperaturas do ar, entrada e saída dos reatores com medições realizadas diariamente. Efetuou-se análise físico-química medindo-se o pH, DBO₅, DQO, SSS, SST, SSF e SSV do afluente e efluente dos reatores com frequência mensal. As temperaturas diárias medidas no reator coberto foram superiores ao descoberto. Observou-se eficiência de 10% na DQO e 15% na DBO₅ superiores para o reator coberto. O coberto com lona plástica apresentou menores oscilações com maior estabilidade na manutenção das temperaturas, principalmente nos períodos de baixas temperaturas, mostrando maior desempenho no tratamento de efluente de fecularia de mandioca.

Palavras-chave: água residuária de mandioca, digestão anaeróbica, reatores coberto/descoberto, influência da temperatura, efeito da coberta plástica.
ABSTRACT

Manioca starch mills generate a high amount of outflow and environmental concerns due to its high pollutant wastewater. Use of stabilization ponds is very common for the treatment of wastewater on the transformation of manioca root sector. However, in winter time, coincidently with the harvesting and crushing period a fall on the treatment system may occur due to the decreasing of environmental temperature. The present study aims at evaluating the effect of plastic canvass on the stability and keeping the anaerobic pond temperature treating the outflow of cassava. The system consisted of two reactors simultaneously supplied, with net volume of 15.98 m³ each, 10 day hydraulic retaining time, continuously supplied, without pH correction and without temperature control. Air temperature and daily outflowing and inflowing of the reactors were monitored for a period of one year. Both physical and chemical analyses were performed measuring pH, BOD₅, COD, TSS, FSS, and VSS of the reactors' outflowing and inflowing in monthly frequency. The daily temperatures measured on the covered reactors were superior than on the uncovered ones. An efficiency of 10% on COD, and 15% on BOD₅ were observed on the covered reactor. The plastic canvass covered reactor showed less oscillations with greater stability in keeping temperatures, mainly in periods of low temperature, showing a better performance on the treatment of cassava processing outflow.

Key words: cassava wastewater, anaerobic digestion, covered/uncovered reactors, temperature influence, effects of plastic canvass coverture.
1 INTRODUÇÃO

O Estado do Paraná possui o maior e mais moderno parque industrial feculeiro do país, com 45 indústrias instaladas e em funcionamento. A capacidade nominal instalada é de 630 mil t.ano⁻¹, tendo produzido na safra de 2002, 430 mil toneladas de fécula de mandioca, segundo a Associação Brasileira dos Produtores de Amido de Mandioca ABAM (2002), correspondendo a 70% da capacidade nominal das plantas industriais instaladas.

Os benefícios da economia em escala terminam por ocultar os problemas dessa concentração industrial, dentre eles a degradação ambiental decorrente da excessiva geração de resíduos, cujo tratamento e destinação final nem sempre é adequado.

Devido à elevada carga orgânica e poluentes contidos no efluente industrial de fecularia, o esgotamento dessa água residual pode trazer sérios problemas de poluição ambiental. Por essa razão, devem ser tratados e adequados aos padrões ambientais vigentes e, só assim, serem lançados.

A digestão anaeróbia tem se apresentado como uma opção viável para o tratamento das águas residuárias, como tem sido demonstrado por trabalhos de vários pesquisadores. As tecnologias adequadas e de baixo custo são essenciais para o tratamento de efluentes. Os processos anaeróbios oferecem grande potencial para esse tratamento, mostrando sucesso na aplicação para grande número de efluentes. Eles são alternativas adequadas e preenchem os seguintes requisitos: simplicidade de projeto, uso de equipamentos e instalações simples, baixo consumo de energia e alto eficiência de tratamento.

No Estado do Paraná, é muito comum o uso de lagoas de estabilização para o tratamento de águas residuais do setor de transformação de raiz de mandioca. Entretanto, nos períodos de inverno, coincidindo com o período de safra e esmagamento, observa-se uma queda na eficiência dos sistemas que pode ocorrer em razão da diminuição da temperatura ambiente. A cobertura das lagoas anaeróbias, comparado às lagoas descobertas, pode manter a temperatura a níveis mais apropriados ao processo biológico, melhorando a eficiência desse tipo de tratamento tão comum no Estado.
Nesse contexto, o presente trabalho teve por objetivo avaliar o efeito da cobertura plástica na manutenção da temperatura e na eficiência da lagoa anaeróbia tratando efluente de indústria de fécula de mandioca.
2 REVISÃO DE LITERATURA

2.1 A importância econômica da mandioca

A mandioca (*Manihot esculenta*, Crantz) é uma cultura de origem ameríndia e brasileira, tendo sido propagada sobre toda a América. Também foi introduzida na Ásia e África pelos colonizadores portugueses e espanhóis, SILVA (1996).

No ano de 1995, a Nigéria foi o maior produtor mundial de mandioca. O Brasil ocupou o segundo lugar no ranking mundial, com uma produção de cerca de 25,5 milhões de toneladas dados FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS – FAO, de acordo com BIANCHI & CEREDA (1999). Os mesmos autores, estimaram que 60%, ou cerca de 15 milhões de toneladas do total das raízes colhidas são utilizadas na produção de farinha de mandioca, o restante, cerca de 10 milhões, foi utilizado para consumo humano ou animal, tanto de forma natural ou industrializada, por exemplo, na forma de fécula e seus derivados.

Segundo FRANCO (2001), a fécula de mandioca passou de uma fatia de 30% de um mercado mundial de amidos de 650 mil toneladas em 1991, para uma fatia de 40% de um mercado de 1,4 milhões de toneladas em 2001. Esse mercado dominado nos Estados Unidos pelo amido de milho e na Europa pelo amido de batata, tem atraído para o Brasil a atenção e o investimento de empresas multinacionais.

No Brasil, FRANCO (2001) relata que o faturamento para o setor de amido foi de US$ 200 milhões e que a queda dos subsídios aos produtores europeus de amido de batata está estimulando o investimento de capitais de empresas multinacionais no Brasil. Na última década, o setor cresceu 175% e espera atingir um faturamento de US$ 10 bilhões no ano de 2010, com uma produção de cerca de 4,5 milhões de toneladas de fécula, FRANCO (2001).

2.2 O processo industrial de produção de fécula

As unidades de extração de amido instaladas possuem capacidade de processamento variando de 100 a 300 toneladas de raiz.dia\(^{-1}\). O fluxograma do processo desenvolvido pela empresa EBS pode ser visto na Figura 1.

Na seqüência, o processo de produção é descrito conforme os trabalhos de PARIZOTTO (1999) e ANRAIN (1983), destacando-se as operações unitárias onde são geradas as águas residuárias.

2.2.1 Lavagem e descasque das raízes

Do depósito com divisões, as raízes são alimentadas ao lavador por meio de um transportador de fita e um elevador que mantém uniforme a alimentação para o lavador.

A lavagem é efetuada debaixo d’água por meio de pás de madeira, numa espécie de gi moda. A água corre em sentido contrário ao das raízes, assegurando, assim, a eficiência da lavagem. A operação de descasque se efetua sob um esguicho d’ água, por pás de ferro nervuradas. A água para a lavagem e para o descasque pode ser, em grande parte (aproximadamente 40%), a água de processo das separadoras da refinação do amido e a água de lavagem recirculada. Esta última é geralmente decantada num tanque antes de retornar ao lavador-descascador. A água suja com os detritos da lavagem é continuamente drenada para fora da fábrica e encaminhada para o sistema de tratamento de efluentes.
2.2.2 Extração de amido

No estágio de extração, a polpa obtida após a desintegração sofre separação em amido e celulose. Os vários estágios de extração são diretamente ligados entre si, sem nenhum tanque intermediário. Todas as bombas para transporte da polpa e para a água de lavagem que fluem em contracorrente são embutidas, assim como dutos que compõem o equipamento.

A polpa lavada, ou bagaço, ao deixar o último estágio de extração, contém um teor de água de 85-95%, e o amido nela restante é desprezível.

A água de lavagem empregada é uma mistura do efluente da subseqüente secção de refinação do amido com água doce contendo certa quantidade de dióxido de enxofre.

A separação da polpa e do amido é mais eficiente quando a suspensão passa por uma série de extratores cada vez mais finos. Portanto, o leite de amido que sai do primeiro extrator, com tela de 125-250 micras é bombeado para outro extrator do mesmo tipo, o qual contém um ou dois estágios e está equipado com tela de aço inoxidável de 60-80 micras. Neste extrator, comumente chamado peneira fina, é feita a remoção das fibras finas e simultaneamente a lavagem com água doce, em contracorrente para libertá-las do amido aderente.

O leite de amido cru deixa a peneira fina com uma concentração de cerca de 3° Bé (grau Baumé) (54 kg de amido seco por m³). Esse leite de amido contém contaminantes solúveis, como proteínas, matéria graxa, açúcares e insólíveis como pequenas partículas de celulose da operação de raspagem. Tais impurezas serão removidas durante a refinação.

2.2.3 Purificação do amido

O processamento das raízes de mandioca deve ser completado o mais rapidamente possível, isto é, a separação do amido dos solúveis e da água na qual se encontra suspenso. Esta água é conhecida como água vegetal.

Na água vegetal, que é razoavelmente rica em açúcares e outros nutrientes, tem início o processo de desenvolvimento de microorganismos, resultando em fermentação. Álcoois e ácidos orgânicos são produzidos,
notando-se entre eles principalmente o ácido butírico, devido ao seu odor. Essas alterações bioquímicas exercem uma influência negativa na qualidade do produto semelhante à exercida pelas alterações químicas e enzimáticas.

Os efluentes podem ser reutilizados no processo: a água vegetal para lavagem das raízes, e o efluente da segunda centrifuga, junto com água fresca, como água de lavagem dos extratores de amido.

2.3 Composição dos despejos da fecularia

Segundo CEREDA (1996), são considerados despejos líquidos industriais na extração de fécula:

a) **Água de lavagem de raízes**: é originária dos lavadores/descascadores, carregando em suspensão a terra e as cascas, que podem ser separadas por decantação e peneiragem. Uma vez separados os sólidos suspensos, constitui-se basicamente da água captada pela indústria, contendo ainda em suspensão ou dissolução, baixo teor de matéria orgânica originária das raízes e carregada pela água derivada devido à maceração ou quebra. Se não recebe adição de água vegetal (recirculação), apresenta baixa Demanda Química de Oxigênio. Segundo a mesma autora, esta corrente de água residuária apresenta uma DQO de 500 mg.L^{-1}.

b) **Água de extração de fécula ou água vegetal**: esta água resulta da lavagem da polpa (bagaço) e da massa de amido desintegrad. Esse leite de amido contém contaminantes solúveis, como proteínas, matéria graxa, açúcares e insolúveis como pequenas partículas de celulose da operação de raspagem da raiz. Tais impurezas são removidas durante a refinação e lavagem do amido, resultando na água vegetal. Segundo CEREDA (1996), este despejo possui uma DQO ao redor de 6.000 mg.L^{-1}.
PARIZOTTO (1999) cita que os valores médios de DQO obtidos em três diferentes fecularias foram, 7.660 mg.L\(^{-1}\), 9.650 mg.L\(^{-1}\) e 11.630 mg.L\(^{-1}\), respectivamente. O mesmo autor, no ano de 1993, verificou que nas 10 maiores fecularias do Estado do Paraná o volume de despejo líquido gerado ficou entre 4 a 5 m\(^3\) por tonelada de raiz processada. O maior uso da recirculação da água vegetal na lavagem da raiz tem diminuído a vazão total das águas residuárias no processo.

PAWLOWSKY et al. (1991) observaram em fecularias instaladas no Estado do Paraná que o volume de água residuária gerado no lavador varia de 2,5 a 5 m\(^3\) por tonelada de raiz e dependendo da eficiência do equipamento utilizado são gerados mais 2 a 3 m\(^3\) de água vegetal por tonelada.

ANRAIN (1983) observou que a produção de água residuária de fecularia na região do Vale do Itajaí, em Santa Catarina, situou-se em torno de 6,77 m\(^3\) por tonelada de raiz, com uma DQO média de 6.153 mg.L\(^{-1}\).

Resultados obtidos no CERAT/UNESP, através da análise de água residual de fecularia, apontaram uma DQO de 6.000 mg.L\(^{-1}\).

Análise da composição da água residual da Fecularia Fleischmann-Royal de Conchal, SP, apontou uma composição detalhada do resíduo líquido, conforme a Tabela 1.

A fração orgânica pode ser mensurada através da Demanda Bioquímica de Oxigênio (DBO\(_5\)) ou da Demanda Química de Oxigênio (DQO) e Sólidos Voláteis (SV). A fração mineral corresponde aos parâmetros Sólidos Fixos (SF) e nutrientes entre eles, Fósforo Total e Nitrogênio Total.

Tabela 1 Composição de água residual da Fecularia Fleischmann-Royal de Conchal - SP

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Unidade</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>3,8</td>
<td>5,2</td>
</tr>
<tr>
<td>DQO</td>
<td>mg.L(^{-1})</td>
<td>6.280</td>
<td>51.200</td>
</tr>
<tr>
<td>DBO(_5)</td>
<td>mg.L(^{-1})</td>
<td>1.400</td>
<td>34.300</td>
</tr>
<tr>
<td>Sólidos Totais</td>
<td>mg.L(^{-1})</td>
<td>5.800</td>
<td>56.460</td>
</tr>
<tr>
<td>Sólidos Solúveis</td>
<td>mg.L(^{-1})</td>
<td>4.900</td>
<td>20.460</td>
</tr>
<tr>
<td>Sólidos Suspensos</td>
<td>mg.L(^{-1})</td>
<td>950</td>
<td>16.000</td>
</tr>
<tr>
<td>Sólidos Fixos</td>
<td>mg.L(^{-1})</td>
<td>1.800</td>
<td>20.460</td>
</tr>
<tr>
<td>Matéria Orgânica</td>
<td>mg.L(^{-1})</td>
<td>1.500</td>
<td>30.000</td>
</tr>
<tr>
<td>Açúcares Redutores Totais</td>
<td>mg.L(^{-1})</td>
<td>2.800</td>
<td>8.200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Fosfatos Totais</td>
<td>mg.L⁻¹</td>
<td>155</td>
<td>598</td>
</tr>
<tr>
<td>Nitrogênio Total</td>
<td>mg.L⁻¹</td>
<td>140</td>
<td>1.150</td>
</tr>
<tr>
<td>Cinzas</td>
<td>mg.L⁻¹</td>
<td>350</td>
<td>800</td>
</tr>
<tr>
<td>Sólidos Sedimentáveis (1h)</td>
<td>ml.L⁻¹</td>
<td>11</td>
<td>33</td>
</tr>
<tr>
<td>Teor CN⁻</td>
<td>mg.L⁻¹</td>
<td>22,0</td>
<td>27,1</td>
</tr>
</tbody>
</table>

Fonte: LAMO & MENEZES (1979)

Segundo CEREDA (1996), uma das dificuldades no tratamento de águas residuárias de mandioca é a presença de glicosídeos cianogênicos (tóxicos), como a linanamarina e a lotoaustralina, inibidores do crescimento dos microorganismos. Tais substâncias são responsáveis pela geração de cianeto no resíduo, tornando-o altamente tóxico aos microorganismos aeróbios. A ingestão ou inalação de ácido cianídrico (HCN) pode levar à morte, porque este componente interfere com a oxidase terminal, na cadeia respiratória. Isto ocorre devido a sua afinidade com o ferro, combinando-se com a hemoglobina do sangue para formar ciano-hemoglobina, CEREDA (1994).

De acordo com FARIA (1978), tanto as variedades bravas, quanto as mansas possuem estes componentes, sendo que nestas últimas em concentrações inferiores, enquanto que a entrecasca encerra teores maiores que os da polpa da raiz.

Esses glicosídeos são formados por ligações beta-glicosidase e hidroxinitrilos (cianoidrina), que são potencialmente hidrolisáveis por ação de enzimas endógenas, dando origem a glicose, acetona e ácido cianídrico SAMPAIO (1996).

2.4 Sistemas alternativos de tratamento

De acordo com VON SPERLING (1996), no tratamento de resíduos líquidos podem ser adotados três métodos principais:

a) Métodos Físicos:

São empregados métodos onde predominam forças físicas como gradeamento, mistura, floculação, sedimentação e filtração; são os métodos mais simples e econômicos, e, geralmente são utilizados antecedendo os demais;
b) **Métodos Químicos:** a remoção ou conversão dos poluentes ocorre pela adição de produtos químicos ou devido a reações químicas, como precipitações, coagulações e absorção; e

c) **Métodos Biológicos:** a remoção dos poluentes ocorre por intermédio da atividade biológica, com a remoção da matéria orgânica carbonácea.

Segundo VON SPERLING (1996), as lagoas anaeróbias constituem-se em uma forma alternativa de tratamento, onde a existência de condições estritamente anaeróbias é essencial. Tal é alcançado através do lançamento de uma grande carga de DBO₅ por unidade de volume da lagoa, fazendo com que a taxa de consumo de oxigênio seja várias vezes superior à taxa de produção.

As lagoas anaeróbias têm sido utilizadas para os tratamentos de esgotos domésticos e despejos industriais predominantemente orgânicos, com altos teores de DBO₅, como frigoríficos, laticínios e feicularias.

A estabilização em condições anaeróbias é lenta, pelo fato das bactérias anaeróbias se reproduzirem numa vagarosa taxa. Isto, por seu lado, é advindo de que as reações anaeróbias geram menos energias do que as reações aeróbias de estabilização da matéria orgânica. A temperatura do meio tem uma grande influência nas taxas de reprodução e estabilização, o que faz com que locais de clima favorável (temperatura elevada), como no Brasil, se tornem propícios a este tipo de lagoas.

A eficiência de remoção de DBO₅ nas lagoas anaeróbias é da ordem de 50% a 60%. A DBO₅ efluente é ainda elevada, implicando na necessidade de uma unidade posterior de tratamento.

As águas residuárias do processamento da mandioca foram estudadas apontando predominantemente para os processos biológicos anaeróbios, embora trabalhos tenham sido desenvolvidos adotando-se outros métodos. É o caso de FARIA (1978), que obteve remoção de 44% na DQO, utilizando coagulação e floculação química, usando hidróxido de sódio e sulfato de alumínio. O mesmo autor, utilizando o sistema aeróbio de lodos ativados obteve uma remoção de 90% da DQO. Observou, também, que a associação do tratamento químico e do tratamento biológico não foi satisfatória.
GABARDO et al. (1981) desenvolveram alguns trabalhos utilizando processos anaeróbios na fase inicial, seguida de tratamento aeróbio. Foi estudado o tratamento de despejos de fecularia por lagoa anaeróbia e aerada em série, obtendo remoções de DQO da ordem de 97,78%.

PATZA et al. (1983) estudaram tratamento de vinhoto de mandioca por processos de lodos ativados e lagoas aeradas em série, onde obtiveram remoções de DQO na faixa de 87 a 91%.
2.5 Os processos anaeróbios de tratamento

A digestão anaeróbia de resíduos orgânicos é um processo bioquímico que utiliza-se de microorganismos para desdobrar compostos complexos, produzindo gás combustível (biogás) composto basicamente de metano (CH\textsubscript{4}) e dióxido de carbono (CO\textsubscript{2}), VOGELS et al. (1988).

Conforme o relato de LETTINGA et al. (1991) e NOGUEIRA (1986), as bactérias fermentativas transformam, por hidrólise, os polímeros em monômeros e, através de enzimas extracelulares excretadas, estes últimos em acetato, hidrogênio, dióxido de carbono, ácidos orgânicos de cadeia curta, aminoácidos e outros produtos como glicose.

Na Figura 2 pode ser observado o esquema geral da digestão anaeróbia, adaptada de CHERNICHARO (1997).
As bactérias acetogênicas são conhecidas como produtoras de hidrogênio e convertem os produtos gerados pelas bactérias fermentativas (açúcares, aminoácidos, lipídios) em acetato, hidrogênio e dióxido de carbono, segundo CHERNICHARO (1997).

As bactérias metanogênicas podem ser subdivididas em dois grupos: as hidrogenotróficas e as acetoclásticas, segundo CHERNICHARO (1997). Os produtos resultantes das atividades das bactérias acetogênicas são substratos essenciais para que as bactérias metanogênicas possam produzir principalmente metano e dióxido de carbono. As bactérias hidrogenotróficas produzem metano a partir da redução do dióxido de carbono, enquanto as acetoclásticas utilizam o acetato, DOLFING (1988).

A literatura apresenta revisões sobre os principais aspectos da biodigestão anaeróbica. Dentre estas, citamos os trabalhos sobre digestão anaeróbia de água residuária de processamento de raiz em reator de duas fases, de SAMPAIO (1996); sobre a digestão anaeróbia de manipueira em filtro anaeróbio na fase metanogênica, de BARANA (1996), sobre o tratamento anaeróbio de água residuária de farinheira através de reator de leito granulado, de FROSTELL (1979), corroborado por PAWLOWSKY (1983); sobre a degradação de ácidos graxos e etanol, de NOGUEIRA (1986).

Dentre os processos anaeróbios em uso, para o tratamento de águas residuárias do processamento de raiz de mandioca, estão as lagoas de estabilização anaeróbias. Segundo PARIZOTTO (1999), as indústrias de fécula da região Oeste do Paraná, utilizam sistemas de lagoas de estabilização. O autor relata que nas últimas décadas as indústrias chegaram a implantar sistemas complexos como: neutralização do afluente, aeração mecânica, lagoas anaeróbias, facultativas e de polimento final, porém os altos custos e baixa eficiência levaram a uma simplificação do processo, que hoje é composto por lagoa de sedimentação, lagoa(s) anaeróbia(s), lagoas facultativas e, opcionalmente, lagoas de polimento final.

Este sistema descrito por PARIZOTTO (1999) é, de certa forma, uma variante do chamado Sistema Australiano que, segundo SILVA (1977) e VON SPERLING (1995), é composto por lagoa anaeróbia seguida de lagoa facultativa. O que diferencia os dois sistemas é a presença da lagoa de sedimentação na fase inicial, onde esta lagoa funciona como uma lagoa
anaeróbia, estando constantemente em estado de anaerobiose. Isto ocorre devido à elevada carga orgânica recebida, à presença de uma espessa camada flutuante de escuma, cascas e argilas, que isola a massa líquida e diminui a oxigenação.

Segundo SILVA (1977), as lagoas anaeróbias têm como desvantagem a possibilidade de emanação de odores mal cheirosos, causados principalmente pelo gás sulfídrico, além da própria emissão do gás carbônico e do metano para a atmosfera.

Outra opção é o uso de reatores anaeróbios que têm como vantagem principal a captação do metano produzido na forma do biogás, além de remoção da carga orgânica. Esta opção tem sido objeto de vários estudos, tanto em laboratório quanto em escala piloto.

ANRAIN (1983) utilizou um reator tipo UASB (reator anaeróbio de fluxo ascendente com manta de lodo), de fase única, em escala piloto. Este reator, instalado junto a uma indústria de fécula no Vale do Rio Itajaí, no estado de Santa Catarina, operou sob controle de temperatura e correção de pH do afluente. O autor obteve como resultado a remoção de carga orgânica de 87%, no primeiro ano de operação, e de 92% no segundo ano.

A partir do ano de 1996 iniciou-se no CERAT – Centro de Estudos de Raízes de Amidos Tropicais, junto a UNESP/Botucatu – SP, uma linha de pesquisa visando otimizar a digestão anaeróbia de águas residuárias do processamento de raiz de mandioca para produção de farinha. Com os resultados dessa linha foram publicados vários trabalhos. LACERDA (1991), estudou a cinética da fase metanogênica da digestão anaeróbia de manipueira, com estabilização do pH, obtendo um tempo de detenção hidráulico (TDH) de três dias como o mais eficiente para esta fase. BARANA (1996), estudou a carga orgânica na fase metanogênica em biodigestor com separação de fases e com estabilização do pH, obtendo a maior taxa de redução de DQO de 88,75%, com uma carga de 2,25g de DQO.L^{-1}.d^{-1}, e como carga orgânica máxima o limite de 8,48g de DQO.L^{-1}.d^{-1}. BARANA (2000) estudou o processo de biodigestão de manipueira com separação de fases de forma conjunta, sob controle de temperatura. Testou o uso de afluente sem e com correção de pH, obtendo melhores resultados quando manteve a correção do pH. A maior taxa de redução de DQO foi de 75,24%, com uma carga orgânica de 9,45g
DQO.L^{-1}.d^{-1}. Estes trabalhos foram realizados em laboratório, definindo os principais parâmetros necessários para a implantação do sistema em escala piloto.

SAMPAIO (1996) estudou a decomposição anaeróbia da manipueira em um reator de bancada, com separação de fases, com TDH de um dia para a fase acidogênica e quatro dias para a metanogênica, em temperatura ambiente. Trabalhou com cargas de entrada, de 3 a 6g DQO.L^{-1}.d^{-1}, no reator acidogênico, obtendo para o processo todo uma remoção de 90% na DQO.

2.5.1 Influência da temperatura no processo de digestão anaeróbia

A temperatura é um dos mais importantes fatores físicos nas seleções das espécies. Os microorganismos não possuem meios de controlar sua temperatura interna e, dessa forma, a temperatura no interior da célula é determinada pela temperatura ambiente externa. Três faixas de temperatura podem ser associadas ao crescimento microbiano na maioria dos processos biológicos, faixa psicrófila compreendida entre 0 e 20°C, faixa mesófila entre 20 e 45°C e faixa termófila entre 45 e 70°C, Lettinga et al. (1996) citado por CHERNICHARO (1997).

A eficiência do processo de digestão anaeróbia é altamente dependente da temperatura do reator, segundo BOGTE et al. (1993) e VAN HAANDEL & LETTINGA (1994). BOGTE et al. (1993) relataram sobre o acúmulo de sólidos biodegradáveis durante o período de inverno e sua degradação durante o verão, quando operando reator tipo UASB para tratamento de esgoto sanitário na Holanda.

temperaturas abaixo de 15°C é possível, mas neste caso é requerido um tempo de detenção de sólidos superior a 75 dias.

Quando a temperatura diminui, ocorre um aumento no valor do pH, porque a concentração de DQO digerida diminui ocasionando uma queda na produção de CO$_2$, VAN HAANDEL & LETTINGA (1994). Oscilações bruscas na temperatura diminuem a eficiência do processo porque provocam um acúmulo de ácido propiônico. Por isso, é mais importante manter um reator à temperatura constante do que mantê-lo na faixa ótima de temperatura, mas com oscilações, Öztürk (1993) citado por BEAL (1995).

Esses microorganismos são estritamente anaeróbios, sendo muito sensíveis a oscilações bruscas de temperaturas, e a valores de pH muito baixos (4,0 a 5,5) ou valores altos (7,0 a 8,5), bem como a altas concentrações de ácidos orgânicos, VOGELS et al. (1988).

Mais detalhes sobre a dependência da temperatura na digestão anaeróbia, podem ser vistos através dos trabalhos de SARADA & JOSEP (2003), sobre a digestão de resíduos de tomate; sobre a degradação de monohidrato de glucose, de ZOETEMEYER & BOELHOUWER (2003); sobre a digestão anaeróbia utilizando resíduos de bovino, de EL-MASHAD & LETTINGA (2004); sobre a digestão anaeróbia de substrato de manipueira, de LACERDA (1991); sobre a bioquímica dos microorganismos no tratamento de águas residuárias, de LETTINGA et al. (1980).

Um aprimoramento da digestão anaeróbia para tratamento de resíduos líquidos, ocorreu com o desenvolvimento do reator tipo UASB (reator anaeróbio de fluxo ascendente com manta de lodo). Segundo ZEEUW (1988), o primeiro reator UASB foi testado na Universidade de Wageningen, na Holanda, em 1971, sendo os resultados obtidos publicados por LETTINGA et al. (1980) e seus colaboradores. O autor relata que o reator permitiu a aplicação de carga com valores chegando a 30Kg DQO.m$^{-3}$.d$^{-1}$, utilizando resíduos líquidos de indústria de beterraba. Com a implantação em escala industrial, o autor
verificou a mesma ocorrência de granulação e acúmulo de lodo, garantindo o sucesso da digestão desse substrato. Segundo o mesmo autor isso se repetiu para substratos diferentes, mostrando ser uma característica própria desse tipo de reator.
3 MATERIAL E MÉTODOS

3.1 Local de realização do experimento
O experimento foi desenvolvido nas instalações da empresa Pinduca Alimentos Ltda., localizada na Rodovia PR 323, Km 71, Município de Cianorte, Estado do Paraná. Situa-se em uma Latitude de 23°39'16", Longitude 52°36'16", Clima Subtropical Úmido Mesotérmico, verões quentes com tendência de concentração das chuvas (temperatura média superior a 22°C), invernos com geadas pouco freqüentes (temperatura média inferior a 18°C), sem estação seca definida e índice pluviométrico anual de 1400 a 1600 mm.

3.2 Descrição das instalações do sistema de tratamento de efluentes líquidos da fecularia
O sistema de tratamento de efluentes líquidos da fecularia, consiste de pré-tratamento, utilizando peneira inox com fluxo ascendente, onde é feita a remoção dos sólidos presentes na água de lavagem da raiz, mostrado na Figura 3.
Figura 3 Peneira para remoção de sólidos da água de lavagem da raiz.

As águas que passaram pela peneira são incorporadas à água vegetal resultante da extração e preparo do amido no processo industrial. São enviadas a um tanque de distribuição de fluxo, e a partir daí, às lagoas de estabilização do sistema de tratamento da fecularia, mostrado na **Figura 4**.

Figura 4 Recepção do afluente (água vegetal + água de lavagem de raiz).

O sistema biológico é constituído de duas lagoas de estabilização anaeróbias, alimentadas em paralelo, com tempo de detenção hidráulico de 10 dias cada, mostrado na **Figura 5**.
Figura 5 Lagoa anaeróbia do sistema de tratamento da fecularia.

Em seguida, o despejo é encaminhado para quatro lagoas de estabilização facultativas, alimentadas em série, com tempo de detenção hidráulico de 15 dias cada, mostrado na Figura 6.
Figura 6 Lagoa facultativa do sistema de tratamento da fecularia.

Finalmente, o efluente passa por um filtro com retro-lavagem e, posteriormente, é lançado no Córrego Catingueiro, Bacia Hidrográfica do Rio Ivaí, mostrado na Figura 7.

Figura 7 Filtro de retro-lavagem para o efluente final.

A Licença Ambiental concedida pela Agência Ambiental do Estado do Paraná estabeleceu parâmetros de lançamento para o corpo receptor, sendo utilizado com os seguintes valores: pH entre 6,0 e 9,0; DQO de 250 mg.L\(^{-1}\) e DBO\(_5\) de 100 mg.L\(^{-1}\).

Os parâmetros de lançamento para o corpo receptor hídrico utilizado, na época do experimento, estavam em conformidade com a Legislação Ambiental.

3.3 Descrição do sistema de tratamento utilizado no experimento
O sistema adotado no experimento está esquematizado na Figura 8.

![Diagrama](image)

Figura 8 Esquema ilustrativo do experimento.

O experimento consistiu da construção dos reatores, medidores de vazão afluente, circuito hidráulico para alimentação, preparo da impermeabilização das paredes internas (exceção do fundo). O fundo foi preparado através de uma camada de 20 cm de argila compactada para impedir a percolação dos líquidos.

Os reatores foram construídos com volumes úteis de 15.980 L cada, em formato retangular, sendo no topo, comprimento de 5,0 m e largura de 3,0 m; no fundo, comprimento de 3,0 m e largura de 1,0 m, com profundidade total de 2,30 m e 2,0 de profundidade útil, conforme indicado na Figura 9.
Para cobertura do reator RI, foi construída uma estrutura com bambus, sendo o isolamento da superfície feita com lona plástica de espessura 0,5 mm dobrada quatro vezes.

Esse material de cobertura utilizado teve como objetivo minimizar as diferenças de temperatura do conteúdo líquido do reator em relação à temperatura ambiente, evitar penetração de luz e ausência de oxigênio.

Nas Figuras 10, 11 e 12 são apresentados detalhes da construção dos reatores coberto e descoberto.

Figura 9 Detalhe da construção do reator I – coberto.

Para cobertura do reator RI, foi construída uma estrutura com bambus, sendo o isolamento da superfície feita com lona plástica de espessura 0,5 mm dobrada quatro vezes.

Esse material de cobertura utilizado teve como objetivo minimizar as diferenças de temperatura do conteúdo líquido do reator em relação à temperatura ambiente, evitar penetração de luz e ausência de oxigênio.

Nas Figuras 10, 11 e 12 são apresentados detalhes da construção dos reatores coberto e descoberto.
Figura 10 Detalhe da construção do reator II – descoberto.

Figura 11 Detalhe da cobertura do Reator I.
3.4 Captação do substrato

O substrato utilizado no experimento foi água residuária (água de lavagem de raiz + água vegetal) do tanque de recepção de efluentes da fábrica. O escoamento deu-se por gravidade a partir do medidor de vazão instalado no sistema, conforme mostrado na Figura 13.

Figura 12 Vista dos dois reatores instalados, bem como das linhas de alimentação.

Figura 13 Medidor de vazão com fluxo para cada reator.
Nos dois reatores, o tempo de detenção hidráulico foi de 10 dias. O parâmetro tempo de detenção hidráulico (TDH) e volume de reator foram fixados. O dimensionamento dos reatores foi obtido a partir do cálculo da vazão.

Apenas a vazão prevista para aplicação nos dois reatores foi encaminhada ao sistema através dos medidores de vazão instalados. O excesso de efluente foi drenado para fora e destinado ao sistema de tratamento de efluentes da fecularia, conforme ilustrado na Figura 14.

![Figura 14 Esquema ilustrativo da alimentação e descargas dos reatores.](image)

A partir dos pontos de amostragem P_1 e P_3, os efluentes dos reatores eram encaminhados por gravidade através de mangueiras até a primeira lagoa de estabilização anaeróbica do sistema de tratamento da fecularia, conforme mostrado na Figura 15.

![Figura 15 Pontos de amostragem de efluente dos reatores.](image)
O substrato utilizado no experimento não recebeu correção de pH, nem adição de nutrientes e foi utilizado à temperatura ambiente, como gerado na fábrica e conduzido ao sistema de tratamento da indústria.

3.5 Partida dos reatores

O volume útil do reator foi aferido através da adição de água resíduária bombeada a partir da lagoa anaeróbia inicial do sistema de tratamento da fábrica. Para tanto, foi calibrado um tambor de 200 L, com auxílio de um balde de 20 L, bem como utilizado um caminhão auto-fossa com tanque de volume de 5.000 L, conforme mostra a Figura 16.

Figura 16 Caminhão auto-fossa utilizado no enchimento dos reatores.

Após a descarga de 3 tanques do caminhão auto-fossa, foram acrescidos 4 tambores com água resíduária da lagoa anaeróbia, mais 10 baldes de 20 litros. Após a adição destes volumes, o nível foi atingido, sendo observado o início de escoamento de água resíduária através da mangueira de efluente do reator I para a lagoa anaeróbia da fábrica. Verificou-se, então, que o volume adicionado foi de 16000 L, ou seja 20 L além do volume útil do reator projetado e construído. Essa diferença de 1% foi considerada aceitável, levando-se em conta as possíveis imperfeições na construção das paredes do reator.
A partida dos dois reatores foi realizada observando as recomendações de LETTINGA et al. (1980) e VON SPERLING (1996), no dia 04 de junho de 2003. Como inóculo, foi adicionado o conteúdo líquido bombeado a partir da primeira lagoa anaeróbia do sistema de tratamento da fábrica, a uma profundidade de 0,5 m do fundo da lagoa. Nessa cota, supõe-se que o lodo é mais ativo, enquanto que no fundo têm-se material inorgânico e lodo mineralizado.

Após este período, nos 50 dias subseqüentes, foi promovida a aclimatação da biomassa dos reatores.

Na fase inicial, os reatores foram aclimatados lentamente, pela alimentação de 20% da vazão total de afluente de cada reator, a cada 10 dias, correspondendo a 319,58 L.d\(^{-1}\). No segundo período, alimentou-se os reatores com 639,16 L.d\(^{-1}\), no terceiro período com 958,74 L.d\(^{-1}\) e no quarto período com 1.278,32 L.d\(^{-1}\). Finalmente, no dia 24 de julho de 2003, os reatores foram alimentados com 1.598 L.d\(^{-1}\), correspondendo a 100% da vazão calculada para o volume e tempo de detenção hidráulico (TDH) 10 dias adotados.

Após 50 dias de aclimatação, os reatores entraram em regime permanente, iniciando-se o período de amostragens do afluente dos reatores RI e RII, bem como de seus respectivos efluentes produzidos.

3.6 Condução do experimento

O trabalho consistiu na aplicação de cargas de substrato aos reatores, sendo realizado o acompanhamento analítico de julho de 2003 até outubro de 2004. Durante este período, foram efetuadas coletas mensais do afluente e de efluentes nos reatores. As Figuras 17 e 18 mostram os reatores em operação.
Figura 17 Reatores RI – coberto (ao fundo) e RII – descoberto (em primeiro plano).

Figura 18 Detalhe do reator descoberto.

As amostras dos pontos P₁, P₂ e P₃ foram coletadas com equipamento adotado pelo IAP (Instituto Ambiental do Paraná), homogeneizadas e acondicionadas em frascos de plástico novos de 2000 ml cada. Após as coletas, as amostras foram mantidas preservadas com gelo em caixas térmicas apropriadas para o transporte até o laboratório. As coletas foram realizadas no período de julho a setembro de 2003 e de fevereiro a outubro de 2004, com intervalos de 30 dias entre cada amostragem.
No período de 15 de outubro de 2003 a 15 de janeiro de 2004, não foram efetuadas amostragens no experimento, em razão da paralisação das atividades industriais por falta de matéria prima associada à estiagem. Entretanto, os reatores foram mantidos alimentados com afluente oriundo da lagoa anaeróbia do sistema de tratamento de efluentes da fábrica.

3.7 Parâmetros determinados

Durante a condução do experimento, foram medidas as temperaturas do ar T_0, do afluente dos reatores T_1 e dos efluentes dos reatores T_2 e T_3, nos dias em que houve atividade na indústria.

A temperatura do ar, do efluente bruto e dos efluentes dos reatores, foi medida diariamente às 10:00 e às 15:00 horas. As leituras foram realizadas no interior das correntes líquidas, após a estabilização do termômetro. Utilizou-se um termômetro com bulbo de mercúrio contendo escala graduada impressa, variando de $-10^\circ C$ a $+110^\circ C$.

Nas amostras coletadas nos pontos P_1, P_2 e P_3, referentes ao afluente e aos efluentes dos reatores I e II, respectivamente, foram determinados os parâmetros: pH, DQO, DBO_5, SSS, ST, STF e STV.

Na Tabela 2, são apresentados os métodos utilizados na determinação dos parâmetros avaliados.

Tabela 2 Métodos de determinação dos parâmetros analisados

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Método</th>
<th>Unidade</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Potenciométrico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQO</td>
<td>Calorimétrico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBO_5</td>
<td>Incubação (20°C, 5 dias)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sólidos suspensos sedimentáveis</td>
<td>Volumétrico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sólidos totais</td>
<td>Gravimétrico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sólidos totais fixos</td>
<td>Gravimétrico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sólidos totais voláteis</td>
<td>Gravimétrico</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standart Methods for the Examination of Water and Wastewater 20ª Ed.
3.7.1 **pH**

Foi utilizado um aparelho pHmetro modelo Mikoprocessor-Tachem-pH/mv-Meter. Este potenciômetro possui calibrado automático, fornecendo através de leitura ótica digital os valores do pH presentes no despejo.

3.7.2 **Demanda Química de Oxigênio (DQO)**

A Demanda Química de Oxigênio é procedida em espectrofotômetro UV, através de uso de cubetas com 2,5 ml da amostra concentrada do efluente coletado, adicionando-se 1,5 ml de solução padrão a base de ácido sulfúrico e bicromato de potássio e 3,5 ml de sulfato de prata. Após 2 horas, é submetida em chapa aquecedora a 150°C, fazendo-se a medição da leitura e obtendo-se o valor da DQO em mg.L⁻¹.

3.7.3 **Demanda Bioquímica de Oxigênio (DBO₅)**

A Demanda Bioquímica de Oxigênio foi obtida segundo metodologia descrita no Standard Methods, tendo como reagentes uma solução-tampão a base de fosfatos, solução de água destilada contendo menos de 0,01 mg.L⁻¹ de cobre, isenta de cloro e substâncias orgânicas, solução de sulfato de magnésio, solução de cloreto de cálcio, solução de cloreto férrico, solução de sulfato manganoso, solução de ácido sulfúrico e solução de tiossulfato de sódio 0,025 N padronizado. Na solução de água destilada, adiciona-se 1 ml de solução tampão, 1 ml de sulfato de magnésio, 1 ml de cloreto de cálcio e 1 ml de cloreto férrico, formando assim uma solução denominada de diluição. Esta água de diluição deverá ser aerada por 25 minutos. Paralelamente, toma-se uma amostra do efluente determinado analiticamente a sua DQO, com o auxílio de tabelas específicas torna-se possível determinar as diluições da amostra. Em seguida, com uma proveta própria para DBO₅ de 1000 ml toma-se o mesmo volume de amostra, adicionando a fração de solução de diluição. Na seqüência, transfere-se a amostra para dois frascos de oxigênio dissolvido de volume conhecido, determinando o conteúdo de oxigênio dissolvido presente no seu meio, evitando a formação de bolhas de ar no interior dos frascos. Após lacrado, um dos frascos deve ser levado em incubadora especial por 5 dias a 20°C e então faz-se a leitura do conteúdo de oxigênio dissolvido.
Ressalta-se que o cálculo da porcentagem de redução da DBO₅ é dada pelo diferencial do valor de oxigênio dissolvido após 5 dias em incubadora em relação ao valor do oxigênio dissolvido antes da incubação, dividindo-se igualmente pelo valor o oxigênio antes da incubação. Esta porcentagem de redução deverá estar na faixa de 40 a 70%. O resultado é aquele ou a média daqueles para os quais a quantidade de oxigênio dissolvido consumido durante a incubação represente 40 a 70% da quantidade inicial de oxigênio dissolvido.

3.7.4 Sólidos Totais (ST), Sólidos Totais Voláteis (STV), Sólidos Totais Fixos (STF) e Sólidos Suspensos Sedimentáveis (SSS)

Os sólidos totais, sólidos totais voláteis e sólidos totais fixos foram determinados segundo APHA (1992). Sólidos totais refere-se ao material residual remanescente no recipiente, após a evaporação e secagem da amostra. Sólidos totais voláteis é o termo utilizado para designar a porção volatilizada, após incineração da amostra a 600°C por duas horas. Sólidos totais fixos refere-se ao resíduo restante após a incineração da amostra, é designado em geral como cinzas. Os sólidos suspensos sedimentáveis também foram realizados segundo APHA (1992). O teste empregado foi volumétrico, usando o Cone Imhoff. Seguindo esta metodologia, um litro da amostra foi colocado, após agitação, em um Cone Imhoff. Após 45 minutos de sedimentação, foi realizada uma leve agitação para desprender os sólidos aderidos à parede, e a seguir a amostra foi deixada sedimentar por mais 15 minutos. Procedeu-se, então, a leitura dos sólidos suspensos sedimentáveis, diretamente no cone, expressos em mililitro por litro por hora.
4 RESULTADOS E DISCUSSÃO

4.1 Caracterização do afluente

Na Tabela 3 é apresentada a composição do afluente da indústria.

<table>
<thead>
<tr>
<th>Período</th>
<th>pH</th>
<th>DQO (mg.L⁻¹)</th>
<th>DBO₅ (mg.L⁻¹)</th>
<th>Carga DQO (Kg.d⁻¹)</th>
<th>Carga DBO₅ (Kg.d⁻¹)</th>
<th>SSS (ml.L⁻¹)</th>
<th>ST (mg.L⁻¹)</th>
<th>STF (mg.L⁻¹)</th>
<th>STV (mg.L⁻¹)</th>
<th>Temp. Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul/03</td>
<td>5,03</td>
<td>10146</td>
<td>5060</td>
<td>2,01</td>
<td>16,21</td>
<td>8,09</td>
<td>27,00</td>
<td>2333</td>
<td>287</td>
<td>24,00</td>
</tr>
<tr>
<td>Ago/03</td>
<td>4,71</td>
<td>12683</td>
<td>10480</td>
<td>1,21</td>
<td>20,27</td>
<td>16,75</td>
<td>100,00</td>
<td>37952</td>
<td>1163</td>
<td>23,44</td>
</tr>
<tr>
<td>Set/03</td>
<td>4,82</td>
<td>9502</td>
<td>5680</td>
<td>2,03</td>
<td>15,18</td>
<td>9,07</td>
<td>51,00</td>
<td>6654</td>
<td>1230</td>
<td>25,74</td>
</tr>
<tr>
<td>Fev/04</td>
<td>6,22</td>
<td>8105</td>
<td>6070</td>
<td>1,34</td>
<td>12,95</td>
<td>9,70</td>
<td>6,50</td>
<td>6838</td>
<td>1198</td>
<td>29,70</td>
</tr>
<tr>
<td>Mar/04</td>
<td>5,18</td>
<td>9255</td>
<td>4020</td>
<td>2,30</td>
<td>14,79</td>
<td>6,42</td>
<td>7,80</td>
<td>2300</td>
<td>160</td>
<td>27,14</td>
</tr>
<tr>
<td>Abr/04</td>
<td>5,07</td>
<td>8739</td>
<td>6150</td>
<td>1,42</td>
<td>13,96</td>
<td>9,83</td>
<td>18,00</td>
<td>2240</td>
<td>180</td>
<td>25,04</td>
</tr>
<tr>
<td>Mai/04</td>
<td>5,24</td>
<td>10202</td>
<td>4756</td>
<td>2,15</td>
<td>16,30</td>
<td>7,60</td>
<td>84,00</td>
<td>4670</td>
<td>810</td>
<td>23,43</td>
</tr>
<tr>
<td>Jun/04</td>
<td>5,05</td>
<td>6052</td>
<td>2820</td>
<td>2,15</td>
<td>9,67</td>
<td>4,51</td>
<td>4,00</td>
<td>810</td>
<td>100</td>
<td>22,93</td>
</tr>
<tr>
<td>Jul/04</td>
<td>4,84</td>
<td>10652</td>
<td>4415</td>
<td>2,41</td>
<td>17,02</td>
<td>7,05</td>
<td>13,00</td>
<td>2057</td>
<td>342</td>
<td>22,71</td>
</tr>
<tr>
<td>Ago/04</td>
<td>4,52</td>
<td>7716</td>
<td>4157</td>
<td>1,86</td>
<td>12,33</td>
<td>6,64</td>
<td>50,30</td>
<td>2040</td>
<td>100</td>
<td>24,16</td>
</tr>
<tr>
<td>Set/04</td>
<td>4,29</td>
<td>12802</td>
<td>8280</td>
<td>1,55</td>
<td>20,46</td>
<td>13,23</td>
<td>42,00</td>
<td>2690</td>
<td>225</td>
<td>26,47</td>
</tr>
<tr>
<td>Out/04</td>
<td>6,05</td>
<td>5561</td>
<td>5183</td>
<td>1,07</td>
<td>8,89</td>
<td>8,28</td>
<td>0,80</td>
<td>2986</td>
<td>93</td>
<td>25,97</td>
</tr>
<tr>
<td>Máximo</td>
<td>6,22</td>
<td>12802</td>
<td>10480</td>
<td>2,41</td>
<td>20,46</td>
<td>16,75</td>
<td>100</td>
<td>37952</td>
<td>1230</td>
<td>29,70</td>
</tr>
<tr>
<td>Mínimo</td>
<td>4,29</td>
<td>5561</td>
<td>2820</td>
<td>1,07</td>
<td>8,89</td>
<td>4,51</td>
<td>0,80</td>
<td>810</td>
<td>93</td>
<td>22,71</td>
</tr>
<tr>
<td>Média</td>
<td>5,09</td>
<td>9285</td>
<td>5589</td>
<td>1,79</td>
<td>14,84</td>
<td>8,93</td>
<td>33,70</td>
<td>6131</td>
<td>491</td>
<td>25,06</td>
</tr>
<tr>
<td>Desv. P.</td>
<td>0,56</td>
<td>2254</td>
<td>2054</td>
<td>0,45</td>
<td>3,60</td>
<td>3,28</td>
<td>32,56</td>
<td>10194</td>
<td>468</td>
<td>2,05</td>
</tr>
</tbody>
</table>

No mês de Ago/03, obtiveram-se valores atípicos no afluente coletado, o que provocou a desestabilização das médias, fazendo com que o desvio padrão apresentasse valores tão elevados, principalmente para DQO, DBO₅, SSS, ST e STV.

Na Figura 19, é apresentada a variação da relação DQO/DBO₅ no afluente durante o período estudado.
Figura 19 Relação entre a DQO e DBO₅ efluente.

A Figura 19 mostra que o efluente apresentou uma relação entre DQO:DBO₅ de 1,07 a 2,41. A faixa adequada para o resíduo ser passível de tratamento biológico situa-se entre 1,0 e 3,0, segundo METCALF & EDDY (1991).

Na Figura 20, é apresentada a relação STV/ST no afluente nas coletas realizadas.

Figura 20 Relação entre os Sólidos Totais Voláteis e os Sólidos Totais do afluente no período estudado.

A Figura 20 mostra que a fração de Sólidos Totais Voláteis presente no afluente é expressiva, se comparada ao teor de Sólidos Totais. Isto significa que 92% (5640 mg.L⁻¹) dos Sólidos Totais (6131 mg.L⁻¹) são orgânicos podendo ser digeridos por processos biológicos. A fração média STV:ST ao longo do período foi 0,89 (próximo de 1,0), significando que a maior fração é de matéria carbonácea passível de degradação biológica.

Na Tabela 4, é apresentada a composição média do resíduo amostrado, comparado com dados obtidos de literatura.
Tabela 4 Comparativo da composição do substrato estudado com dados de literatura

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>5,08</td>
<td>6,18</td>
<td>4,90</td>
</tr>
<tr>
<td>DQO</td>
<td>mg.L⁻¹</td>
<td>9285</td>
<td>11484</td>
<td>6153</td>
</tr>
<tr>
<td>DBO₅</td>
<td>mg.L⁻¹</td>
<td>5506</td>
<td>6415</td>
<td>2461</td>
</tr>
<tr>
<td>SSS</td>
<td>ml.L⁻¹</td>
<td>35,81</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ST</td>
<td>mg.L⁻¹</td>
<td>6131</td>
<td>9200</td>
<td>4951</td>
</tr>
<tr>
<td>STF</td>
<td>mg.L⁻¹</td>
<td>491</td>
<td>2800</td>
<td>547</td>
</tr>
<tr>
<td>STV</td>
<td>mg.L⁻¹</td>
<td>5640</td>
<td>6400</td>
<td>4404</td>
</tr>
<tr>
<td>Temperatura</td>
<td>°C</td>
<td>25,09</td>
<td>26,51</td>
<td>-</td>
</tr>
</tbody>
</table>

Na Tabela 4, observa-se que os dados obtidos por ANRAIN (1983) mostram valores de DQO e DBO₅ inferiores aos obtidos por PARIZOTTO (1999) e os do presente trabalho. Isso pode ser atribuído a mudanças introduzidas no processo industrial.

Na fecularia, onde foi conduzido o experimento, a vazão de efluente líquido situou-se entre 4 e 5 m³.t⁻¹ de raiz processada. Conforme relata PARIZOTTO (1999), a recirculação da água vegetal na lavagem das raízes tem diminuído a vazão total de efluentes líquidos por tonelada de raiz processada, que em 1997 nas 10 maiores fecularias do Oeste do Estado do Paraná, situou-se entre 4 e 5 m³.t⁻¹ de raiz processada. Os valores obtidos por ANRAIN (1983) referem-se a uma vazão de 6 m³.t⁻¹ de raiz processada, revelando uma maior diluição, o que pode explicar a citada diferença.

Os resultados obtidos por PARIZOTTO (1999) são próximos aos obtidos no presente estudo, no que se refere à DQO e DBO₅, no entanto os valores de ST e STF obtidos foram maiores que os deste estudo.

Tal ocorrência se deve ao fato de que o efluente utilizado por PARIZOTTO (1999) foi oriundo de indústria de fécula de mandioca localizada na região Oeste do Estado do Paraná, onde predominam solos de formação argilosa com elevado grau de impregnação sobre a superfície das raízes. No presente trabalho, como o efluente utilizado foi proveniente de indústria
localizada no município de Cianorte, onde predominam solos arenosos, com menor grau de impregnação na superfície, o teor de STF foi menor.

4.2 Acompanhamento das Temperaturas ao longo do período estudado

O acompanhamento das temperaturas ocorreu ao longo do período avaliado, compreendido entre os meses de Jul/03 e Out/04. No período de Out/03 a Jan/04 não foram realizadas coletas em razão da paralisação das atividades industriais. Foram realizadas leituras da temperatura do ar ambiente T_0, do afluente T_1, do efluente do reator coberto T_2 e do efluente do descoberto T_3. Estas medições foram diárias às 10:00 e às 15:00 horas, nos dias de funcionamento da fecularia com geração de despejo industrial. Os dados de temperatura diária são apresentados no Anexo I.

A Tabela 5 apresenta dados de temperaturas médias mensais durante o período estudado.

Tabela 5 Dados de temperaturas médias mensais do ar, do afluente e dos efluentes dos reatores

<table>
<thead>
<tr>
<th>Período</th>
<th>Temperaturas médias (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_0</td>
</tr>
<tr>
<td>Jul/03</td>
<td>22,00</td>
</tr>
<tr>
<td>Ago/03</td>
<td>22,50</td>
</tr>
<tr>
<td>Set/03</td>
<td>24,29</td>
</tr>
<tr>
<td>Fev/04</td>
<td>29,17</td>
</tr>
<tr>
<td>Mar/04</td>
<td>26,83</td>
</tr>
<tr>
<td>Abr/04</td>
<td>25,00</td>
</tr>
<tr>
<td>Mai/04</td>
<td>21,25</td>
</tr>
<tr>
<td>Jun/04</td>
<td>21,20</td>
</tr>
<tr>
<td>Jul/04</td>
<td>21,61</td>
</tr>
<tr>
<td>Ago/04</td>
<td>20,53</td>
</tr>
<tr>
<td>Set/04</td>
<td>27,09</td>
</tr>
<tr>
<td>Out/04</td>
<td>25,97</td>
</tr>
<tr>
<td>Média</td>
<td>23,79</td>
</tr>
<tr>
<td>Desv P.</td>
<td>3,02</td>
</tr>
</tbody>
</table>

T_0 – Temperatura Média Mensal do Ar Ambiente; T_1 – Temperatura Média Mensal do Afluente; T_2 – Temperatura Média Mensal do Efluente do Reator Coberto; T_3 – Temperatura Média Mensal do Efluente do Reator Descoberto.

Observa-se na Tabela 5 que as temperaturas médias mensais do efluente do reator coberto T_2, foram superiores às médias do descoberto T_3, durante o período de experimento.
Nas Figuras 21 e 22, é mostrado o comportamento das temperaturas diárias dos efluentes (10 e 15h), em relação à temperatura diária do afluente dos reatores ao longo do período estudado.

Figura 21 Comportamento das temperaturas médias dos efluentes em relação à temperatura do afluente às 10 horas.
Figura 22 Comportamento das temperaturas médias dos efluentes em relação à temperatura do afluente às 15 horas.

De acordo com as equações obtidas e apresentadas nas Figuras 21 e 22, as funções apresentaram maior linearidade para o reator coberto (Y_{Cob}), observando-se melhor ajuste maior R^2. Para a condição, o reator descoberto (Y_{Desc}) obteve-se maior dispersão dos pontos, conseqüentemente menor R^2, devido à menor linearidade. De acordo com o Anexo I, Tabelas A1 a A11, verifica-se que em qualquer dos horários (10 e 15h) as medições de temperatura do ar, das coletas do afluente e efluentes dos reatores, sempre as temperaturas do reator coberto foram maior, com média anual de 2,16 °C.

Na Figura 24, é mostrado o comportamento da temperatura do ar e do efluente dos reatores para medição diária às 10 horas, período maio de 2004 a outubro de 2004.

Na Figura 26, é mostrado o comportamento da temperatura do ar e do efluente dos reatores para medição diária às 15 horas, período maio de 2004 a outubro de 2004.

Os dados utilizados para a geração das Figuras 23, 24, 25 e 26 estão apresentados no Anexo I.
Figura 23 Temperatura diária do ar e efluente dos reatores do mês de julho de 2003 a abril de 2004.
Figura 24 Temperatura diária do ar e efluente dos reatores do mês de maio 2004 a outubro de 2004.
Figura 26 Temperatura diária do ar e efluente dos reatores do mês de maio 2004 a outubro de 2004.
As Figuras 23 e 25 no mês de Jul/03 apresentam apenas um ponto que foi o início do experimento e das medidas ocorrido no dia 24/07/03. A fecularia paralisou as atividades, retornando em 01/08/03.

Nos dias 14 a 17 de Ago/03 (Anexo I) (Tabela A1), na medição das 10 horas a temperatura do ar variou de 17,0 a 19,0°C (Figura 23); a temperatura do afluente de 15,0 a 20,0°C (Tabela A1); a temperatura do efluente do reator coberto variou de 14,0 a 19,0°C (Figura 23) e a do descoberto variou de 13,0 a 16°C (Tabela A1). Na medição das 15 horas, a temperatura do ar variou de 20,0 a 26,0°C (Figura 25); a temperatura do afluente variou 24,0 a 28,0°C (Tabela A1); a do efluente do reator coberto variou de 23,0 a 26,0°C (Figura 25) e a do descoberto variou de 18,0 a 21°C (Figura 23). LAST & LETTINGA (1992) estudaram a queda na eficiência de remoção de DQO de 53% a 20,0°C para 20% quando a temperatura foi reduzida a 10,0°C, durante o processo de tratamento de esgoto sanitário em reator anaeróbio. Ainda no mês de Ago/03, a eficiência de remoção da DBO₅ no reator coberto foi de 77,92%, enquanto que para o reator descoberto foi de 57,71%.

Verificou-se que a temperatura do afluente alimentado aos reatores sofreu menor redução no coberto na medição das 10 horas e maior na medição das 15 horas.

O calor cedido através da massa de afluente alimentada, foi melhor mantido ao reator coberto comparado ao descoberto. Este perdeu calor para o ambiente externo, por não estar protegido pela cobertura plástica.

Fazendo a mesma avaliação para o mês de Set/03, verificou-se que o comportamento das temperaturas diárias foi semelhante ao mês anterior.

No mês de Fev/04, foram reiniciadas as atividades industriais com geração de efluente, sendo retomadas as medições e monitoramento do sistema experimental. Verificou-se que as temperaturas diárias obtidas mantiveram-se elevadas, em razão da estação de verão. As temperaturas diárias do efluente do reator coberto mantiveram-se superiores, comparadas às temperaturas diárias do reator descoberto.

A comparação entre as temperaturas T₀, T₂, e T₃ ao longo do período mostrou que o sistema iniciou com temperaturas baixas, término de inverno, meses de Jul/03, Ago/03 e Set/03, subindo gradativamente até Fev/04 mês
mais quente do verão. Após, ocorreu decréscimo da temperatura em razão da mudança para estação mais fria. Neste período de Jul/03 a Fev/04, observa-se que as curvas da temperatura do reator coberto mantiveram-se acima das curvas do reator descoberto, sofrendo menor variação. Quando as temperaturas do ar, elas sofreram oscilações bruscas, a curva do reator descoberto revelou maior variação em razão da perturbação sofrida pelo reator, decorrente da menor temperatura. Pelo fato de possuir maior capacidade de retenção de calor, em razão da cobertura de lona plástica sobre sua superfície, as temperaturas do reator coberto apresentaram-se superiores neste período.

No mês de Mai/04 (Figura 23) nos dias 12, 13 e 14, a medição das 10 horas mostrou que a temperatura ambiente T_0 sofreu queda de 20,0°C para 13,0°C. A temperatura do efluente do reator coberto sofreu decréscimo de 2,0°C, enquanto que o descoberto sofreu queda de 4,0°C. De acordo com Man (1990) citado por MAHMOUD (2002) a performance de um sistema de reator do tipo UASB de uma fase, operando à temperatura ambiente (5-20°C), foi limitada pela hidrólise da DQO retida.

De acordo com Zeeman & Lettinga (1999) citado por MAHMOUD (2002), digestão anaeróbica a temperaturas abaixo de 15,0°C é possível, mas neste caso é requerido um tempo de retenção de sólidos superior a 75 dias.

Na medição das 10 horas, a temperatura T_2 oscilou entre 23,0°C e 21,0°C, enquanto que a temperatura T_3 caiu de 22,0°C para 18,0°C. Zeeman (1991) citado por MAHMOUD (2002), relatou sobre a digestão de água residuária de estábulo de bovino em reator batelada, com 125 dias de tempo de detenção, obtendo porcentagens de hidrólise de 12, 14, 18, 27 e 45%, para temperaturas de processo de 5, 10, 15, 25 e 30°C, respectivamente. Isso mostra que no estudo realizado, a cobertura plástica no reator ofereceu maior resistência à troca de calor com o ambiente, mantendo a temperatura mais estável.

Observou-se que para variações nas temperaturas do ar ambiente T_0, as perturbações são mais amortecidas no reator coberto, conforme ilustram as curvas das Figuras 23, 24, 25 e 26. Sendo assim, quedas bruscas nas temperaturas do ar provocaram diminuição das temperaturas do reator descoberto com maior intensidade. BOGTE et al. (1993) relataram sobre o acúmulo de sólidos biodegradáveis durante o período de inverno e sua
degradação durante o verão, quando operando reator tipo UASB para tratamento de esgoto sanitário, em região da Holanda.

A partir dos meses de Ago/04 e Set/04, as temperaturas começaram a aumentar em razão do início da estação mais quente. Observou-se até o final do período estudado o mesmo comportamento, ou seja, a curva das temperaturas diárias obtidas para o reator coberto foi superior a do descoberto.

No mês de Out/04, final do experimento, observou-se que as temperaturas estabilizaram-se. Mesmo assim o gradiente de temperatura entre o reator coberto e o descoberto foi mantido.

No Anexo I (Tabela A1) para o mês de Ago/03, dias 14 a 17, medição das 10 horas, verificou-se que a temperatura do afluente variou de 15,0 a 20,0°C. A temperatura do efluente do reator coberto variou de 14,0 a 19,0°C, enquanto a do descoberto variou de 13,0 a 16,0°C. Na medição das 15 horas, a temperatura do afluente variou de 24,0 a 28,0°C. A temperatura do efluente do reator coberto variou de 23,0 a 26,0°C, enquanto a do descoberto variou de 18,0 a 21,0°C. Observou-se nas medições das 10 horas e 15 horas que a temperatura do afluente sofre menor redução no reator coberto, se comparada com o descoberto.

No Anexo I (Tabela A6), mês de Mai/04, dias 12, 13 e 14, na medição das 10 horas, a temperatura do afluente variou de 23,0 a 19,0°C, a do efluente do reator coberto de 23,0 a 21,0°C, enquanto a do descoberto variou de 22,0 a 18,0°C. Isto demonstra que o coberto manteve o calor presente na massa de afluente alimentado, não cedendo para o ar ambiente externo, cuja temperatura do ar variou de 20,0 a 13,0°C, conforme mostra a Figura 23. (Anexo I) (Tabela A6)

4.3 Desempenho dos reatores coberto e descoberto

Para o acompanhamento dos reatores foram utilizados os parâmetros, pH, Demanda Química de Oxigênio (DQO), Demanda Bioquímica de Oxigênio (DBO₅), Sólidos Suspensos Sedimentáveis (SSS), Sólidos Totais (ST), Sólidos Totais Fixos (STF) e Sólidos Totais Voláteis (STV).

Na Tabela 6, é apresentado o resultado dos parâmetros medidos nos efluentes dos reatores coberto e descoberto.
Tabela 6 Tabela de dados dos efluentes dos reatores

REATOR COBERTO

<table>
<thead>
<tr>
<th>Período</th>
<th>pH</th>
<th>DQO (mg.L⁻¹)</th>
<th>DBO₅ (mg.L⁻¹)</th>
<th>DQO/DBO</th>
<th>Carga DQO (Kg.d⁻¹)</th>
<th>Carga DBO₅ (Kg.d⁻¹)</th>
<th>SSS (ml.L⁻¹)</th>
<th>ST (mg.L⁻¹)</th>
<th>STF (mg.L⁻¹)</th>
<th>STV (mg.L⁻¹)</th>
<th>STV/ST¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul/03</td>
<td>6,31</td>
<td>2559</td>
<td>965</td>
<td>2,65</td>
<td>4,09</td>
<td>1,54</td>
<td>2,30</td>
<td>460</td>
<td>40</td>
<td>420</td>
<td>0,91</td>
</tr>
<tr>
<td>Ago/03</td>
<td>6,18</td>
<td>4166</td>
<td>2314</td>
<td>1,80</td>
<td>6,65</td>
<td>3,70</td>
<td>20,00</td>
<td>24872</td>
<td>1261</td>
<td>23591</td>
<td>0,95</td>
</tr>
<tr>
<td>Set/03</td>
<td>6,61</td>
<td>4390</td>
<td>2439</td>
<td>1,80</td>
<td>7,01</td>
<td>3,90</td>
<td>6,60</td>
<td>3100</td>
<td>1040</td>
<td>2060</td>
<td>0,66</td>
</tr>
<tr>
<td>Fev/04</td>
<td>5,36</td>
<td>4687</td>
<td>2953</td>
<td>1,59</td>
<td>7,49</td>
<td>4,72</td>
<td>0,10</td>
<td>2562</td>
<td>996</td>
<td>1566</td>
<td>0,61</td>
</tr>
<tr>
<td>Mar/04</td>
<td>4,64</td>
<td>968</td>
<td>608</td>
<td>1,59</td>
<td>1,55</td>
<td>0,97</td>
<td>0,10</td>
<td>620</td>
<td>28</td>
<td>592</td>
<td>0,95</td>
</tr>
<tr>
<td>Abr/04</td>
<td>4,80</td>
<td>6709</td>
<td>4561</td>
<td>1,47</td>
<td>10,71</td>
<td>7,28</td>
<td>0,70</td>
<td>675</td>
<td>50</td>
<td>625</td>
<td>0,93</td>
</tr>
<tr>
<td>Mai/04</td>
<td>4,63</td>
<td>4192</td>
<td>3043</td>
<td>1,38</td>
<td>6,69</td>
<td>4,86</td>
<td>0,10</td>
<td>370</td>
<td>30</td>
<td>340</td>
<td>0,92</td>
</tr>
<tr>
<td>Jun/04</td>
<td>5,16</td>
<td>3413</td>
<td>1680</td>
<td>2,03</td>
<td>5,45</td>
<td>2,68</td>
<td>1,20</td>
<td>673</td>
<td>27</td>
<td>646</td>
<td>0,96</td>
</tr>
<tr>
<td>Jul/04</td>
<td>4,33</td>
<td>7896</td>
<td>3871</td>
<td>2,04</td>
<td>12,61</td>
<td>6,18</td>
<td>0,10</td>
<td>320</td>
<td>33</td>
<td>287</td>
<td>0,90</td>
</tr>
<tr>
<td>Ago/04</td>
<td>4,68</td>
<td>6528</td>
<td>3313</td>
<td>1,97</td>
<td>10,43</td>
<td>5,29</td>
<td>0,90</td>
<td>524</td>
<td>12</td>
<td>512</td>
<td>0,98</td>
</tr>
<tr>
<td>Set/04</td>
<td>5,22</td>
<td>7945</td>
<td>4793</td>
<td>1,66</td>
<td>12,69</td>
<td>7,65</td>
<td>1,00</td>
<td>264</td>
<td>50</td>
<td>214</td>
<td>0,81</td>
</tr>
<tr>
<td>Out/04</td>
<td>6,26</td>
<td>2528</td>
<td>1266</td>
<td>2,00</td>
<td>4,04</td>
<td>2,02</td>
<td>1,10</td>
<td>116</td>
<td>8</td>
<td>108</td>
<td>0,93</td>
</tr>
<tr>
<td>Máximo</td>
<td></td>
<td>6,61</td>
<td>7945</td>
<td>4793</td>
<td>2,65</td>
<td>12,69</td>
<td>7,65</td>
<td>20</td>
<td>24872</td>
<td>1261</td>
<td>23591</td>
</tr>
<tr>
<td>Mínimo</td>
<td></td>
<td>4,33</td>
<td>608</td>
<td>1,38</td>
<td>1,55</td>
<td>0,97</td>
<td>0,11</td>
<td>16</td>
<td>8</td>
<td>108</td>
<td>0,61</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>5,35</td>
<td>4665</td>
<td>2655</td>
<td>1,83</td>
<td>7,45</td>
<td>4,23</td>
<td>2,85</td>
<td>2880</td>
<td>298</td>
<td>2580</td>
</tr>
<tr>
<td>Desv. P.</td>
<td></td>
<td>0,79</td>
<td>2208</td>
<td>1363</td>
<td>0,34</td>
<td>3,53</td>
<td>2,18</td>
<td>5,69</td>
<td>6989</td>
<td>487</td>
<td>6641</td>
</tr>
</tbody>
</table>

REATOR DESCOBERTO

<table>
<thead>
<tr>
<th>Período</th>
<th>pH</th>
<th>DQO (mg.L⁻¹)</th>
<th>DBO₅ (mg.L⁻¹)</th>
<th>DQO/DBO</th>
<th>Carga DQO (Kg.d⁻¹)</th>
<th>Carga DBO₅ (Kg.d⁻¹)</th>
<th>SSS (ml.L⁻¹)</th>
<th>ST (mg.L⁻¹)</th>
<th>STF (mg.L⁻¹)</th>
<th>STV (mg.L⁻¹)</th>
<th>STV/ST¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul/03</td>
<td>6,32</td>
<td>3215</td>
<td>965</td>
<td>3,33</td>
<td>5,13</td>
<td>1,54</td>
<td>2,80</td>
<td>730</td>
<td>3</td>
<td>727</td>
<td>1,00</td>
</tr>
<tr>
<td>Ago/03</td>
<td>5,78</td>
<td>4702</td>
<td>4432</td>
<td>1,06</td>
<td>7,51</td>
<td>7,08</td>
<td>0,70</td>
<td>33757</td>
<td>1205</td>
<td>32552</td>
<td>0,96</td>
</tr>
<tr>
<td>Set/03</td>
<td>6,28</td>
<td>5580</td>
<td>4752</td>
<td>1,17</td>
<td>8,91</td>
<td>7,59</td>
<td>59,00</td>
<td>4562</td>
<td>2366</td>
<td>2196</td>
<td>0,48</td>
</tr>
<tr>
<td>Fev/04</td>
<td>5,06</td>
<td>7264</td>
<td>5100</td>
<td>1,19</td>
<td>11,60</td>
<td>8,15</td>
<td>0,10</td>
<td>2970</td>
<td>1076</td>
<td>1894</td>
<td>0,64</td>
</tr>
<tr>
<td>Mar/04</td>
<td>4,76</td>
<td>1044</td>
<td>676</td>
<td>1,54</td>
<td>1,67</td>
<td>1,08</td>
<td>0,10</td>
<td>628</td>
<td>20</td>
<td>608</td>
<td>0,97</td>
</tr>
<tr>
<td>Abr/04</td>
<td>4,86</td>
<td>8190</td>
<td>5498</td>
<td>1,49</td>
<td>13,08</td>
<td>8,78</td>
<td>1,10</td>
<td>970</td>
<td>100</td>
<td>870</td>
<td>0,90</td>
</tr>
<tr>
<td>Mai/04</td>
<td>4,53</td>
<td>6394</td>
<td>3416</td>
<td>1,87</td>
<td>10,21</td>
<td>5,46</td>
<td>0,30</td>
<td>633</td>
<td>40</td>
<td>593</td>
<td>0,94</td>
</tr>
<tr>
<td>Jun/04</td>
<td>5,05</td>
<td>5096</td>
<td>2495</td>
<td>2,04</td>
<td>8,14</td>
<td>3,98</td>
<td>1,20</td>
<td>805</td>
<td>190</td>
<td>615</td>
<td>0,76</td>
</tr>
<tr>
<td>Jul/04</td>
<td>4,88</td>
<td>8752</td>
<td>4227</td>
<td>2,07</td>
<td>13,98</td>
<td>6,75</td>
<td>0,10</td>
<td>657</td>
<td>50</td>
<td>607</td>
<td>0,92</td>
</tr>
<tr>
<td>Ago/04</td>
<td>4,90</td>
<td>6579</td>
<td>3915</td>
<td>1,68</td>
<td>10,51</td>
<td>6,25</td>
<td>1,80</td>
<td>595</td>
<td>11</td>
<td>584</td>
<td>0,98</td>
</tr>
<tr>
<td>Set/04</td>
<td>5,26</td>
<td>8280</td>
<td>6608</td>
<td>1,25</td>
<td>13,22</td>
<td>10,55</td>
<td>0,70</td>
<td>160</td>
<td>35</td>
<td>125</td>
<td>0,78</td>
</tr>
<tr>
<td>Out/04</td>
<td>5,43</td>
<td>4914</td>
<td>2220</td>
<td>2,21</td>
<td>7,85</td>
<td>3,55</td>
<td>15,40</td>
<td>753</td>
<td>113</td>
<td>640</td>
<td>0,85</td>
</tr>
<tr>
<td>Máximo</td>
<td></td>
<td>6,32</td>
<td>8752</td>
<td>6608</td>
<td>3,33</td>
<td>13,98</td>
<td>10,55</td>
<td>59</td>
<td>33757</td>
<td>2366</td>
<td>32552</td>
</tr>
<tr>
<td>Mínimo</td>
<td></td>
<td>4,53</td>
<td>1044</td>
<td>76</td>
<td>1,06</td>
<td>1,67</td>
<td>1,08</td>
<td>0,11</td>
<td>160</td>
<td>3</td>
<td>125</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>5,26</td>
<td>5834</td>
<td>3692</td>
<td>1,74</td>
<td>9,32</td>
<td>5,90</td>
<td>6,94</td>
<td>3935</td>
<td>434</td>
<td>3501</td>
</tr>
<tr>
<td>Desv. P.</td>
<td></td>
<td>0,58</td>
<td>2246</td>
<td>1808</td>
<td>0,63</td>
<td>3,59</td>
<td>2,89</td>
<td>16,94</td>
<td>9476</td>
<td>739</td>
<td>9168</td>
</tr>
</tbody>
</table>

A Tabela 6 mostra que o efluente do reator coberto iniciou com pH 6,31, mantendo-se estável nos dois próximos meses (até o final da safra 2003).

Nos três primeiros meses do presente estudo, os valores de pH mantiveram-se na faixa de 5,7 a 6,3 para o reator descoberto e entre 6,3 e 6,6 para o coberto. Os valores ótimos de pH para crescimento de arqueas metanogênicas estão entre 6,6 e 7,4, segundo LETTINGA et al. (1991). A princípio, a arquea metanogênicas não consome todo o ácido produzido, causando uma queda no pH do meio.
RIBAS & BARANA (2003), operando digestor de fluxo ascendente, onde aplicaram despejo de farinheira com carga orgânica de 2,3 kg DQO.m$^{-3}$.d$^{-1}$, pH entre 5,5 e 6,0 e tempo de detenção hidráulico de 11,6 dias, obtiveram no efluente do reator pH de 4,0 e eficiência de 60% na remoção de DQO.

Na Figura 27, são apresentados os dados de pH para os reatores ao longo do período estudado.

![Figura 27](image)

Figura 27 Variação do pH do sistema ao longo do período de amostragem.

Pela análise dos dados, verificou-se que os dois reatores operaram na fase acidogênica a partir do mês de Fev/04, com valores de pH próximos de 5,0, como obtido por BARANA (2000), que operou um reator acidogênico, obtendo variação de pH entre 4,69 e 4,24 durante todo o processo. No decorrer do experimento, as cargas orgânicas recebidas pelos reatores aumentaram e diminuíram constantemente, resultando na acidificação dos reatores que passaram a operar como um reator de fase única. Trabalhando sem correção do pH do afluente, BARANA (2000) obteve variação do pH entre 7,36 e 8,01, com o reator estabilizado sobre carga de DQO de 6,56 a 16,42 kg.m$^{-3}$.d$^{-1}$, e quando aumentou a carga de DQO para 17,80 kg.m$^{-3}$.d$^{-1}$, obteve queda do pH para 4,21 acidificando o reator.

4.3.1 Remoção de carga orgânica

Na Tabela 7, são apresentadas as eficiências de remoção de DQO, DBO$_5$, ST e STV para os reatores coberto e descoberto.
Tabela 7 Eficiências de remoção de DQO, DBO₅, ST e STV para os reatores

<table>
<thead>
<tr>
<th>Período</th>
<th>REATOR COBERTO</th>
<th>REATOR DESCOBERTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul/03</td>
<td>74,78</td>
<td>80,93</td>
</tr>
<tr>
<td>Ago/03</td>
<td>67,15</td>
<td>77,92</td>
</tr>
<tr>
<td>Set/03</td>
<td>53,80</td>
<td>57,06</td>
</tr>
<tr>
<td>Fev/04</td>
<td>42,17</td>
<td>51,35</td>
</tr>
<tr>
<td>Mar/04</td>
<td>89,54</td>
<td>84,88</td>
</tr>
<tr>
<td>Abr/04</td>
<td>23,23</td>
<td>25,84</td>
</tr>
<tr>
<td>Mai/04</td>
<td>58,91</td>
<td>36,02</td>
</tr>
<tr>
<td>Jun/04</td>
<td>43,61</td>
<td>40,43</td>
</tr>
<tr>
<td>Jul/04</td>
<td>25,87</td>
<td>12,32</td>
</tr>
<tr>
<td>Ago/04</td>
<td>15,40</td>
<td>20,30</td>
</tr>
<tr>
<td>Out/04</td>
<td>37,94</td>
<td>42,11</td>
</tr>
<tr>
<td>Média</td>
<td>48,91</td>
<td>50,39</td>
</tr>
<tr>
<td>Desv P.</td>
<td>21,98</td>
<td>25,03</td>
</tr>
</tbody>
</table>

Na Figura 28, são apresentados os dados de remoção de DQO para os reatores ao longo do período estudado.

Figura 28 Eficiência de Remoção de DQO durante o período estudado.

Na Tabela 7, é observada remoção média de 48,91% para a DQO do efluente do reator coberto enquanto que para o descoberto obteve-se remoção média de 34,21%, ao longo do período estudado. ANRAIN (1983) obteve remoção de 87% da DQO no primeiro ano e 92% de remoção no segundo ano. Também LACERDA (1991) conseguiu 85,20% de remoção de carga orgânica. Ambos os autores trabalharam com reatores UASB e separação de fases
(Acidogênicas e Metanogênicas), temperatura controlada na faixa de 32 a 35°C, correção do pH do afluente entre 5,5 e 6,0. Enquanto SAMPAIO (1996), utilizando efluente de fecularia com DQO de 11.000, 14.000 e 18.000 mg.L\(^{-1}\) obteve remoção de 95% na DQO, trabalhando com reator de mistura completa, com controle de temperatura, reator com volume de 5 L e tempo de detenção hidráulico de um dia na fase ácida. Para a fase metanogênica, o volume do reator utilizado foi de 20 L, tempo de detenção hidráulico de quatro dias, inoculado com lodo de estação de tratamento de esgoto doméstico. BARANA (1996), trabalhando com efluente de farinheira, chegou a redução de 66% na DQO aplicando carga orgânica de 0,33g DQO L\(^{-1}\).d\(^{-1}\); atingiu 92% de remoção para carga de 3,75g DQO L\(^{-1}\).d\(^{-1}\); com a elevação da taxa ocorreu decréscimo na remoção de DQO, atingindo 55% de remoção de DQO.

BARANA (2000) obteve redução de carga de DQO de 75,24%, com carga afluente de 9,45g L\(^{-1}\).d\(^{-1}\), no reator metanogênico, sem correção de pH do afluente. Utilizando efluente de fecularia com correção do pH, conseguiu redução de até 85,61% na DQO, com carga aplicada de 6,16g L\(^{-1}\).d\(^{-1}\).

RIBAS & BARANA (2003), trabalhando com efluente de fecularia, ora com carga orgânica fixa e tempo de detenção variado, e, ora fixando o tempo de detenção hidráulico e variando a carga aplicada, obtiveram como os melhores resultados, tempo de detenção hidráulico (TDH) de 9,6 dias, 4,87% de ST, 4,31% de STV e carga de 2,9g DQO.L\(^{-1}\).d\(^{-1}\). Os autores conduziram o trabalho com temperatura mantida em 32°C ± 1°C e pH ajustado entre 6,0 e 6,5 obtendo remoção média de 60% na DQO.

No presente trabalho e de acordo com a Tabela 3, a carga orgânica média aplicada foi 14,84 kg DQO.d\(^{-1}\)(0,93 kg DQO.m\(^{-3}\).d\(^{-1}\)), para um tempo de detenção hidráulico fixo (TDH) de 10 dias, reator com volume de 15,98 m\(^{3}\) e remoção média de 48,91% na DQO ao longo do período estudado.

Observou-se, no mês Jun/04, eficiência de remoção da DQO de 43,61% para o reator coberto, enquanto para o descoberto a remoção da DQO foi de 15,80% . Isso pode estar relacionado com as temperaturas dos efluentes dos reatores, onde o coberto apresentou temperaturas diárias superiores ao descoberto para as medições das 10 e 15 horas. A constante da taxa de hidrólise é altamente dependente da temperatura, sendo a hidrólise uma
reação bioquímica catalisada por enzimas, as quais são muito sensíveis à temperaturas, de acordo com SANDERS (2001).

Os dados de eficiência de remoção de DBO₅, são apresentados na Tabela 7. Verifica-se uma remoção média de 50,39% para o reator coberto e 32,66% para o reator descoberto, ao longo do período. O comportamento da remoção de DBO₅ é mostrado na Figura 29.

![Figura 29](image)

Figura 29 Eficiência de remoção da DBO₅ ao longo do período estudado.

A Tabela 7 apresenta no mês de Jun/04 eficiência de remoção de DBO₅ de 40,43% para o reator coberto, enquanto 11,52% para o reator descoberto. Este aumento de eficiência no reator coberto, comparado ao descoberto, pode estar associado às temperaturas diárias superiores às observadas no reator coberto medidas às 10 e 15 horas.

As reduções das cargas orgânicas obtidas no presente trabalho foram mais baixas que as encontradas na literatura. Entretanto, deve-se destacar que estes resultados foram obtidos em condições de campo com variação da carga afluente, empregando-se um sistema simplificado e robusto, sem correção de pH e sob condições de temperatura ambiente sub-ótimas (entre 20,0 e 30,0°C). Nas condições referidas, a digestão anaeróbia se processa mais lentamente e com menor eficiência. Porém, as instalações e operações apresentam menor grau de complexidade, além do menor custo.
4.3.2 Remoção de Sólidos Totais (ST) e Sólidos Totais Voláteis (STV)

O resultado da análise dos Sólidos Totais (ST) e Sólidos Totais Voláteis (STV) para o efluente dos reatores coberto e descoberto constam na Tabela 6. A Figura 30 mostra a eficiência de remoção de ST em função das coletas.

Figura 30 Eficiência de remoção de Sólidos Totais ao longo do período de estudo.

Conforme mostrado na Tabela 7, observa-se para o reator coberto uma eficiência de remoção média de ST de 68,97%, enquanto para o reator descoberto média de 57,66%, ao longo do período estudado. Com exceção do mês de Jun/04 (mais frio), onde as eficiências foram de 16,91% para o coberto e 0,62% para o descoberto. Ainda na Tabela 7, verificou-se que a baixa remoção de ST, neste mês, não foi devida à diminuição da taxa de remoção nos reatores, mas, sim, a uma brusca diminuição na concentração de ST no afluente.

RIBAS & BARANA (2003) obtiveram 44% de remoção para ST e 60% para STV, operando reator com temperatura mantida em 32°C ± 1°C, pH ajustado entre 5,5 e 6,0 e tempo de detenção hidráulico de 9,6 dias.
Apesar da carga de DQO de entrada ter caído quase a metade (mês Mai/04 para Jun/04), de 16,30 para 9,67 kg.d\(^{-1}\), a concentração de ST na entrada caiu de 4670 para 810 mg.L\(^{-1}\), ou seja, uma diminuição de quase seis vezes. Consequentemente, na saída dos reatores, a eficiência de remoção de ST baixou de 92,08 para 16,91% no reator coberto e de 86,45 para 0,62% no descoberto. Isto representa uma grande diminuição em eficiência no reator descoberto, comparado ao coberto, para uma variação de carga de DQO na entrada como a referida.

A Tabela 6 mostra que no mês de Jul/04, especificamente, a concentração de Sólidos Totais (ST) no efluente do reator descoberto foi de 657 mg.L\(^{-1}\), enquanto 320 mg.L\(^{-1}\) no reator coberto, obtendo-se cargas efluentes de 13,98 kg DQO.d\(^{-1}\) e 12,61 kg DQO.d\(^{-1}\), respectivamente. Isso pode ser explicado pela influência da temperatura, que no mês observado foi de 18,82°C para o descoberto e 22,18°C para o efluente do reator coberto. A redução na temperatura operacional não só pode ter retardado a etapa da hidrólise da matéria orgânica particulada, como também ter levado a um significativo decréscimo no máximo crescimento dos microorganismos e utilização de substrato (LETTINGA, 1991). Isto é corroborado por VAN HANDELL & LETTINGA (1994) que estudaram a interferência da temperatura na hidrólise e sedimentação de sólidos. A alta carga aplicada de 17,02 kg DQO.d\(^{-1}\), pode ter ocasionado o acúmulo de sólidos não solubilizados nos reatores, mais acentuadamente no reator descoberto.

No mês de Ago/03, o reator coberto apresentou teor de Sólidos Totais de 24872 mg.L\(^{-1}\), enquanto o descoberto de 33757 mg.L\(^{-1}\). Essa brusca elevação nas taxas de saída pode não estar associada à diminuição nas eficiências, mas ser atribuída à variação no substrato do afluente, onde a concentração de Sólidos Totais atingiu 37952 mg.L\(^{-1}\). Mesmo assim, a remoção no reator coberto foi de 34,46%, superior ao reator descoberto que apresentou eficiência de 11,05% de remoção de Sólidos Totais.

Com relação aos Sólidos Totais Voláteis (STV), observou-se ao longo do estudo na Tabela 6 um comportamento semelhante ao ST.

A Figura 31 mostra o comportamento dos Sólidos Totais Voláteis para os reatores ao longo do período estudado.
Figura 31 Eficiência de remoção de Sólidos Totais Voláteis ao longo do experimento.

Para o reator coberto, a eficiência de remoção média obtida foi de 69,69%, enquanto para o reator descoberto de 61,38%. Os resultados obtidos para o reator coberto foram semelhantes aos obtidos por BARANA (2000), operando reator acidogênico.

No mês de Jul/04, o reator coberto apresentou teor de STV de 287 mg.L\(^{-1}\). O reator descoberto, no mesmo mês observado, apresentou no efluente uma concentração de Sólidos Totais Voláteis de 607 mg.L\(^{-1}\).

Comparando-se os dados de STV, verificou-se remoção de 83,27% para o reator coberto e 64,61% para o descoberto no mês de Jul/04, conforme dados da Tabela 7. Isso pode ser explicado pela influência da temperatura média mensal de 22,18°C para o reator coberto, enquanto para o reator descoberto de 19,50°C. Com a diminuição da temperatura, as arqueas metanogênicas não convertem todo o ácido produzido em metano e dióxido de carbono.
5 CONCLUSÕES

Ao longo do período estudado, observou-se temperaturas médias diárias superiores no efluente do reator coberto, comparadas com o descoberto, ficando mais evidenciado nos períodos de baixas temperaturas do ar ambiente.

Obteve-se remoção de DQO de cerca de 10% superior no reator coberto em relação ao descoberto. A remoção de DBO₅ no reator coberto foi 15% maior que no reator descoberto.

O reator coberto com lona plástica apresentou maior capacidade de retenção de calor que não foi cedido ao ar ambiente, mantendo o gradiente de temperatura, que por não ter sofrido oscilações bruscas melhorou a estabilidade do reator.
6 RECOMENDAÇÕES

Considera-se que a avaliação, como a realizada no presente trabalho, teria sido mais expressiva se fosse realizada em regiões de clima mais frio, onde talvez a influência da cobertura plástica no desempenho do sistema ficasse mais expressiva.

A decisão de implantar a cobertura no reator depende basicamente de uma análise de custo/benefício. O ganho de eficiência no sistema anaeróbio implica em equivalente diminuição da quantidade de oxigênio dissolvido em um sistema com aeração mecânica, caso necessária sua instalação para a complementação do tratamento do efluente. Essa redução em oxigênio e energia elétrica consumida, no sistema concebido, é atrativa sob o aspecto econômico.

As informações obtidas com a realização do presente estudo permitem-nos recomendar possíveis adaptações a serem introduzidas em futuras pesquisas, de forma a aumentar a sua eficiência. Sugerimos os seguintes pontos a serem pesquisados:

- Testar o sistema durante um período semelhante ao estudado, entretanto trabalhando com um maior número de análises e alterando a sistemática de coleta de dados.
- Conhecer melhor a característica da biomassa dos reatores, estudando o perfil de biomassa ao longo do reator.
- Controlar o pH e a carga afluente para aumentar a eficiência do processo.
7 REFERÊNCIAS BIBLIOGRÁFICAS

EL-MASHAD, M. H.; LETTINGA, G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Department of Agricultural Engineering, Faculty of Agriculture, Mansoura University, El Mansoura, Egypt; Department of Agrotechnology and Food Sciences, Wageningen University Agrotechnion, Mansholtlaan 10, Wageningen 6708 PA, Netherlands. 2004.

LETTINGA; VAN NELSEN; ZELW, W. Use of the upflow sludge blanket (USB) reactor concept, for biological wastewater treatment, especially for anaerobic treatment, Biotecnology & Bioengineering. v.XXII, n.º 4, 1980, p.699-734.

ANEXO I
Tabela A1 Temperaturas diárias referente ao mês de agosto de 2003

<table>
<thead>
<tr>
<th>Data</th>
<th>10:00 horas</th>
<th></th>
<th>15:00 horas</th>
<th></th>
<th>Média Diária</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_0</td>
<td>T_1</td>
<td>T_2</td>
<td>T_3</td>
<td>T_0</td>
</tr>
<tr>
<td>01/08/03</td>
<td>23,00</td>
<td>22,00</td>
<td>24,00</td>
<td>22,00</td>
<td>28,00</td>
</tr>
<tr>
<td>02/08/03</td>
<td>23,00</td>
<td>21,00</td>
<td>24,00</td>
<td>22,00</td>
<td>28,00</td>
</tr>
<tr>
<td>03/08/03</td>
<td>25,00</td>
<td>23,00</td>
<td>23,00</td>
<td>22,00</td>
<td>30,00</td>
</tr>
<tr>
<td>04/08/03</td>
<td>23,00</td>
<td>21,00</td>
<td>22,00</td>
<td>21,00</td>
<td>28,00</td>
</tr>
<tr>
<td>06/08/03</td>
<td>21,00</td>
<td>20,00</td>
<td>21,00</td>
<td>20,00</td>
<td>27,00</td>
</tr>
<tr>
<td>07/08/03</td>
<td>19,00</td>
<td>18,00</td>
<td>19,00</td>
<td>19,00</td>
<td>25,00</td>
</tr>
<tr>
<td>08/08/03</td>
<td>22,00</td>
<td>21,00</td>
<td>22,00</td>
<td>21,00</td>
<td>31,00</td>
</tr>
<tr>
<td>09/08/03</td>
<td>18,00</td>
<td>18,00</td>
<td>19,00</td>
<td>19,00</td>
<td>28,00</td>
</tr>
<tr>
<td>10/08/03</td>
<td>16,00</td>
<td>17,00</td>
<td>18,00</td>
<td>18,00</td>
<td>21,00</td>
</tr>
<tr>
<td>12/08/03</td>
<td>16,00</td>
<td>17,00</td>
<td>17,00</td>
<td>18,00</td>
<td>21,00</td>
</tr>
<tr>
<td>13/08/03</td>
<td>15,00</td>
<td>16,00</td>
<td>17,00</td>
<td>17,00</td>
<td>20,00</td>
</tr>
<tr>
<td>14/08/03</td>
<td>17,00</td>
<td>15,00</td>
<td>14,00</td>
<td>13,00</td>
<td>20,00</td>
</tr>
<tr>
<td>15/08/03</td>
<td>17,00</td>
<td>16,00</td>
<td>14,00</td>
<td>13,00</td>
<td>24,00</td>
</tr>
<tr>
<td>16/08/03</td>
<td>18,00</td>
<td>18,00</td>
<td>17,00</td>
<td>15,00</td>
<td>25,00</td>
</tr>
<tr>
<td>17/08/03</td>
<td>19,00</td>
<td>20,00</td>
<td>19,00</td>
<td>16,00</td>
<td>26,00</td>
</tr>
<tr>
<td>18/08/03</td>
<td>19,00</td>
<td>20,00</td>
<td>19,00</td>
<td>17,00</td>
<td>25,00</td>
</tr>
<tr>
<td>19/08/03</td>
<td>19,00</td>
<td>21,00</td>
<td>18,00</td>
<td>16,00</td>
<td>25,00</td>
</tr>
<tr>
<td>20/08/03</td>
<td>19,00</td>
<td>22,00</td>
<td>20,00</td>
<td>18,00</td>
<td>24,00</td>
</tr>
<tr>
<td>21/08/03</td>
<td>20,00</td>
<td>23,00</td>
<td>21,00</td>
<td>19,00</td>
<td>28,00</td>
</tr>
<tr>
<td>22/08/03</td>
<td>24,00</td>
<td>24,00</td>
<td>21,00</td>
<td>19,00</td>
<td>28,00</td>
</tr>
<tr>
<td>23/08/03</td>
<td>26,00</td>
<td>24,00</td>
<td>21,00</td>
<td>19,00</td>
<td>30,00</td>
</tr>
<tr>
<td>24/08/03</td>
<td>18,00</td>
<td>19,00</td>
<td>20,00</td>
<td>19,00</td>
<td>26,00</td>
</tr>
<tr>
<td>25/08/03</td>
<td>14,00</td>
<td>24,00</td>
<td>21,00</td>
<td>19,00</td>
<td>21,00</td>
</tr>
<tr>
<td>26/08/03</td>
<td>13,00</td>
<td>22,00</td>
<td>20,00</td>
<td>18,00</td>
<td>29,00</td>
</tr>
<tr>
<td>27/08/03</td>
<td>15,00</td>
<td>21,00</td>
<td>19,00</td>
<td>18,00</td>
<td>28,00</td>
</tr>
</tbody>
</table>

Máximo 26,00 24,00 24,00 22,00 31,00 30,00 29,00 28,00 28,00 27,00 26,50 25,00

Mínimo 13,00 15,00 14,00 13,00 20,00 24,00 23,00 18,00 17,50 19,50 18,50 15,50

Média 19,16 20,12 19,60 18,32 25,84 26,76 26,20 24,04 22,50 23,44 22,90 21,18
Tabela A2 - Temperaturas diárias referente ao mês de setembro de 2003

<table>
<thead>
<tr>
<th>Data</th>
<th>10:00 horas</th>
<th>15:00 horas</th>
<th>Média Diária</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T₀</td>
<td>T₁</td>
<td>T₂</td>
</tr>
<tr>
<td>01/09/03</td>
<td>17,00</td>
<td>22,00</td>
<td>20,00</td>
</tr>
<tr>
<td>02/09/03</td>
<td>20,00</td>
<td>23,00</td>
<td>22,00</td>
</tr>
<tr>
<td>06/09/03</td>
<td>24,00</td>
<td>25,00</td>
<td>23,00</td>
</tr>
<tr>
<td>07/09/03</td>
<td>15,00</td>
<td>22,00</td>
<td>20,00</td>
</tr>
<tr>
<td>08/09/03</td>
<td>16,00</td>
<td>23,00</td>
<td>20,00</td>
</tr>
<tr>
<td>12/09/03</td>
<td>20,00</td>
<td>23,00</td>
<td>22,00</td>
</tr>
<tr>
<td>13/09/03</td>
<td>21,00</td>
<td>25,00</td>
<td>22,00</td>
</tr>
<tr>
<td>14/09/03</td>
<td>20,00</td>
<td>24,00</td>
<td>23,00</td>
</tr>
<tr>
<td>15/09/03</td>
<td>23,00</td>
<td>25,00</td>
<td>23,00</td>
</tr>
<tr>
<td>19/09/03</td>
<td>23,00</td>
<td>25,00</td>
<td>23,00</td>
</tr>
<tr>
<td>20/09/03</td>
<td>25,00</td>
<td>26,00</td>
<td>22,00</td>
</tr>
<tr>
<td>21/09/03</td>
<td>26,00</td>
<td>25,00</td>
<td>24,00</td>
</tr>
<tr>
<td>22/09/03</td>
<td>25,00</td>
<td>24,00</td>
<td>23,00</td>
</tr>
<tr>
<td>25/09/03</td>
<td>19,00</td>
<td>24,00</td>
<td>23,00</td>
</tr>
<tr>
<td>26/09/03</td>
<td>21,00</td>
<td>25,00</td>
<td>24,00</td>
</tr>
<tr>
<td>29/09/03</td>
<td>20,00</td>
<td>24,00</td>
<td>24,00</td>
</tr>
<tr>
<td>30/09/03</td>
<td>23,00</td>
<td>26,00</td>
<td>25,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>26,00</td>
<td>26,00</td>
<td>25,00</td>
</tr>
<tr>
<td>Mínimo</td>
<td>15,00</td>
<td>22,00</td>
<td>20,00</td>
</tr>
<tr>
<td>Média</td>
<td>21,06</td>
<td>24,18</td>
<td>22,53</td>
</tr>
</tbody>
</table>

Nota: As temperaturas estão em graus Celsius.
Tabela A3 Temperaturas diárias referente ao mês de fevereiro de 2004

<table>
<thead>
<tr>
<th>Data</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>Média</th>
<th>T₄</th>
<th>T₅</th>
<th>T₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/02/04</td>
<td>28,00</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>34,00</td>
<td>32,00</td>
<td>32,00</td>
<td>25,00</td>
<td>31,00</td>
<td>29,50</td>
<td>30,00</td>
<td>26,00</td>
</tr>
<tr>
<td>02/02/04</td>
<td>24,00</td>
<td>26,00</td>
<td>28,00</td>
<td>26,00</td>
<td>27,00</td>
<td>31,00</td>
<td>32,00</td>
<td>25,00</td>
<td>25,50</td>
<td>28,50</td>
<td>30,00</td>
<td>25,50</td>
</tr>
<tr>
<td>03/02/04</td>
<td>26,00</td>
<td>26,00</td>
<td>28,00</td>
<td>26,00</td>
<td>30,00</td>
<td>32,00</td>
<td>31,00</td>
<td>27,00</td>
<td>28,00</td>
<td>29,00</td>
<td>29,50</td>
<td>26,50</td>
</tr>
<tr>
<td>04/02/04</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>27,00</td>
<td>32,00</td>
<td>33,00</td>
<td>31,00</td>
<td>26,00</td>
<td>29,50</td>
<td>30,00</td>
<td>29,00</td>
<td>26,50</td>
</tr>
<tr>
<td>06/02/04</td>
<td>27,00</td>
<td>26,00</td>
<td>27,00</td>
<td>27,00</td>
<td>33,00</td>
<td>35,00</td>
<td>32,00</td>
<td>27,00</td>
<td>30,00</td>
<td>30,50</td>
<td>29,50</td>
<td>26,50</td>
</tr>
<tr>
<td>07/02/04</td>
<td>28,00</td>
<td>28,00</td>
<td>28,00</td>
<td>27,00</td>
<td>35,00</td>
<td>34,00</td>
<td>33,00</td>
<td>28,00</td>
<td>31,50</td>
<td>31,00</td>
<td>30,50</td>
<td>27,50</td>
</tr>
<tr>
<td>08/02/04</td>
<td>28,00</td>
<td>28,00</td>
<td>29,00</td>
<td>28,00</td>
<td>34,00</td>
<td>35,00</td>
<td>33,00</td>
<td>28,00</td>
<td>31,00</td>
<td>31,50</td>
<td>31,00</td>
<td>28,00</td>
</tr>
<tr>
<td>10/02/04</td>
<td>27,00</td>
<td>28,00</td>
<td>29,00</td>
<td>28,00</td>
<td>34,00</td>
<td>36,00</td>
<td>32,00</td>
<td>29,00</td>
<td>30,00</td>
<td>32,00</td>
<td>30,50</td>
<td>28,50</td>
</tr>
<tr>
<td>11/02/04</td>
<td>25,00</td>
<td>29,00</td>
<td>30,00</td>
<td>27,00</td>
<td>33,00</td>
<td>35,00</td>
<td>33,00</td>
<td>29,00</td>
<td>29,00</td>
<td>32,00</td>
<td>31,50</td>
<td>28,00</td>
</tr>
<tr>
<td>12/02/04</td>
<td>26,00</td>
<td>25,00</td>
<td>30,00</td>
<td>27,00</td>
<td>34,00</td>
<td>33,00</td>
<td>35,00</td>
<td>28,00</td>
<td>30,00</td>
<td>29,00</td>
<td>32,50</td>
<td>27,50</td>
</tr>
<tr>
<td>14/02/04</td>
<td>27,00</td>
<td>26,00</td>
<td>25,00</td>
<td>25,00</td>
<td>33,00</td>
<td>32,00</td>
<td>31,00</td>
<td>29,00</td>
<td>30,00</td>
<td>29,00</td>
<td>28,00</td>
<td>27,00</td>
</tr>
<tr>
<td>16/02/04</td>
<td>27,00</td>
<td>26,00</td>
<td>27,00</td>
<td>26,00</td>
<td>31,00</td>
<td>33,00</td>
<td>34,00</td>
<td>27,00</td>
<td>29,00</td>
<td>29,50</td>
<td>30,50</td>
<td>26,50</td>
</tr>
<tr>
<td>17/02/04</td>
<td>25,00</td>
<td>25,00</td>
<td>26,00</td>
<td>25,00</td>
<td>27,00</td>
<td>29,00</td>
<td>28,00</td>
<td>26,00</td>
<td>26,00</td>
<td>27,00</td>
<td>27,00</td>
<td>25,50</td>
</tr>
<tr>
<td>18/02/04</td>
<td>27,00</td>
<td>26,00</td>
<td>26,00</td>
<td>26,00</td>
<td>29,00</td>
<td>29,00</td>
<td>30,00</td>
<td>26,00</td>
<td>28,00</td>
<td>27,50</td>
<td>28,00</td>
<td>26,00</td>
</tr>
<tr>
<td>19/02/04</td>
<td>27,00</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>30,00</td>
<td>31,00</td>
<td>30,00</td>
<td>26,00</td>
<td>28,50</td>
<td>29,00</td>
<td>29,00</td>
<td>26,50</td>
</tr>
</tbody>
</table>

Máximo: 28,00 30,00 35,00 35,00 29,00 31,50 32,00 32,50 28,50
Mínimo: 24,00 25,00 25,00 27,00 29,00 28,00 25,00 25,50 27,00 27,00 25,50
Média: 26,60 26,73 27,73 26,60 31,73 32,67 31,80 27,07 29,17 29,70 29,77 26,83
Tabela A4 Temperaturas diárias referente ao mês de março de 2004

<table>
<thead>
<tr>
<th>Data</th>
<th>10:00 horas</th>
<th>15:00 horas</th>
<th>Média Diária</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T₀</td>
<td>T₁</td>
<td>T₂</td>
</tr>
<tr>
<td>01/03/04</td>
<td>25,00</td>
<td>25,00</td>
<td>28,00</td>
</tr>
<tr>
<td>02/03/04</td>
<td>26,00</td>
<td>24,00</td>
<td>29,00</td>
</tr>
<tr>
<td>05/03/04</td>
<td>25,00</td>
<td>26,00</td>
<td>28,00</td>
</tr>
<tr>
<td>06/03/04</td>
<td>27,00</td>
<td>28,00</td>
<td>30,00</td>
</tr>
<tr>
<td>07/03/04</td>
<td>24,00</td>
<td>27,00</td>
<td>29,00</td>
</tr>
<tr>
<td>09/03/04</td>
<td>25,00</td>
<td>26,00</td>
<td>30,00</td>
</tr>
<tr>
<td>10/03/04</td>
<td>23,00</td>
<td>25,00</td>
<td>28,00</td>
</tr>
<tr>
<td>11/03/04</td>
<td>24,00</td>
<td>25,00</td>
<td>28,00</td>
</tr>
<tr>
<td>13/03/04</td>
<td>24,00</td>
<td>24,00</td>
<td>27,00</td>
</tr>
<tr>
<td>14/03/04</td>
<td>23,00</td>
<td>23,00</td>
<td>25,00</td>
</tr>
<tr>
<td>15/03/04</td>
<td>25,00</td>
<td>26,00</td>
<td>27,00</td>
</tr>
<tr>
<td>18/03/04</td>
<td>23,00</td>
<td>25,00</td>
<td>26,00</td>
</tr>
<tr>
<td>19/03/04</td>
<td>24,00</td>
<td>24,00</td>
<td>26,00</td>
</tr>
<tr>
<td>22/03/04</td>
<td>23,00</td>
<td>24,00</td>
<td>25,00</td>
</tr>
<tr>
<td>23/03/04</td>
<td>22,00</td>
<td>23,00</td>
<td>25,00</td>
</tr>
<tr>
<td>26/03/04</td>
<td>23,00</td>
<td>24,00</td>
<td>26,00</td>
</tr>
<tr>
<td>27/03/04</td>
<td>22,00</td>
<td>25,00</td>
<td>26,00</td>
</tr>
<tr>
<td>28/03/04</td>
<td>22,00</td>
<td>25,00</td>
<td>27,00</td>
</tr>
</tbody>
</table>

Máximo 27,00 28,00 30,00 28,00 32,00 31,00 30,00 29,00 28,50 29,00 29,50 27,50
Mínimo 22,00 23,00 25,00 23,00 28,00 27,00 26,00 23,00 25,50 25,50 26,00 23,50
Média 23,89 24,94 27,22 25,33 29,78 29,33 28,00 25,89 26,83 27,14 27,61 25,61

T₀: 01:30 horas T₁: 14:30 horas T₂: 17:00 horas T₃: 22:00 horas
Tabela A5 Temperaturas diárias referente ao mês de abril de 2004

<table>
<thead>
<tr>
<th>Data</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>Média Diária</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/04/04</td>
<td>22,00</td>
<td>25,00</td>
<td>27,00</td>
<td>24,00</td>
<td>31,00</td>
<td>29,00</td>
<td>29,00</td>
<td>26,00</td>
<td>26,50</td>
<td>27,00</td>
<td>28,00</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>02/04/04</td>
<td>23,00</td>
<td>25,00</td>
<td>27,00</td>
<td>23,00</td>
<td>30,00</td>
<td>29,00</td>
<td>28,00</td>
<td>25,00</td>
<td>26,50</td>
<td>27,00</td>
<td>27,50</td>
<td>24,00</td>
<td></td>
</tr>
<tr>
<td>03/04/04</td>
<td>23,00</td>
<td>26,00</td>
<td>26,00</td>
<td>24,00</td>
<td>30,00</td>
<td>28,00</td>
<td>29,00</td>
<td>26,00</td>
<td>26,50</td>
<td>27,00</td>
<td>27,50</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>04/04/04</td>
<td>22,00</td>
<td>25,00</td>
<td>26,00</td>
<td>24,00</td>
<td>31,00</td>
<td>28,00</td>
<td>28,00</td>
<td>25,00</td>
<td>26,50</td>
<td>26,50</td>
<td>27,00</td>
<td>24,50</td>
<td></td>
</tr>
<tr>
<td>06/04/04</td>
<td>23,00</td>
<td>25,00</td>
<td>27,00</td>
<td>24,00</td>
<td>30,00</td>
<td>28,00</td>
<td>28,00</td>
<td>26,00</td>
<td>26,50</td>
<td>26,50</td>
<td>27,00</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>07/04/04</td>
<td>24,00</td>
<td>24,00</td>
<td>26,00</td>
<td>24,00</td>
<td>28,00</td>
<td>26,00</td>
<td>28,00</td>
<td>26,00</td>
<td>26,00</td>
<td>25,00</td>
<td>27,00</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>08/04/04</td>
<td>23,00</td>
<td>23,00</td>
<td>26,00</td>
<td>24,00</td>
<td>27,00</td>
<td>26,00</td>
<td>28,00</td>
<td>26,00</td>
<td>25,00</td>
<td>24,50</td>
<td>27,00</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>09/04/04</td>
<td>22,00</td>
<td>23,00</td>
<td>25,00</td>
<td>23,00</td>
<td>27,00</td>
<td>26,00</td>
<td>28,00</td>
<td>26,00</td>
<td>24,50</td>
<td>24,50</td>
<td>26,50</td>
<td>24,50</td>
<td></td>
</tr>
<tr>
<td>10/04/04</td>
<td>22,00</td>
<td>22,00</td>
<td>25,00</td>
<td>23,00</td>
<td>26,00</td>
<td>27,00</td>
<td>29,00</td>
<td>26,00</td>
<td>24,00</td>
<td>24,50</td>
<td>27,00</td>
<td>24,50</td>
<td></td>
</tr>
<tr>
<td>14/04/04</td>
<td>21,00</td>
<td>23,00</td>
<td>24,00</td>
<td>23,00</td>
<td>27,00</td>
<td>26,00</td>
<td>28,00</td>
<td>27,00</td>
<td>24,00</td>
<td>24,50</td>
<td>26,00</td>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>15/04/04</td>
<td>21,00</td>
<td>22,00</td>
<td>24,00</td>
<td>22,00</td>
<td>28,00</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>24,50</td>
<td>24,50</td>
<td>26,00</td>
<td>24,50</td>
<td></td>
</tr>
<tr>
<td>16/04/04</td>
<td>21,00</td>
<td>22,00</td>
<td>23,00</td>
<td>21,00</td>
<td>27,00</td>
<td>27,00</td>
<td>28,00</td>
<td>26,00</td>
<td>24,00</td>
<td>24,50</td>
<td>25,50</td>
<td>23,50</td>
<td></td>
</tr>
<tr>
<td>17/04/04</td>
<td>22,00</td>
<td>23,00</td>
<td>24,00</td>
<td>22,00</td>
<td>28,00</td>
<td>27,00</td>
<td>29,00</td>
<td>26,00</td>
<td>25,00</td>
<td>25,00</td>
<td>26,50</td>
<td>24,00</td>
<td></td>
</tr>
<tr>
<td>18/04/04</td>
<td>21,00</td>
<td>23,00</td>
<td>23,00</td>
<td>21,00</td>
<td>28,00</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>24,50</td>
<td>25,00</td>
<td>25,50</td>
<td>24,00</td>
<td></td>
</tr>
<tr>
<td>20/04/04</td>
<td>21,00</td>
<td>22,00</td>
<td>23,00</td>
<td>22,00</td>
<td>28,00</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>24,50</td>
<td>24,50</td>
<td>25,50</td>
<td>24,50</td>
<td></td>
</tr>
<tr>
<td>21/04/04</td>
<td>21,00</td>
<td>22,00</td>
<td>23,00</td>
<td>22,00</td>
<td>29,00</td>
<td>28,00</td>
<td>29,00</td>
<td>27,00</td>
<td>25,00</td>
<td>25,00</td>
<td>26,00</td>
<td>24,50</td>
<td></td>
</tr>
<tr>
<td>22/04/04</td>
<td>22,00</td>
<td>22,00</td>
<td>23,00</td>
<td>21,00</td>
<td>30,00</td>
<td>28,00</td>
<td>29,00</td>
<td>27,00</td>
<td>26,00</td>
<td>25,00</td>
<td>26,00</td>
<td>24,00</td>
<td></td>
</tr>
<tr>
<td>23/04/04</td>
<td>21,00</td>
<td>22,00</td>
<td>23,00</td>
<td>21,00</td>
<td>29,00</td>
<td>27,00</td>
<td>28,00</td>
<td>26,00</td>
<td>25,00</td>
<td>24,50</td>
<td>25,50</td>
<td>23,50</td>
<td></td>
</tr>
<tr>
<td>24/04/04</td>
<td>20,00</td>
<td>21,00</td>
<td>23,00</td>
<td>21,00</td>
<td>30,00</td>
<td>28,00</td>
<td>28,00</td>
<td>26,00</td>
<td>25,00</td>
<td>24,50</td>
<td>25,50</td>
<td>23,50</td>
<td></td>
</tr>
<tr>
<td>25/04/04</td>
<td>21,00</td>
<td>22,00</td>
<td>24,00</td>
<td>22,00</td>
<td>26,00</td>
<td>27,00</td>
<td>27,00</td>
<td>26,00</td>
<td>23,50</td>
<td>24,50</td>
<td>25,50</td>
<td>24,00</td>
<td></td>
</tr>
<tr>
<td>26/04/04</td>
<td>18,00</td>
<td>21,00</td>
<td>23,00</td>
<td>21,00</td>
<td>28,00</td>
<td>26,00</td>
<td>27,00</td>
<td>25,00</td>
<td>23,00</td>
<td>23,50</td>
<td>25,00</td>
<td>23,00</td>
<td></td>
</tr>
<tr>
<td>27/04/04</td>
<td>20,00</td>
<td>21,00</td>
<td>22,00</td>
<td>21,00</td>
<td>28,00</td>
<td>27,00</td>
<td>28,00</td>
<td>26,00</td>
<td>24,00</td>
<td>24,00</td>
<td>25,00</td>
<td>23,50</td>
<td></td>
</tr>
<tr>
<td>28/04/04</td>
<td>21,00</td>
<td>21,00</td>
<td>23,00</td>
<td>21,00</td>
<td>29,00</td>
<td>28,00</td>
<td>28,00</td>
<td>27,00</td>
<td>25,00</td>
<td>24,50</td>
<td>25,50</td>
<td>24,00</td>
<td></td>
</tr>
</tbody>
</table>

Máximo
24,00 26,00 27,00 24,00 31,00 29,00 29,00 27,00 26,50 27,00 28,00 25,00

Mínimo
18,00 21,00 22,00 21,00 26,00 26,00 27,00 25,00 23,00 23,50 25,00 23,00

Média
21,52 22,83 24,35 22,35 28,48 27,26 28,17 26,17 25,00 25,04 26,26 24,26
Tabela A6 Temperaturas diárias referente ao mês de maio de 2004

<table>
<thead>
<tr>
<th>Data</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/05/04</td>
<td>22,00</td>
<td>24,00</td>
<td>25,00</td>
<td>24,00</td>
<td>27,00</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>24,50</td>
<td>25,50</td>
<td>26,50</td>
<td>25,50</td>
</tr>
<tr>
<td>02/05/04</td>
<td>22,00</td>
<td>24,00</td>
<td>25,00</td>
<td>23,00</td>
<td>28,00</td>
<td>27,00</td>
<td>27,00</td>
<td>27,00</td>
<td>25,00</td>
<td>25,50</td>
<td>26,00</td>
<td>25,00</td>
</tr>
<tr>
<td>03/05/04</td>
<td>21,00</td>
<td>23,00</td>
<td>25,00</td>
<td>24,00</td>
<td>27,00</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>24,00</td>
<td>25,00</td>
<td>26,50</td>
<td>25,50</td>
</tr>
<tr>
<td>09/05/04</td>
<td>21,00</td>
<td>23,00</td>
<td>24,00</td>
<td>23,00</td>
<td>28,00</td>
<td>28,00</td>
<td>28,00</td>
<td>29,00</td>
<td>24,50</td>
<td>25,50</td>
<td>26,00</td>
<td>25,00</td>
</tr>
<tr>
<td>10/05/04</td>
<td>20,00</td>
<td>23,00</td>
<td>23,00</td>
<td>23,00</td>
<td>27,00</td>
<td>28,00</td>
<td>27,00</td>
<td>26,00</td>
<td>23,50</td>
<td>25,50</td>
<td>25,00</td>
<td>24,50</td>
</tr>
<tr>
<td>11/05/04</td>
<td>19,00</td>
<td>22,00</td>
<td>22,00</td>
<td>21,00</td>
<td>26,00</td>
<td>28,00</td>
<td>27,00</td>
<td>26,00</td>
<td>22,50</td>
<td>25,00</td>
<td>24,50</td>
<td>23,50</td>
</tr>
<tr>
<td>12/05/04</td>
<td>20,00</td>
<td>23,00</td>
<td>23,00</td>
<td>22,00</td>
<td>24,00</td>
<td>22,00</td>
<td>23,00</td>
<td>21,00</td>
<td>22,00</td>
<td>22,50</td>
<td>23,00</td>
<td>21,50</td>
</tr>
<tr>
<td>13/05/04</td>
<td>14,00</td>
<td>19,00</td>
<td>21,00</td>
<td>18,00</td>
<td>19,00</td>
<td>21,00</td>
<td>23,00</td>
<td>21,00</td>
<td>16,50</td>
<td>20,00</td>
<td>22,00</td>
<td>19,50</td>
</tr>
<tr>
<td>14/05/04</td>
<td>13,00</td>
<td>19,00</td>
<td>21,00</td>
<td>18,00</td>
<td>21,00</td>
<td>22,00</td>
<td>23,00</td>
<td>20,00</td>
<td>17,00</td>
<td>20,50</td>
<td>22,00</td>
<td>19,00</td>
</tr>
<tr>
<td>19/05/04</td>
<td>14,00</td>
<td>20,00</td>
<td>22,00</td>
<td>19,00</td>
<td>20,00</td>
<td>22,00</td>
<td>24,00</td>
<td>21,00</td>
<td>17,00</td>
<td>21,00</td>
<td>23,00</td>
<td>20,00</td>
</tr>
<tr>
<td>20/05/04</td>
<td>15,00</td>
<td>22,00</td>
<td>23,00</td>
<td>19,00</td>
<td>22,00</td>
<td>23,00</td>
<td>24,00</td>
<td>21,00</td>
<td>18,50</td>
<td>22,50</td>
<td>23,50</td>
<td>20,00</td>
</tr>
<tr>
<td>21/05/04</td>
<td>17,00</td>
<td>22,00</td>
<td>22,00</td>
<td>19,00</td>
<td>23,00</td>
<td>23,00</td>
<td>25,00</td>
<td>22,00</td>
<td>20,00</td>
<td>22,50</td>
<td>23,50</td>
<td>20,50</td>
</tr>
<tr>
<td>26/05/04</td>
<td>17,00</td>
<td>24,00</td>
<td>21,00</td>
<td>18,00</td>
<td>24,00</td>
<td>23,00</td>
<td>26,00</td>
<td>24,00</td>
<td>20,50</td>
<td>23,50</td>
<td>23,50</td>
<td>21,00</td>
</tr>
<tr>
<td>27/05/04</td>
<td>18,00</td>
<td>23,00</td>
<td>24,00</td>
<td>18,00</td>
<td>26,00</td>
<td>24,00</td>
<td>27,00</td>
<td>26,00</td>
<td>22,00</td>
<td>23,50</td>
<td>25,50</td>
<td>22,00</td>
</tr>
</tbody>
</table>

Máximo 22,00 24,00 25,00 24,00 28,00 28,00 29,00 25,00 25,50 26,50 26,00

Mínimo 13,00 19,00 21,00 18,00 19,00 21,00 23,00 20,00 16,50 20,00 22,00 19,00

Média 18,07 22,21 22,93 20,64 24,43 24,64 25,71 24,14 21,25 23,43 24,32 22,39
Tabela A7 Temperaturas diárias referente ao mês de junho de 2004

<table>
<thead>
<tr>
<th>Data</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/06/04</td>
<td>15,0</td>
<td>22,0</td>
<td>23,0</td>
<td>19,0</td>
<td>22,0</td>
<td>23,0</td>
<td>24,0</td>
<td>21,0</td>
<td>18,5</td>
<td>22,5</td>
<td>23,5</td>
<td>20,0</td>
</tr>
<tr>
<td>02/06/04</td>
<td>17,0</td>
<td>22,0</td>
<td>22,0</td>
<td>19,0</td>
<td>23,0</td>
<td>23,0</td>
<td>25,0</td>
<td>22,0</td>
<td>20,0</td>
<td>22,5</td>
<td>23,5</td>
<td>20,5</td>
</tr>
<tr>
<td>03/06/04</td>
<td>17,0</td>
<td>23,0</td>
<td>22,0</td>
<td>19,0</td>
<td>23,0</td>
<td>23,0</td>
<td>24,0</td>
<td>21,0</td>
<td>20,0</td>
<td>23,0</td>
<td>23,0</td>
<td>20,0</td>
</tr>
<tr>
<td>04/06/04</td>
<td>16,0</td>
<td>22,0</td>
<td>21,0</td>
<td>18,0</td>
<td>22,0</td>
<td>22,0</td>
<td>24,0</td>
<td>22,0</td>
<td>19,0</td>
<td>22,0</td>
<td>22,5</td>
<td>20,0</td>
</tr>
<tr>
<td>08/06/04</td>
<td>16,0</td>
<td>22,0</td>
<td>20,0</td>
<td>18,0</td>
<td>24,0</td>
<td>23,0</td>
<td>24,0</td>
<td>21,0</td>
<td>20,0</td>
<td>22,5</td>
<td>22,0</td>
<td>19,5</td>
</tr>
<tr>
<td>09/06/04</td>
<td>17,0</td>
<td>23,0</td>
<td>21,0</td>
<td>19,0</td>
<td>24,0</td>
<td>23,0</td>
<td>23,0</td>
<td>20,0</td>
<td>20,5</td>
<td>23,0</td>
<td>22,0</td>
<td>19,5</td>
</tr>
<tr>
<td>15/06/04</td>
<td>15,0</td>
<td>21,0</td>
<td>19,0</td>
<td>16,0</td>
<td>20,0</td>
<td>22,0</td>
<td>21,0</td>
<td>18,0</td>
<td>17,5</td>
<td>21,5</td>
<td>20,0</td>
<td>17,0</td>
</tr>
<tr>
<td>16/06/04</td>
<td>19,0</td>
<td>22,0</td>
<td>21,0</td>
<td>17,0</td>
<td>23,0</td>
<td>23,0</td>
<td>22,0</td>
<td>18,0</td>
<td>21,0</td>
<td>22,5</td>
<td>21,5</td>
<td>17,5</td>
</tr>
<tr>
<td>17/06/04</td>
<td>19,0</td>
<td>22,0</td>
<td>21,0</td>
<td>18,0</td>
<td>24,0</td>
<td>23,0</td>
<td>22,0</td>
<td>18,0</td>
<td>21,5</td>
<td>22,5</td>
<td>21,5</td>
<td>18,0</td>
</tr>
<tr>
<td>18/06/04</td>
<td>19,0</td>
<td>22,0</td>
<td>21,0</td>
<td>17,0</td>
<td>26,0</td>
<td>24,0</td>
<td>23,0</td>
<td>19,0</td>
<td>22,5</td>
<td>23,0</td>
<td>22,0</td>
<td>18,0</td>
</tr>
<tr>
<td>19/06/04</td>
<td>20,0</td>
<td>23,0</td>
<td>21,0</td>
<td>18,0</td>
<td>27,0</td>
<td>25,0</td>
<td>23,0</td>
<td>20,0</td>
<td>23,5</td>
<td>24,0</td>
<td>22,0</td>
<td>19,0</td>
</tr>
<tr>
<td>22/06/04</td>
<td>20,0</td>
<td>23,0</td>
<td>21,0</td>
<td>18,0</td>
<td>28,0</td>
<td>25,0</td>
<td>24,0</td>
<td>21,0</td>
<td>24,0</td>
<td>24,0</td>
<td>22,5</td>
<td>19,5</td>
</tr>
<tr>
<td>23/06/04</td>
<td>20,0</td>
<td>23,0</td>
<td>22,0</td>
<td>19,0</td>
<td>27,0</td>
<td>25,0</td>
<td>24,0</td>
<td>22,0</td>
<td>23,5</td>
<td>24,0</td>
<td>23,0</td>
<td>20,5</td>
</tr>
<tr>
<td>24/06/04</td>
<td>19,0</td>
<td>23,0</td>
<td>22,0</td>
<td>19,0</td>
<td>28,0</td>
<td>25,0</td>
<td>24,0</td>
<td>22,0</td>
<td>23,5</td>
<td>24,0</td>
<td>23,0</td>
<td>20,5</td>
</tr>
<tr>
<td>25/06/04</td>
<td>19,0</td>
<td>22,0</td>
<td>22,0</td>
<td>19,0</td>
<td>27,0</td>
<td>24,0</td>
<td>24,0</td>
<td>21,0</td>
<td>23,0</td>
<td>23,0</td>
<td>23,0</td>
<td>20,0</td>
</tr>
<tr>
<td>Máximo</td>
<td>20,0</td>
<td>23,0</td>
<td>23,0</td>
<td>19,0</td>
<td>28,0</td>
<td>25,0</td>
<td>25,0</td>
<td>22,0</td>
<td>24,0</td>
<td>24,0</td>
<td>23,5</td>
<td>20,5</td>
</tr>
<tr>
<td>Mínimo</td>
<td>15,0</td>
<td>21,0</td>
<td>19,0</td>
<td>16,0</td>
<td>20,0</td>
<td>22,0</td>
<td>21,0</td>
<td>18,0</td>
<td>17,5</td>
<td>21,5</td>
<td>20,0</td>
<td>17,0</td>
</tr>
<tr>
<td>Média</td>
<td>17,87</td>
<td>22,33</td>
<td>21,27</td>
<td>18,20</td>
<td>24,53</td>
<td>23,53</td>
<td>23,40</td>
<td>20,40</td>
<td>21,20</td>
<td>22,93</td>
<td>22,33</td>
<td>19,30</td>
</tr>
</tbody>
</table>

Máximo
Mínimo
Média
Tabela A8 Temperaturas diárias referente ao mês de julho de 2004

<table>
<thead>
<tr>
<th>Data</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/07/04</td>
<td>18,00</td>
<td>23,00</td>
<td>22,00</td>
<td>19,00</td>
<td>28,00</td>
<td>24,00</td>
<td>24,00</td>
<td>21,00</td>
<td>23,00</td>
<td>23,50</td>
<td>23,00</td>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>02/07/04</td>
<td>17,00</td>
<td>23,00</td>
<td>21,00</td>
<td>19,00</td>
<td>29,00</td>
<td>25,00</td>
<td>24,00</td>
<td>21,00</td>
<td>23,00</td>
<td>24,00</td>
<td>22,50</td>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>03/07/04</td>
<td>18,00</td>
<td>23,00</td>
<td>22,00</td>
<td>19,00</td>
<td>29,00</td>
<td>26,00</td>
<td>25,00</td>
<td>22,00</td>
<td>23,50</td>
<td>24,50</td>
<td>23,50</td>
<td>20,50</td>
<td></td>
</tr>
<tr>
<td>06/07/04</td>
<td>19,00</td>
<td>22,00</td>
<td>22,00</td>
<td>19,00</td>
<td>27,00</td>
<td>25,00</td>
<td>26,00</td>
<td>24,00</td>
<td>23,00</td>
<td>23,50</td>
<td>24,00</td>
<td>21,50</td>
<td></td>
</tr>
<tr>
<td>07/07/04</td>
<td>18,00</td>
<td>22,00</td>
<td>21,00</td>
<td>19,00</td>
<td>26,00</td>
<td>25,00</td>
<td>27,00</td>
<td>25,00</td>
<td>22,00</td>
<td>23,50</td>
<td>24,00</td>
<td>22,00</td>
<td></td>
</tr>
<tr>
<td>08/07/04</td>
<td>19,00</td>
<td>22,00</td>
<td>22,00</td>
<td>19,00</td>
<td>27,00</td>
<td>26,00</td>
<td>26,00</td>
<td>24,00</td>
<td>23,00</td>
<td>24,00</td>
<td>24,00</td>
<td>21,50</td>
<td></td>
</tr>
<tr>
<td>10/07/04</td>
<td>18,00</td>
<td>21,00</td>
<td>22,00</td>
<td>19,00</td>
<td>24,00</td>
<td>25,00</td>
<td>25,00</td>
<td>23,00</td>
<td>21,00</td>
<td>23,00</td>
<td>23,50</td>
<td>21,00</td>
<td></td>
</tr>
<tr>
<td>13/07/04</td>
<td>17,00</td>
<td>21,00</td>
<td>21,00</td>
<td>18,00</td>
<td>25,00</td>
<td>24,00</td>
<td>25,00</td>
<td>22,00</td>
<td>21,00</td>
<td>22,50</td>
<td>23,00</td>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>14/07/04</td>
<td>18,00</td>
<td>21,00</td>
<td>22,00</td>
<td>19,00</td>
<td>25,00</td>
<td>24,00</td>
<td>24,00</td>
<td>21,00</td>
<td>21,50</td>
<td>22,50</td>
<td>23,00</td>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>15/07/04</td>
<td>18,00</td>
<td>22,00</td>
<td>22,00</td>
<td>19,00</td>
<td>25,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>21,50</td>
<td>23,00</td>
<td>22,50</td>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>16/07/04</td>
<td>17,00</td>
<td>22,00</td>
<td>21,00</td>
<td>19,00</td>
<td>25,00</td>
<td>23,00</td>
<td>22,00</td>
<td>20,00</td>
<td>21,00</td>
<td>22,50</td>
<td>21,50</td>
<td>19,50</td>
<td></td>
</tr>
<tr>
<td>20/07/04</td>
<td>16,00</td>
<td>22,00</td>
<td>21,00</td>
<td>19,00</td>
<td>24,00</td>
<td>23,00</td>
<td>22,00</td>
<td>19,00</td>
<td>20,00</td>
<td>22,50</td>
<td>21,50</td>
<td>19,00</td>
<td></td>
</tr>
<tr>
<td>21/07/04</td>
<td>15,00</td>
<td>20,00</td>
<td>19,00</td>
<td>17,00</td>
<td>24,00</td>
<td>23,00</td>
<td>22,00</td>
<td>20,00</td>
<td>19,50</td>
<td>21,50</td>
<td>20,50</td>
<td>18,50</td>
<td></td>
</tr>
<tr>
<td>22/07/04</td>
<td>18,00</td>
<td>21,00</td>
<td>20,00</td>
<td>18,00</td>
<td>24,00</td>
<td>22,00</td>
<td>22,00</td>
<td>20,00</td>
<td>21,00</td>
<td>21,50</td>
<td>21,00</td>
<td>19,00</td>
<td></td>
</tr>
<tr>
<td>23/07/04</td>
<td>17,00</td>
<td>21,00</td>
<td>19,00</td>
<td>17,00</td>
<td>25,00</td>
<td>22,00</td>
<td>23,00</td>
<td>20,00</td>
<td>21,00</td>
<td>21,50</td>
<td>21,00</td>
<td>18,50</td>
<td></td>
</tr>
<tr>
<td>27/07/04</td>
<td>18,00</td>
<td>21,00</td>
<td>19,00</td>
<td>17,00</td>
<td>24,00</td>
<td>23,00</td>
<td>22,00</td>
<td>20,00</td>
<td>21,00</td>
<td>22,00</td>
<td>20,50</td>
<td>18,50</td>
<td></td>
</tr>
<tr>
<td>28/07/04</td>
<td>19,00</td>
<td>21,00</td>
<td>18,00</td>
<td>17,00</td>
<td>25,00</td>
<td>23,00</td>
<td>23,00</td>
<td>21,00</td>
<td>22,00</td>
<td>22,00</td>
<td>20,50</td>
<td>19,00</td>
<td></td>
</tr>
<tr>
<td>29/07/04</td>
<td>18,00</td>
<td>22,00</td>
<td>19,00</td>
<td>17,00</td>
<td>25,00</td>
<td>23,00</td>
<td>23,00</td>
<td>21,00</td>
<td>21,50</td>
<td>22,50</td>
<td>21,00</td>
<td>19,00</td>
<td></td>
</tr>
<tr>
<td>30/07/04</td>
<td>18,00</td>
<td>21,00</td>
<td>19,00</td>
<td>17,00</td>
<td>24,00</td>
<td>22,00</td>
<td>23,00</td>
<td>21,00</td>
<td>21,00</td>
<td>21,50</td>
<td>21,00</td>
<td>19,00</td>
<td></td>
</tr>
</tbody>
</table>

Máximo	19,00	23,00	22,00	19,00	29,00	26,00	27,00	25,00	23,50	24,50	24,00	22,00
Mínimo	15,00	20,00	18,00	17,00	24,00	22,00	22,00	19,00	19,50	21,50	20,50	18,50
Média	17,68	21,63	20,63	18,26	25,53	23,79	23,74	21,37	21,61	22,71	22,18	19,82
Tabela A9 Temperaturas diárias referente ao mês de agosto de 2004

<table>
<thead>
<tr>
<th>Data</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₀</th>
<th>T₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/08/04</td>
<td>19,00</td>
<td>20,00</td>
<td>18,00</td>
<td>16,00</td>
<td>22,00</td>
<td>24,00</td>
<td>20,00</td>
<td>18,00</td>
<td>20,50</td>
<td>22,00</td>
<td>19,00</td>
<td>17,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/08/04</td>
<td>18,00</td>
<td>21,00</td>
<td>19,00</td>
<td>17,00</td>
<td>24,00</td>
<td>25,00</td>
<td>22,00</td>
<td>20,00</td>
<td>21,00</td>
<td>23,00</td>
<td>20,50</td>
<td>18,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05/08/04</td>
<td>18,00</td>
<td>22,00</td>
<td>20,00</td>
<td>18,00</td>
<td>25,00</td>
<td>27,00</td>
<td>23,00</td>
<td>21,00</td>
<td>21,50</td>
<td>24,50</td>
<td>21,50</td>
<td>19,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/08/04</td>
<td>18,00</td>
<td>21,00</td>
<td>20,00</td>
<td>18,00</td>
<td>24,00</td>
<td>26,00</td>
<td>22,00</td>
<td>19,00</td>
<td>21,00</td>
<td>23,50</td>
<td>21,00</td>
<td>18,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/08/04</td>
<td>12,00</td>
<td>20,00</td>
<td>20,00</td>
<td>16,00</td>
<td>22,00</td>
<td>25,00</td>
<td>22,00</td>
<td>19,00</td>
<td>17,00</td>
<td>22,50</td>
<td>21,00</td>
<td>17,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/08/04</td>
<td>13,00</td>
<td>21,00</td>
<td>21,00</td>
<td>17,00</td>
<td>23,00</td>
<td>26,00</td>
<td>22,00</td>
<td>19,00</td>
<td>18,00</td>
<td>23,50</td>
<td>21,50</td>
<td>18,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/08/04</td>
<td>14,00</td>
<td>21,00</td>
<td>20,00</td>
<td>18,00</td>
<td>23,00</td>
<td>25,00</td>
<td>23,00</td>
<td>20,00</td>
<td>18,50</td>
<td>23,00</td>
<td>21,50</td>
<td>19,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/08/04</td>
<td>14,00</td>
<td>21,00</td>
<td>21,00</td>
<td>18,00</td>
<td>24,00</td>
<td>26,00</td>
<td>23,00</td>
<td>20,00</td>
<td>19,00</td>
<td>23,50</td>
<td>22,00</td>
<td>19,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18/08/04</td>
<td>17,00</td>
<td>23,00</td>
<td>21,00</td>
<td>19,00</td>
<td>25,00</td>
<td>26,00</td>
<td>24,00</td>
<td>21,00</td>
<td>21,00</td>
<td>24,50</td>
<td>22,50</td>
<td>20,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19/08/04</td>
<td>18,00</td>
<td>24,00</td>
<td>22,00</td>
<td>19,00</td>
<td>25,00</td>
<td>27,00</td>
<td>23,00</td>
<td>21,00</td>
<td>21,50</td>
<td>25,50</td>
<td>22,50</td>
<td>20,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/08/04</td>
<td>17,00</td>
<td>23,00</td>
<td>22,00</td>
<td>20,00</td>
<td>25,00</td>
<td>27,00</td>
<td>23,00</td>
<td>21,00</td>
<td>21,00</td>
<td>25,00</td>
<td>22,50</td>
<td>20,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24/08/04</td>
<td>17,00</td>
<td>24,00</td>
<td>22,00</td>
<td>20,00</td>
<td>25,00</td>
<td>27,00</td>
<td>24,00</td>
<td>22,00</td>
<td>21,00</td>
<td>25,50</td>
<td>23,00</td>
<td>21,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/08/04</td>
<td>18,00</td>
<td>24,00</td>
<td>22,00</td>
<td>20,00</td>
<td>26,00</td>
<td>27,00</td>
<td>24,00</td>
<td>22,00</td>
<td>22,00</td>
<td>25,50</td>
<td>23,00</td>
<td>21,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26/08/04</td>
<td>17,00</td>
<td>23,00</td>
<td>23,00</td>
<td>20,00</td>
<td>26,00</td>
<td>27,00</td>
<td>25,00</td>
<td>22,00</td>
<td>21,50</td>
<td>25,00</td>
<td>24,00</td>
<td>21,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27/08/04</td>
<td>17,00</td>
<td>23,00</td>
<td>22,00</td>
<td>19,00</td>
<td>27,00</td>
<td>28,00</td>
<td>25,00</td>
<td>23,00</td>
<td>22,00</td>
<td>25,50</td>
<td>23,50</td>
<td>21,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31/08/04</td>
<td>22,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>22,00</td>
<td>25,00</td>
<td>23,00</td>
<td>22,00</td>
<td>25,50</td>
<td>24,00</td>
<td>21,00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Máximo**: 22,00 24,00 23,00 21,00 27,00 28,00 25,00 23,00 22,00 25,50 24,00 21,00
- **Mínimo**: 12,00 20,00 18,00 16,00 22,00 24,00 19,00 17,00 17,00 22,00 19,00 17,00
- **Média**: 16,81 22,19 21,00 18,50 24,25 26,13 22,75 20,31 20,53 24,16 21,88 19,41
<table>
<thead>
<tr>
<th>Data</th>
<th>T_0</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_0</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>$T_{\text{Máximo}}$</th>
<th>$T_{\text{Mínimo}}$</th>
<th>$T_{\text{Média}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/09/04</td>
<td>26,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>32,00</td>
<td>26,00</td>
<td>23,00</td>
<td>22,00</td>
<td>29,00</td>
<td>25,00</td>
<td>23,00</td>
</tr>
<tr>
<td>02/09/04</td>
<td>26,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>32,00</td>
<td>26,00</td>
<td>23,00</td>
<td>22,00</td>
<td>29,00</td>
<td>25,00</td>
<td>23,00</td>
</tr>
<tr>
<td>03/09/04</td>
<td>28,00</td>
<td>25,00</td>
<td>24,00</td>
<td>23,00</td>
<td>33,00</td>
<td>28,00</td>
<td>25,00</td>
<td>24,00</td>
<td>30,50</td>
<td>26,50</td>
<td>24,50</td>
</tr>
<tr>
<td>09/09/04</td>
<td>24,00</td>
<td>25,00</td>
<td>24,00</td>
<td>22,00</td>
<td>35,00</td>
<td>28,00</td>
<td>26,00</td>
<td>24,00</td>
<td>29,50</td>
<td>26,50</td>
<td>25,00</td>
</tr>
<tr>
<td>15/09/04</td>
<td>19,00</td>
<td>24,00</td>
<td>23,00</td>
<td>20,00</td>
<td>23,00</td>
<td>26,00</td>
<td>25,00</td>
<td>23,00</td>
<td>21,00</td>
<td>25,00</td>
<td>24,00</td>
</tr>
<tr>
<td>16/09/04</td>
<td>20,00</td>
<td>25,00</td>
<td>23,00</td>
<td>20,00</td>
<td>24,00</td>
<td>26,00</td>
<td>26,00</td>
<td>23,00</td>
<td>22,00</td>
<td>25,00</td>
<td>24,00</td>
</tr>
<tr>
<td>17/09/04</td>
<td>20,00</td>
<td>25,00</td>
<td>23,00</td>
<td>21,00</td>
<td>25,00</td>
<td>27,00</td>
<td>26,00</td>
<td>24,00</td>
<td>22,00</td>
<td>26,00</td>
<td>24,50</td>
</tr>
<tr>
<td>18/09/04</td>
<td>20,00</td>
<td>26,00</td>
<td>24,00</td>
<td>21,00</td>
<td>25,00</td>
<td>27,00</td>
<td>27,00</td>
<td>24,00</td>
<td>22,50</td>
<td>26,50</td>
<td>25,50</td>
</tr>
<tr>
<td>21/09/04</td>
<td>22,00</td>
<td>26,00</td>
<td>24,00</td>
<td>21,00</td>
<td>31,00</td>
<td>28,00</td>
<td>27,00</td>
<td>24,00</td>
<td>26,50</td>
<td>27,00</td>
<td>25,50</td>
</tr>
<tr>
<td>22/09/04</td>
<td>24,00</td>
<td>26,00</td>
<td>25,00</td>
<td>22,00</td>
<td>33,00</td>
<td>28,00</td>
<td>27,00</td>
<td>25,00</td>
<td>28,50</td>
<td>27,00</td>
<td>26,00</td>
</tr>
<tr>
<td>23/09/04</td>
<td>26,00</td>
<td>26,00</td>
<td>25,00</td>
<td>23,00</td>
<td>34,00</td>
<td>29,00</td>
<td>28,00</td>
<td>25,00</td>
<td>30,00</td>
<td>27,50</td>
<td>26,50</td>
</tr>
<tr>
<td>24/09/04</td>
<td>25,00</td>
<td>26,00</td>
<td>24,00</td>
<td>23,00</td>
<td>35,00</td>
<td>29,00</td>
<td>27,00</td>
<td>25,00</td>
<td>30,00</td>
<td>27,50</td>
<td>25,50</td>
</tr>
<tr>
<td>25/09/04</td>
<td>26,00</td>
<td>25,00</td>
<td>24,00</td>
<td>22,00</td>
<td>35,00</td>
<td>29,00</td>
<td>27,00</td>
<td>25,00</td>
<td>30,50</td>
<td>27,00</td>
<td>25,50</td>
</tr>
<tr>
<td>28/09/04</td>
<td>26,00</td>
<td>27,00</td>
<td>25,00</td>
<td>24,00</td>
<td>32,00</td>
<td>27,00</td>
<td>26,00</td>
<td>24,00</td>
<td>29,00</td>
<td>27,00</td>
<td>25,50</td>
</tr>
<tr>
<td>29/09/04</td>
<td>24,00</td>
<td>27,00</td>
<td>25,00</td>
<td>23,00</td>
<td>30,00</td>
<td>28,00</td>
<td>26,00</td>
<td>24,00</td>
<td>27,00</td>
<td>27,50</td>
<td>25,50</td>
</tr>
<tr>
<td>30/09/04</td>
<td>22,00</td>
<td>26,00</td>
<td>26,00</td>
<td>23,00</td>
<td>30,00</td>
<td>27,00</td>
<td>26,00</td>
<td>25,00</td>
<td>26,50</td>
<td>26,50</td>
<td>24,00</td>
</tr>
<tr>
<td>Máximo</td>
<td>28,00</td>
<td>27,00</td>
<td>26,00</td>
<td>24,00</td>
<td>35,00</td>
<td>29,00</td>
<td>28,00</td>
<td>25,00</td>
<td>30,50</td>
<td>27,50</td>
<td>26,50</td>
</tr>
<tr>
<td>Mínimo</td>
<td>19,00</td>
<td>24,00</td>
<td>23,00</td>
<td>20,00</td>
<td>23,00</td>
<td>26,00</td>
<td>23,00</td>
<td>22,00</td>
<td>21,00</td>
<td>25,00</td>
<td>23,00</td>
</tr>
<tr>
<td>Média</td>
<td>23,63</td>
<td>25,44</td>
<td>24,06</td>
<td>21,88</td>
<td>30,56</td>
<td>27,50</td>
<td>26,00</td>
<td>23,94</td>
<td>27,09</td>
<td>26,47</td>
<td>25,03</td>
</tr>
</tbody>
</table>

Tabela A10 Temperaturas diárias referente ao mês de setembro de 2004
Tabela A11 Temperaturas diárias referente ao mês de outubro de 2004

<table>
<thead>
<tr>
<th>Data</th>
<th>(T_0)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(\bar{T}_0)</th>
<th>(\bar{T}_1)</th>
<th>(\bar{T}_2)</th>
<th>(\bar{T}_3)</th>
<th>(\bar{T})</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/10/04</td>
<td>21,00</td>
<td>25,00</td>
<td>25,00</td>
<td>23,00</td>
<td>31,00</td>
<td>28,00</td>
<td>26,00</td>
<td>24,00</td>
<td>26,50</td>
</tr>
<tr>
<td>05/10/04</td>
<td>21,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>34,00</td>
<td>28,00</td>
<td>27,00</td>
<td>25,00</td>
<td>27,50</td>
</tr>
<tr>
<td>06/10/04</td>
<td>20,00</td>
<td>24,00</td>
<td>23,00</td>
<td>20,00</td>
<td>33,00</td>
<td>27,00</td>
<td>27,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
<tr>
<td>07/10/04</td>
<td>19,00</td>
<td>24,00</td>
<td>22,00</td>
<td>20,00</td>
<td>34,00</td>
<td>27,00</td>
<td>27,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
<tr>
<td>08/10/04</td>
<td>19,00</td>
<td>24,00</td>
<td>22,00</td>
<td>20,00</td>
<td>34,00</td>
<td>28,00</td>
<td>27,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
<tr>
<td>13/10/04</td>
<td>18,00</td>
<td>24,00</td>
<td>22,00</td>
<td>20,00</td>
<td>30,00</td>
<td>27,00</td>
<td>27,00</td>
<td>25,00</td>
<td>24,00</td>
</tr>
<tr>
<td>14/10/04</td>
<td>17,00</td>
<td>23,00</td>
<td>22,00</td>
<td>20,00</td>
<td>31,00</td>
<td>27,00</td>
<td>28,00</td>
<td>25,00</td>
<td>24,00</td>
</tr>
<tr>
<td>15/10/04</td>
<td>18,00</td>
<td>24,00</td>
<td>23,00</td>
<td>20,00</td>
<td>30,00</td>
<td>28,00</td>
<td>27,00</td>
<td>25,00</td>
<td>24,00</td>
</tr>
<tr>
<td>16/10/04</td>
<td>19,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>34,00</td>
<td>28,00</td>
<td>27,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
<tr>
<td>17/10/04</td>
<td>18,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>31,00</td>
<td>27,00</td>
<td>28,00</td>
<td>25,00</td>
<td>24,50</td>
</tr>
<tr>
<td>18/10/04</td>
<td>19,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>34,00</td>
<td>28,00</td>
<td>27,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
<tr>
<td>19/10/04</td>
<td>20,00</td>
<td>24,00</td>
<td>24,00</td>
<td>21,00</td>
<td>33,00</td>
<td>29,00</td>
<td>28,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
<tr>
<td>20/10/04</td>
<td>20,00</td>
<td>24,00</td>
<td>23,00</td>
<td>20,00</td>
<td>33,00</td>
<td>29,00</td>
<td>28,00</td>
<td>26,00</td>
<td>26,50</td>
</tr>
<tr>
<td>21/10/04</td>
<td>21,00</td>
<td>24,00</td>
<td>23,00</td>
<td>21,00</td>
<td>32,00</td>
<td>28,00</td>
<td>28,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
<tr>
<td>22/10/04</td>
<td>21,00</td>
<td>25,00</td>
<td>23,00</td>
<td>21,00</td>
<td>32,00</td>
<td>28,00</td>
<td>27,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
<tr>
<td>27/10/04</td>
<td>23,00</td>
<td>25,00</td>
<td>24,00</td>
<td>21,00</td>
<td>30,00</td>
<td>27,00</td>
<td>27,00</td>
<td>24,00</td>
<td>26,50</td>
</tr>
<tr>
<td>28/10/04</td>
<td>21,00</td>
<td>25,00</td>
<td>24,00</td>
<td>22,00</td>
<td>32,00</td>
<td>28,00</td>
<td>28,00</td>
<td>25,00</td>
<td>26,50</td>
</tr>
</tbody>
</table>

- **Máximo**: 23,00, 25,00, 25,00, 23,00, 34,00, 29,00, 28,00, 26,00, 27,50, 26,50, 26,00, 23,50
- **Mínimo**: 17,00, 23,00, 22,00, 20,00, 30,00, 27,00, 26,00, 24,00, 24,00, 25,00, 24,50, 22,50
- **Média**: 19,71, 24,18, 23,06, 20,76, 32,24, 27,76, 27,29, 24,94, 25,97, 25,97, 25,18, 22,85