A AVIAÇÃO AGRÍCOLA NO BRASIL
UM MODELO PARA SELEÇÃO DE AVIÕES COM O USO DA PROGRAMAÇÃO LINEAR

TOLEDO

2006
A AVIAÇÃO AGRÍCOLA NO BRASIL
UM MODELO PARA SELEÇÃO DE AVIÕES COM O USO DA PROGRAMAÇÃO LINEAR

Dissertação do Programa de Mestrado em Desenvolvimento Regional e Agronegócio, do Centro de Ciências Sociais Aplicadas, da Universidade Estadual do Oeste do Paraná – Campus de Toledo, como requisito parcial à obtenção do título de Mestre.

A AVIAÇÃO AGRÍCOLA NO BRASIL
UM MODELO PARA SELEÇÃO DE AVIÕES COM O USO DA PROGRAMAÇÃO LINEAR

Dissertação do Programa de Mestrado em Desenvolvimento Regional e Agronegócio, do Centro de Ciências Sociais Aplicadas, da Universidade Estadual do Oeste do Paraná – Campus de Toledo, como requisito parcial à obtenção do título de Mestre.

COMISSÃO EXAMINADORA

Orientadora: Profª. Drª. Débora da Silva Lobo
Unioeste

Examinador: Prof. Dr. Weimar Freire da Rocha Júnior
Unioeste

Examinadora: Prof. Dr. Florindo Alves
Universidade Estadual de Maringá - UEM

Toledo, Março de 2006.
AGRADECIMENTOS

Inicialmente agradeço a aquele que está acima de nós, a Deus.
Agradeço à Professora Doutora Débora da Silva Lobo, muito mais que minha orientadora, foi meu alicerce nessa construção de muitas dificuldades e obstáculos.
Agradeço também aos professores que me ajudaram nesse trabalho, o Prof. Ricardo Silveira Martins, meu Co-orientador, o Prof. Weimar Freire da Rocha Júnior, o Professor Pery Francisco Assis Shikida e o Prof. Homero Fernandes Oliveira.
Aos meus colegas do mestrado Antonio, Birck, Clédio, Cristiano, Darcy, Denise, Ednilse, Gilnei, Johny, José Augusto, Lizete, Miloca, Salete e Sheila, por esses vinte e quatro meses de convivência.
Aos meus amigos e familiares pela compreensão, mas principalmente pela confiança e incentivo.
Por fim, agradeço a pessoa que fez o mestrado comigo, testemunhou todas as horas nas quais eu queria fazer qualquer coisa mas eu só podia estudar e estudar. Proferiu-me palavras doces nos momentos nos quais somente tais palavras faziam a diferença para seguir adiante, a você Mada.
SUMÁRIO

LISTA DE TABELAS ..V
LISTA DE FIGURAS ...VI
LISTA DE GRÁFICOS ..VII
RESUMO ..VIII
ABSTRACT ...IX

1 INTRODUÇÃO ..01
1.1 JUSTIFICATIVA ...05
1.2 OBJETIVOS ...09
1.2.1 Objetivo Geral ...09
1.2.2 Objetivos Específicos ...09
1.3 ESTRUTURA DO TRABALHO ...09

2 REVISÃO DE LITERATURA ..11
2.1 A TEORIA DOS CUSTOS ...11
2.1.1 O Custo Total (CT) ..11
2.1.2 O Custo de Oportunidade ..12
2.1.3 Os Custos Irreversíveis (Sunks Costs) ..14
2.1.4 O Comportamento dos Custos no Curto Prazo ...15
2.1.4.1 O Custo Marginal (CMg) ..15
2.1.4.2 O Custo Médio (CMe) ...16
2.1.5 O Comportamento dos Custos no Longo Prazo ...16
2.1.5.1 Minimizando os custos – a escolha dos insumos ..17
2.1.6 As economias e Deseconomias de Escala ...18
2.1.7 A Curva da Aprendizagem ...19
2.2 A PESQUISA OPERACIONAL ...22
2.2.1 Etapas da Pesquisa Operacional ...24
2.2.2 A Programação Linear ...26
2.2.3 Algumas aplicações mais frequentes na agropecuária ..27

2.3 A AVIAÇÃO AGRÍCOLA ...28
2.3.1 Breve histórico da aviação agrícola no mundo ...28
2.3.2 Breve histórico da aviação agrícola no Brasil ..30
2.3.3 As empresas de aviação agrícola da Mesorregião Oeste do Paraná34
2.3.4 O processo de aviação agrícola ...36
2.3.5 Manutenção do avião agrícola ...39
2.3.6 Tecnologia de equipamentos da aviação agrícola ...40
LISTA DE TABELAS

TABELA 3 – Número de empresas de aviação agrícola por região - 2003*33
TABELA 4 – Número de empresas de aviação agrícola Estado do Paraná – 2003*34
TABELA 5 – Faturamento das empresas de aviação agrícola da Região Oeste do Paraná - 2003 ...36
TABELA 6 – Código, Preço, Capacidade de Campo Operacional, Capacidade do Hopper para cada modelo de avião agrícola...60
TABELA 7 – Análise de sensibilidade para o custo horário devido à variação da área.....61
TABELA 8 – Análise de sensibilidade para o custo horário devido à variação no número de horas da pulverização ...62
TABELA 9 – Análise de sensibilidade para o custo horário devido à variação no período disponível para aplicação ...63
LISTA DE FIGURAS

FIGURA 1 – Sistemas Agroindustriais e Transações Típicas...07
FIGURA 2 – Redução de custos por economias de escala e aprendizagem20
FIGURA 3 - Protótipo AG-1 ..29
FIGURA 4 – Estado do Paraná com destaque para a Mesorregião Oeste e localização das empresas de aviação agrícola...35
FIGURA 5 – Equipamento de Pulverização ...38
FIGURA 6 – Equipamento de Pulverização ...39
FIGURA 7- Mapa de aplicação com uso do DGPS ...41
FIGURA 8 - Monitor de Movimentos e Mapas de Aplicação ..42
FIGURA 9 – Fluxômetro ...42
LISTA DE GRÁFICOS

GRÁFICO 1 – Composição dos custos fixos e operacionais para a média dos aviões agrícolas..55

GRÁFICO 2 – Composição do custo horário para a média dos aviões agrícolas...........56

GRÁFICO 3 – Análise de sensibilidade para o custo horário devido ao aumento no preço do avião em 10% ...57

GRÁFICO 4 – Análise de sensibilidade para o custo horário devido à variação no custo operacional do avião em 10% ...58
RESUMO

O objetivo deste trabalho é a otimização do modelo de avião agrícola mais viável para determinada área de cultivo de soja, com possibilidade de diminuição de custos e riscos na atividade, aumentando a competitividade da agropecuária através da programação linear. No trabalho desenvolve-se uma revisão de literatura acerca dos conceitos microeconômicos de custo, da pesquisa operacional e da aviação agrícola. Propõe-se um modelo de programação linear para escolha do modelo de avião agrícola de menor custo; e realiza-se análises de sensibilidade para as variáveis do modelo proposto. A metodologia empregada para o desenvolvimento do modelo utiliza os dados referentes aos aviões agrícolas existentes no mercado entre aviões nacionais e importados. Os cálculos são divididos em duas etapas, uma anterior à otimização e a otimização propriamente dita. Os cálculos anteriores à otimização dividem-se em quatro estágios, quais sejam: o cálculo dos custos fixos e variáveis de cada modelo de avião, a capacidade de campo operacional de cada modelo, o ritmo operacional exigido e o número de aviões necessários ao atendimento da demanda. O resultado selecionou como avião de menor custo horário o modelo AV8, com um custo horário de US$ 323.14, com uma capacidade de campo operacional de 175,18 hectares por hora, sendo o custo por hectare de US$ 1,84. O resultado pode ser interessante para empresas de aviação agrícola e também para produtores de maior escala ou grupo de produtores associados.

Palavras-chave: programação linear, gestão de custos, aviação agrícola.
The objective of this work is the optimization of the more viable model to the agricultural airplane for certain area of soybean cultivation, with possibility from decrease of costs and risks in the activity, increasing the competitiveness of the agrobusiness through the linear programming. The work presents a literature revision about the concepts of microeconomics cost, operational research and agricultural aviation. It intends a model of linear programming for choice the model of agricultural airplane of smaller cost; and makes sensibility analyses for the variables of the proposed model. The methodology used for the development of the model uses the referring data of the agricultural airplanes existent in the market among national and imported airplanes. The calculations are divided in two stages, one before the optimization and the specific optimization. The calculations made before the optimization become separated in four stages, which are: the calculation of the fixed and variable costs of each airplane model, the capacity of operational area of each model, the demanded operational rhythm and the number of necessary airplanes to the attendance of the demand. The result selected as airplane of smaller cost schedule the model AV8, with a hourly cost of US$ 323.14, with a capacity of operational area from 175,18 hectares per hour, being the cost for hectare of US$ 1.84. The result can be interesting for companies of agricultural aviation and also for producers of larger scale or group of associated producers.

Key-words: linear programming, costs administration, agricultural aviation.
1 INTRODUÇÃO

O desenvolvimento deste trabalho tem como objetivo propor um modelo de otimização de programação linear para a seleção de um avião agrícola para áreas de cultivo de soja de tamanhos conhecidos, com a possibilidade de diminuição de custos e riscos, modernizando a atividade e aumentando a competitividade da agricultura.

A agricultura passou por um processo de industrialização que transformou a produção agrícola semelhante a uma indústria, que demanda determinados insumos para produzir produtos agrícolas, que serão utilizados por outros segmentos do sistema econômico. Sendo assim, passa a ser um elemento que interage significativamente com os demais segmentos econômicos (KAGEYAMA, 1990).

Segundo a mesma autora, na segunda metade da década de 70 começam a constituir-se os complexos agroindustriais (CAIs)\(^1\), deixando de existir somente uma agricultura, mas sim vários complexos agroindustriais.

A utilização de insumos modernos na agricultura, especificamente da produção nacional de fertilizantes deu-se a partir do Plano de Metas no período de 1956 a 1961. A expansão desta indústria deu-se pela participação de empresas transnacionais, sendo instaladas no período 15 novas plantas industriais. Essa expansão continua com o II Plano Nacional de Desenvolvimento (PND) que no período de 1974 a 1983 conseguiu a instalação de 68 novas indústrias. Com isso amplia-se a produção de fertilizantes no país, com o objetivo de torná-la autosuficiente (ABREU, 1989).

Outro tipo de insumo moderno trata-se dos defensivos agrícolas, que tiveram sua expansão na produção interna impulsionada pelo Plano Nacional de Defensivos Agrícolas

\(^1\) Sobre a questão conceitual de CAIs e similares, ver dentre outros, SILVA (1991) e BATALHA (1997).
(PNDA), criado em 1975, com o objetivo de reduzir as importações e os preços dos produtos e gerar excedentes para exportação (ABREU, 1989).

No contexto da utilização de insumos modernos, a mecanização agrícola foi a que se iniciou primeiramente no país em meados da década de 20, muito restrita à lavoura canavieira e com tratores rudimentares (movidos a vapor). Já no final da década de 40, amplia-se a utilização de tratores nas culturas de trigo, arroz (Rio Grande do Sul), cana-de-açúcar e café (São Paulo), sendo os equipamentos oriundos principalmente de importações. E foi com o impulso da lavoura de soja, já na década de 60, que a ampliação de mercado para os tratores e implementos teve forte recrudescimento. Esse período também marca o início da produção nacional de tratores (ABREU, 1989).

A produção agrícola está tornando-se uma atividade com crescente complexidade, incluindo questões técnicas, mercadológicas, de recursos humanos e ambientais. Essa complexidade vem modificando o perfil do produtor, tornando-o um agente que precisa tomar decisões e obter informações, de modo similar aos empresários de atividades urbanas, diferentemente em outro momento que sua orientação dava-se puramente para questões voltadas à produção. Essas mudanças levaram as empresas de insumos a perceberem a importância de atuar com o cliente e a resolver seus problemas (ZYLBERSTAJN, 2000).

A partir dos anos 90, o comércio internacional intensificou-se, sendo que no período de 1994-1997 a taxa de crescimento deste foi de 8,7% a.a.. Essa expansão do comércio modificou o padrão interindustrial, anteriormente predominante, no qual as relações Norte-Sul correspondiam à maior parte da troca entre matérias-primas e produtos processados e diversificados. O comércio não apenas tem expressado vantagens comparativas geradas no contexto do desenvolvimento industrial, por meio da inovação tecnológica, mas também tem sido resultado da internalização da produção industrial (PAULA, 2000).
Os produtores de commodities\(^2\) estão inseridos num ambiente competitivo, não exercem controle e nem influenciam os preços e sim o mercado é quem os estabelece. Jank e Nassar (2000), consideram uma estratégia eficiente para aumento da competitividade neste segmento a liderança em custos e escala.

Neste contexto concordam, Wedekin e Castro (1999), que afirmam que os produtores agropecuários que optam por permanecer como produtores de soja como commodity são tomadores de preços (price takers) no mercado mundial. A solução principal consiste em diminuir os custos de produção e distribuição para ampliar a oferta e deslocar os concorrentes nacionais, sendo o mercado interno cada vez menos referência relevante nas ações das organizações do agronegócio.

De acordo com Paula (2000), no mercado da agroindústria existe uma variedade de agentes que convivem em segmentos articulados, que dependendo da extensão das transformações acabam afetando as condições de acesso ao mercado. Mercados mais amplos são interessantes para firmas que possuem capacidade de aumentar sua capacidade produtiva, esses mercados são essenciais para o crescimento das firmas, combinações de diferenciação de produtos e economias de escala. As firmas ainda podem aumentar seus retornos com possibilidade da integração vertical entre diferentes estágios da cadeia produtiva.

\(^2\) O termo significa literalmente mercadoria em inglês. Mas para que uma mercadoria seja considerada commodity é necessário que atenda a pelo menos três requisitos: a) padronização no contexto do comércio internacional; b) possibilidade de entrega nas datas acordadas entre comprador e vendedor; e c) possibilidade de armazenagem ou de venda em unidades padronizadas (AZEVEDO, 1997).
No plano das atividades das empresas, a concorrência assume um duplo caráter. De um lado trata-se da principal ameaça aos lucros e à própria sobrevivência das empresas, as quais, como consequência, via de regra, querem se ver livres dela, elaborando estratégias que buscam, em última análise, o desmantelamento de seus principais concorrentes. De outro lado, a concorrência é o meio pelo qual uma empresa pode crescer, ampliar sua participação em seu mercado corrente ou mesmo conquistar novos mercados (AZEVEDO, 2000. p. 61).

Segundo Azevedo (2000) é a concorrência que estimula os sistemas econômicos a reduzir seus custos, aumentar a qualidade e procurar desenvolvimentos tecnológicos constantemente. Como já exposto, para o caso da agricultura na forma como descrita anteriormente, que não possui alternativas como diferenciação, a redução de custos surge como opção fundamental a ser perseguida.

A gestão da propriedade depende da capacidade de escolher e adquirir os insumos, os equipamentos e as máquinas, de conduzir técnica e economicamente o processo de produção e comercialização desta. As funções de armazenar, processar e distribuir alimentos e fibras são assumidas por outras organizações empresariais (PINAZZA e ALIMANDRO, 1999).

A produção agrícola, numa visão convencional, insere-se num complexo arranjo de transações, divididas em dois estágios, o primeiro para dentro da propriedade e o segundo para fora desta, a saber:

a) à montante: onde se desenvolvem a produção de insumos (sementes, fertilizantes, defensivos, combustíveis, medicamentos, vacinas, rações etc.), máquinas e equipamentos (tratores, colhedeadas, arados, grades, cultivadores) e a prestação de serviços (agronômicos, veterinários, financeiros, securitários, marketing etc.) A aviação agrícola está inserida neste segmento, como prestadora de serviços.
b) à jusante: enquadraram-se nestes segmentos as estruturas de armazenamento, transporte, processamento, industrialização, bolsas de físico e futuro, comércio e distribuição atacadista e varejista.

Segundo Pinazza e Alimandro (1999), aprofundam-se a interdependência e a especialização da agricultura com as funções de insumos, máquinas/equipamentos, serviços, armazenamento, processamento e comercialização. A produção que anteriormente estava apenas relacionada com a produtividade física, passou a orientar-se também com as características intrínsecas do produto, como para o caso do teor de sacarose na cana-de-açúcar e o teor de óleo na soja etc.

Diante da exigência de adoção de insumos modernos a aviação agrícola coloca-se como alternativa tecnológica interessante para empresas de aviação e para produtores que procuram especializar-se na gestão de seus negócios.

1.1 JUSTIFICATIVA

De acordo com Alves (1997), as empresas agrícolas podem ter produtos demandados pelo consumidor final ou pelas agroindústrias para sua transformação. Servindo de ponte para as duas extremidades estão as operações logísticas de apoio à produção, como o suprimento de insumos e alocação de máquinas e equipamentos para o plantio e tratos culturais, apoio à colheita e transporte para os mercado consumidor ou industrial. O planejamento da produção precisa diminuir a incerteza quanto ao atendimento de suas necessidades de fornecimento e também de fatores climáticos.
A concorrência entre as firmas não está mais confinada ao interior das fronteiras nacionais, pois tem incluído competidores estrangeiros tanto via comércio quanto através de investimento direto. As regras de proteção têm se tornado menos efetivas e, com isso, os preços praticados são mais transparentes. Enquanto as firmas capazes de competir no mercado internacional são estimuladas a aumentar seus investimentos em outros países que possuam vantagens comparativas locais, as empresas nacionais tornam-se expostas a novos e fortes investidores.

Segundo Batalha et al. (2004) os desafios para os produtores rurais podem ser situados em dois níveis, quais sejam: a gestão de sistema e a gestão da propriedade. A gestão de sistema refere-se à necessidade de desenvolver capacidade e ferramentas para abordar as relações sistêmicas dos produtores entre si e com os outros agentes das cadeias agroindustriais, sendo que estes últimos geralmente têm maior liderança e capacidade de promover a articulação. Já a gestão da propriedade refere-se às questões individuais de cada produtor no tocante ao gerenciamento de sua propriedade.

A aviação agrícola refere-se a uma atividade de suprimento à produção agropecuária (Figura 1). Segundo Alves (1997), a área de suprimento requer o planejamento das necessidades e seleção de fontes de fornecimento, negociação com fornecedores, colocação de pedidos etc., inclui a responsabilidade de coordenação entre fornecedores e áreas de programação das operações, continuidade do suprimento, pesquisa de novas fontes ou programas e negociação entre os agentes da cadeia de abastecimento, objetivando dar suporte à produção, oferecendo materiais/serviços no tempo certo ao menor custo total.
Como já citado anteriormente, os produtores de commodities são tomadores de preços, os quais são determinados pelo mercado. Considera-se uma estratégia eficiente para aumento da competitividade neste segmento a liderança em custos, sendo o mercado interno cada vez menos relevante nas ações das organizações do agronegócio.

A gestão da propriedade diz respeito à gestão individual das propriedades. Neste nível, as dificuldades encontradas dizem respeito: à inadequação das ferramentas gerenciais existentes; ao baixo investimento em pesquisa nesta área; à descapitalização dos pequenos agricultores (que encontram dificuldades no acesso às modernas tecnologias de informação); ao baixo nível de educação formal; à ausência de cultura que crie um ambiente favorável à adoção de novas tecnologias de gestão; e a falta de capacitação dos técnicos que prestam assistência aos produtores (Batalha et al., 2004).

As operações que ocorrem no interior de uma empresa rural são influenciadas por agentes situados fora das porteiras da propriedade, como as decisões que ocorrem no setor de insumos, de bens de produção agrícola e a postura de diversos agentes da comercialização. Estas decisões, muitas vezes, causam excedentes de produção, derrubam os preços, comprometendo o gerenciamento da atividade agrícola (NANTES, 1997).
A difusão das técnicas de gestão disponíveis também é insuficiente e inadequada para capacitar o produtor na utilização e implementação destes recursos. Os produtores vêem estas tecnologias com pouca importância frente às tecnologias de produção propriamente ditas.

Acredita-se que este trabalho se justifica pela necessidade de modernização do agronegócio como um todo. Em consonância com a agroindústria, a agricultura precisa adotar continuamente novos insumos para inovar e especializar-se na produção agrícola, soma-se a isso a necessidade de diminuir custos para aumentar a competitividade dos produtos agrícolas, no sentido da gestão eficiente da propriedade agrícola. E ainda o interesse das empresas de aviação agrícola para a gestão de menores custos da atividade.

Diante disso, a possibilidade de criar um modelo de escolha do avião de menor custo para diminuir os custos de produção, diminuir os riscos da atividade e aumentar a produtividade do setor agropecuário, entende-se como de fundamental importância.

Nesta pesquisa analisa-se somente a prestação deste serviço para a agricultura da cultura da soja, na possibilidade de diminuir custos e tempo neste processo, com isso diminuindo o risco dessa atividade, aumentando a eficiência e a competitividade de toda a cadeia produtiva dessa cultura.

O problema a ser pesquisado neste trabalho é a seleção do modelo de avião agrícola mais viável para uma área hipotética, com o uso da programação linear, aumentando a competitividade da agropecuária.
1.2 OBJETIVOS

1.2.1 Objetivo Geral

Definir com o uso da programação linear o modelo de seleção do avião agrícola mais viável para determinada área de cultivo de soja, com possibilidade de diminuição de custos e riscos na atividade, aumentando a competitividade da agropecuária.

1.2.2 Objetivos Específicos

a) Desenvolver modelo de programação linear para escolha do modelo de avião agrícola de menor custo;

b) Fazer análises da composição dos custos e de sensibilidade para as variáveis do modelo proposto.

1.3 ESTRUTURA DO TRABALHO

O trabalho está estruturado em cinco partes distintas no intuito de visualização das partes e interligação dessas, que seguem a opção de formatação pré-definida.

Na primeira parte faz-se uma introdução sobre o contexto panorâmico, no qual o trabalho se insere, com objetivo de informar o leitor sobre o agronegócio. A introdução trata da justificativa da pesquisa e dos objetivos a serem alcançados no decorrer do trabalho.
Na segunda parte faz-se uma revisão de literatura, dividida em três partes, mas que juntas formam o embasamento teórico do trabalho. Primeiramente, apresenta-se a teoria microeconômica dos custos, abordando os conceitos de custo fixo, variável, marginal e médio. Ressalta-se as possibilidades de redução dos custos através da economia de escala e da curva da aprendizagem. Na sequência, aborda-se a pesquisa operacional, com sua origem, desenvolvimento e aplicações no agronegócio. Encerra-se esta parte evidenciando a aviação agrícola, desde do seu surgimento e ampliação no Brasil, identificando as tecnologias utilizadas.

A terceira parte trata da metodologia utilizada no trabalho. O trabalho propõe um modelo de programação linear com objetivo de identificar a melhor opção de escolha entre os aviões disponíveis no mercado para a agricultura. O modelo leva em consideração os custos fixos e variáveis de cada modelo e a capacidade de campo operacional de cada modelo. Dimensiona o ritmo operacional que cada modelo precisa atender, em função dos dias disponíveis e horas trabalhadas, definindo assim o modelo de avião de menor custo. Também são feitas análises de sensibilidade para o tamanho da área, o número de dias disponíveis para o desenvolvimento da atividade e o número de horas diárias de trabalho.

Na quarta parte apresentam-se os resultados do problema proposto, juntamente com as análises e discussões.

Por fim, as considerações finais procuram sumarizar o trabalho, apontando as dificuldades encontradas e sugestões de novas pesquisas sobre o tema.
2 REVISÃO DE LITERATURA

2.1 A TEORIA DOS CUSTOS

No Capítulo anterior evidenciou-se que para uma empresa de aviação agrícola, bem como os produtores obterem diferenciais de competitividade a redução de custos torna-se premente. Inicialmente faz-se uma breve revisão sobre os conceitos microeconômicos de custo.

Os custos de uma empresa são formados através de uma determinada tecnologia de produção utilizada juntamente com os preços dos insumos. Ou ainda, as condições físicas de produção, o preço dos recursos e a conduta economicamente eficiente de um empresário determinam conjuntamente o custo de produção de uma firma.

2.1.1 O Custo Total (CT)

Conforme descrito por Viceconti e Neves (2002), o CT é composto pelos seguintes elementos:

a) o Custo Fixo (CF): é o custo no qual a empresa incorrerá independentemente do nível de produção obtido, ou seja, a empresa precisa desencaixar o seu montante ocorrendo produção ou não. Neste trabalho os custos fixos são compostos pelos seguintes fatores:

- amortização;
- juros;
- seguro;
• despesas administrativas.

Estes fatores são calculados em função do valor inicial de aquisição do avião agrícola.

b) o Custo Variável (CV): é o custo no qual a empresa incorrerá em função do nível de produção obtido, ou seja, quanto menor o nível de produção menor o CV, e aumentando-se o nível de produção eleva-se também o CV. Neste trabalho os custos variáveis são compostos pelos seguintes fatores:

- combustível e óleo;
- remuneração com piloto;
- manutenção do avião.

Assim, o CT é composto pela soma dos CF e dos CV, assim expresso:

\[CT = CF + CV \] (1)

2.1.2 O Custo de Oportunidade

De acordo com Ferguson (1996), a economia interessa-se, principalmente no custo social de produção, que trata-se do custo que uma sociedade suporta quando seus recursos são usados para produzir uma dada mercadoria. Para se produzir uma unidade da mercadoria X, incorre-se no custo social de utilização desses recursos, que devem ser sacrificados para a produção de unidades da mercadoria Y.

Na ciência econômica trata-se os custos de maneira diferente que na ciências contábeis. A contabilidade está orientada nos demonstrativos financeiros da empresa, fazendo
a retrospectiva da empresa e das finanças da empresa, pois sua função é manter sob controle os ativos e passivos, avaliando o desempenho da empresa no passado. A contabilidade também registra as despesas com depreciação dos equipamentos de capital que são determinadas pela legislação fazendária vigente (PINDICK e RUBINFELD, 1999).

Já para as ciências econômicas e a administração, direcionam-se para vislumbrar as perspectivas futuras da empresa, preocupando-se como os custos que poderão ocorrer no futuro e principalmente com os critérios que serão utilizados pela empresa para reduzir seus custos e melhorar sua lucratividade.

O conceito de custo de oportunidade exposto por Ferguson (1996, p. 231), fica assim definido: “o custo alternativo ou de oportunidade da produção de uma mercadoria X é o montante da mercadoria Y que deve ser sacrificado, a fim de que os recursos sejam alocados para produzir X em vez de Y. Este é o custo social da produção de X”.

Já para Pindick e Rubinfeld (1999, p. 218), o conceito está mais orientado com a perda de recursos ou lucros que se obtém quando a empresa está operando em determinada situação. O conceito exposto pelos autores fica assim estabelecido: “os custos de oportunidade, são os custos associados às oportunidades que serão deixadas de lado, caso a empresa não empregue seus recursos da maneira mais rentável.”

Completando o conceito de custo de oportunidade de Ferguson (1996, p. 232), o autor acrescenta o custo implícito de produção.

O custo implícito de produção a que está sujeito um empresário, na produção de uma determinada mercadoria consiste no montante que ele poderia ganhar na melhor alternativa de uso de seu tempo e dinheiro ele obtém um lucro econômico puro na produção de X, se e somente se sua receita total excede seus custos explícitos e implícitos (FERGUSON 1996, p. 232).

O custo explícito que é constituído pelos insumos de produção, como a remuneração da mão-de-obra, os salários dos executivos, os custos de materiais e a locação de
propriedades deve ser acrescentado ao custo implícito (custo de oportunidade) para se averiguar o resultado econômico puro.

2.1.3 Os Custos Irreversíveis (Sunk Costs)

O custo irreversível é uma despesa que já ocorreu numa empresa e não pode ser recuperada no futuro. Por exemplo aquisições de equipamentos especialmente projetados para uma fábrica, e que não possuem uso alternativo, seu custo é irreversível pois não se permite a utilização, portanto seu custo de oportunidade é nulo. O custo de oportunidade existia enquanto a empresa dispunha do recurso financeiro para definir a escolha do equipamento para adquirir (PINDICK e RUBINFELD, 1999).

Os custos irreversíveis são tratados particularmente na Nova Economia Institucional (NEI), que define o conceito como especificidade dos ativos.

A especificidade dos ativos relaciona-se com a restrição no uso, ou seja, um determinado investimento somente poderá ser utilizado para a finalidade preestabelecida. As especificidades dos ativos podem ser classificadas em seis tipos diferentes: especificidade locacional, especificidade temporal, especificidade dos ativos físicos, especificidade dos ativos humanos, ativos dedicados e especificidade de marcas (WILLIAMSON, 1996).

Neste estudo os aviões agrícolas tratam-se de investimentos em ativos irreversíveis, pois estas aeronaves, não podem ser utilizadas em qualquer atividade além da aviação agrícola, dadas as suas especificidades, pois são projetadas e construídas exclusivamente para esta finalidade.

O modelo proposto neste trabalho vem contribuir para que a empresa ou mesmo o produtor utilizar-se da melhor maneira possível do seu custo de oportunidade, ou seja, definir
sua escolha fundamentada no menor custo antes de realizar o investimento, pois uma vez realizado torna-se um custo irreversível.

2.1.4 O Comportamento dos Custos no Curto Prazo

No curto prazo pelo menos um dos insumos de produção de uma empresa é fixo, e outros somente podem sofrer alterações à medida que a empresa altera o nível de produção.

Neste trabalho pode-se classificar como um insumo variável que é o principal componente dos custos variáveis o combustível. Este insumo varia de acordo com a quantidade de horas que o avião está operando.

2.1.4.1 O Custo Marginal (CMg)

A definição de CMg ou custo incremental, explicitada por Pindick e Rubinfeld (1999), refere-se ao aumento do custo ocasionado pela produção de uma unidade adicional de produto. A definição pode ser expressa da seguinte maneira:

\[
CMg = \frac{\Delta CV}{\Delta Q} = \frac{\Delta CT}{\Delta Q}
\]

(2)
2.1.4.2 O Custo Médio (CMe)

Conforme Viceconti e Neves (2002), o CMe ou Custo Total Médio (CTMe) é o custo por unidade de produto, ou seja é o CT dividido pela quantidade produzida. O CMe ou CTMe pode ser assim expresso:

\[CMe = CT / Q \]

(3)

Contudo o CMe, possui dois componentes: o Custo Fixo Médio (CFMe) e o Custo Variável Médio (CVMe). Estes componentes podem ser assim expressos:

\[CFMe = CF / Q \]

(4)

\[CVMe = CV / Q \]

(5)

2.1.5 O Comportamento dos Custos no Longo Prazo

Inicialmente deve-se definir o conceito de longo prazo. Na ciência econômica o curto e longo prazos não possuem uma mensuração em dias ou meses pré-definidos, ou seja para cada setor da economia e mesmo para cada empresa essa mensuração pode ser diferente.

De acordo com Ferguson (1996), o longo prazo pode ser definido como sendo o período de tempo de duração tal, que todos os insumos são variáveis. O longo prazo refere-se ao horizonte do planejamento, toda a atividade econômica de fato ocorre no curto prazo. No longo prazo os agentes econômicos podem planejar e escolher muitos aspectos do curto prazo, nos quais eles operarão no futuro.
Conforme Varian (1993) a análise de longo prazo depende do problema a ser considerado. Ao analisar-se o tamanho de uma unidade produtiva, o longo prazo será o tempo que se leva para a empresa ampliar o tamanho desta unidade produtiva. Já se a análise for a obrigação da empresa em pagar salários, o longo prazo seria o tempo necessário para a empresa mudar sua mão-de-obra.

Neste trabalho, a decisão de realizar um investimento de elevado custo como a aquisição de um avião agrícola, está no horizonte do planejamento, portanto de longo prazo. A partir do momento em que este se realiza, inicia-se novamente o curto prazo, período no qual ocorre a atividade econômica produtiva.

2.1.5.1 Minimizando os custos – a escolha dos insumos

A escolha dos insumos para obtenção de determinado nível de produção com o mínimo de custo é um problema que afeta todas as empresas. Como já exposto no longo prazo, o empresário possui como variáveis todos os insumos que utiliza em seu processo produtivo.

Neste trabalho o modelo de programação linear objetiva a definição de melhor escolha de avião agrícola para as empresas ou produtores trata-se do insumo capital, e que no longo prazo, na perspectiva de planejamento, como já vimos é passível de escolha.
2.1.6 As Economias e Deseconomias de Escala

De acordo com Ferguson (1996), uma empresa após o ajustamento otimizado de todos os insumos utilizados no processo produtivo, obtém redução do custo unitário de produção, ou seja, atinge economia de escala.

As economias de escala provem de duas razões fundamentalmente: a primeira delas trata-se da especialização e da divisão do trabalho. Quando ocorre o aumento do número de trabalhadores e os insumos fixos como as máquinas permanecem constantes, surgem um campo propício para especialização e a divisão do trabalho. Em uma fábrica de pequeno porte ocorre a perda de rendimento do insumo trabalho pelo deslocamento de um trabalhador entre uma atividade e outra e também pela troca de instrumentos, pois cada trabalhador acaba desenvolvendo mais tarefas. Já numa fábrica maior a especialização é facilitada pelo fato de cada trabalhador desempenhar somente uma tarefa, na qual pode obter mais habilidade e com isso diminuir os desperdícios pela troca de atividades e instrumentos (FERGUSON, 1996).

A segunda razão, segundo o autor refere-se ao fator tecnológico esta divide-se em três possibilidades:

a) quando uma empresa dispõe de duas máquinas que são complementares no processo produtivo, e uma delas apresenta rendimento maior que a outra, a quantidade final produzida deve ocorrer num ponto que maximize as duas máquinas, para a obtenção de economia de escala;

b) o fator tecnológico pode também obter economias de escala pelo fato de que máquinas e instalações maiores são proporcionalmente de menor custo que máquinas e instalações menores;
c) o fator tecnológico permite que a medida que se amplia a produção se amplie a mecanização e automatização de atividades o que tende a reduzir o custo unitário de produção.

As deseconomias de escala ocorrem quando o nível de produção excede a capacidade instalada da empresa, com isso o rendimento dos insumos trabalho e capital, perdem a produtividade, ocasionando o aumento dos custos unitários (PINDICK e RUBINFELD, 1999).

2.1.7 A Curva da Aprendizagem

Como já exposto, as empresas ao atingirem produções maiores tendem a diminuir seus custos médios de produção dado ao fato de alcançarem escala de produção. Porém, as empresas além de escala podem reduzir seus custos médios através da aprendizagem.

A curva da aprendizagem conforme Pindick e Rubinfeld (1999), é a redução de custo médio de uma empresa ao longo do tempo à medida que administradores e trabalhadores se tornam experientes e eficazes nos processos gerenciais e na utilização da fábrica e dos equipamentos.

A curva da aprendizagem permite redução de custos por quatro motivos:

a) os trabalhadores demandam mais tempo para realizar uma determinada tarefa nas primeiras vezes, e após um período tornam-se mais experientes, com isso sua velocidade aumenta desde o fluxo de materiais até a organização do próprio processo produtivo;

b) os administradores aprendem a programar o processo produtivo com maior eficácia;
c) a experiência atinge os engenheiros que a princípio mantinham-se cautelosos no desenvolvimento de seus produtos, permitindo que estes façam inovações no desenho do projeto, possibilitando redução de custos;

d) os fornecedores de materiais aprendem maneiras de processar com maior eficácia os materiais que são os suprimentos demandados pela empresa, podendo repassar essa vantagem na redução de custos.

Na Figura 2, aponta-se como ocorrem as duas possibilidades de redução de custo, quais sejam: as economias de escala e a aprendizagem.

Através da aprendizagem, os custos de produção de uma empresa “madura” tornam-se relativamente baixos, isso ocorre independentemente da escala de produção da empresa.

FIGURA 2 – Redução de custos por economias de escala e aprendizagem
Fonte: Pindick e Rubinfeld (1999).
O efeito da redução dos custos médios através dos ganhos de escala, pode ser observado através da curva de custo CMe₁, quando a empresa passa da ponto A para o ponto B, ao longo da mesma curva. Nessa mudança ocorreu uma diminuição no CMe₁, devido ao fato de empresa ter ampliado sua quantidade produzida.

O efeito da redução de custos através da aprendizagem pode ser observado quando a empresa passa da curva de CMe₁ para a curva de CMe₂, ou seja a redução de custos ocorreu devido ao aprendizado de todo o processo produtivo, mantendo-se a mesma quantidade produzida.

A curva da aprendizagem na aviação agrícola, pode ocorrer principalmente nas equipes de apoio de solo. Estes profissionais atuam no momento em que o avião pousa e realiza os abastecimentos. O aprendizado deste trabalho permite a redução do tempo ao máximo, o que na aviação representa altos custos. O aprendizado também pode ocorrer na administração com otimização da programação das atividades e também com o pilotos que desenvolvem a atividade.

Esta revisão teórica será o embasamento para a compreensão do comportamento dos custos da atividade de aviação agrícola. A análise inicia-se com a definição dos custos fixos e variáveis e prossegue com a minimização dos mesmos através do modelo de minimização de custo.

A seguir faz-se uma revisão da pesquisa operacional e da programação linear, com um breve histórico e desenvolvimento, evidenciando os problemas nos quais esta ferramenta esta sendo utilizada com resultados positivos.
2.2 A PESQUISA OPERACIONAL

A utilização e o desenvolvimento da Pesquisa Operacional sob essa denominação ocorreu durante a Segunda Guerra Mundial, a partir de 1939. Apesar disso, acredita-se que antes deste período, na primeira revolução industrial, surgiram as situações e os problemas que seriam tratados posteriormente por essa ferramenta de apoio à tomada de decisão (COSTA, 1999).

Nesse mesmo período, os aliados depararam-se com problemas de ordem tática e estratégica, com os quais as soluções empíricas não estavam conseguindo resolver. Ocorre nesse momento a ideia de reunir cientistas de diversas áreas do conhecimento, através de grupos multidisciplinares, para atuar com visão sistêmica, utilizando metodologia científica para abordar questões práticas de guerra. Dentre as questões abordadas inicialmente pode-se mencionar: a melhor forma de utilizar radares; como organizar baterias antiaéreas; e como melhor dimensionar as frotas (COSTA, 1999).

Existem diversas definições de pesquisa operacional, cita-se a de Ackoff e Sasieni (1979) apud Costa (1999, p. 18), como sendo: “a aplicação do método científico por equipes multidisciplinares, a problemas que dizem respeito ao controle de sistemas organizados com a
finalidade de obter as soluções que melhor satisfaçam aos objetivos da organização, como um todo”.

Conforme Costa (1999), dentre as várias categorias de problemas de pesquisa operacional, pode-se destacar as seguintes:

- **a) problemas de alocação**: trata-se de encontrar a melhor maneira de alocar tarefas aos recursos disponíveis;
- **b) problemas de estoques**: trata-se de melhor dimensionar e controlar os estoques;
- **c) problemas programação**: trata-se da melhor programação dos trabalhos que competem por recursos comuns;
- **d) problemas de roteamento**: trata-se da melhor definição de caminhos para a racionalização da distribuição de bens e serviços;
- **e) problemas de filas**: trata-se de minimizar tempos de espera nos setores produtivos ou prestadores de serviços;
- **f) problemas de substituição**: trata-se de definir a melhor opção de substituição ou manutenção de equipamentos.

Este trabalho enquadra-se como sendo um problema de alocação, ou seja, o modelo define o modelo de avião que deve ser alocado no desenvolvimento da atividade de aviação agrícola.

A pesquisa operacional através de seus modelos possibilita novos conhecimentos, também o planejamento e previsões de atividades. Existe certa dificuldade em se validar os
modelos, contudo, sempre se percebe uma indicação no nível de sucesso do processo de modelagem (CAIXETA FILHO, 2004).

A utilização e a expansão da pesquisa operacional, segundo Costa (1999), deve-se ao desenvolvimento de novas técnicas, ao avanço na informática tanto do hardware quanto do software, e o interesse empresarial com as novas ferramentas de apoio à tomada de decisão. Com a redução dos custos, juntamente com o alto desempenho dos equipamentos de informática, a pesquisa operacional encontra espaço para a sua ampliação.

2.2.1 Etapas da Pesquisa Operacional

Conforme Costa (1999), existem 6 (seis) etapas da metodologia da Pesquisa Operacional, quais sejam:

a) Definição do problema: na primeira etapa, precisa-se deter o maior conhecimento possível, é necessário ter-se clareza sobre qual é realmente o problema, para que se possa solucionar de forma correta o problema certo. Esta etapa demanda o levantamento de dados e uma correta interpretação destes.

b) Modelagem da situação: desenvolver um modelo que represente um sistema real exige conhecimento. O modelo precisa ser descritivo, ou seja, fornecer explicações que facilitem a compreensão do sistema estudado; e também prescritivo, ou seja, possibilitar a orientação sobre situações futuras. A modelagem envolve duas situações opostas: a primeira exige que o modelo seja simples o suficiente para permitir sua construção e manipulação; e a segunda, exige que o modelo seja complexo o suficiente para envolver todas as
variáveis relevantes e suas relações. Uma maneira de contornar essa dificuldade é começar com um modelo simples e tornando-o mais sofisticado à medida que novas necessidades forem surgindo. Não existem técnicas rígidas para a construção de modelos, cada problema precisa ser interpretado para poder-se proceder à modelagem específica.

c) **Solução computacional:** a definição da ferramenta computacional para “rodar” um modelo depende da técnica utilizada e da disponibilidade de software existente no mercado. Quando não existe software específico para o problema, necessita-se desenvolver uma linguagem computacional de aplicação geral. Outra situação que ocorre é a existência de várias linguagens computacionais específicas para determinado problema específico, a última situação é a que ocorre no mercado de informática recente, refere-se à existência de pacotes computacionais do tipo “caixa-preta”, nos quais o usuário preocupa-se somente com entrada de dados.

d) **Verificação e validação do modelo:** por esta etapa devem passar todos os modelos, sempre que possível. Consiste no estabelecimento de testes e na aplicação destes, enfatizando a sensibilidade das variáveis críticas do modelo. Através dos testes verifica-se a precisão do modelo, comparando-se os resultados obtidos com os valores esperados. Após validado o modelo este facilita as experimentações que o usuário deseja fazer no sistema real, em relação à facilidade, praticidade e custo.
e) **Implementação da solução:** após a verificação e validação do modelo, roda-se o modelo e obtém-se os resultados, que são analisados na sequência. Esses resultados servem para a orientação das alternativas de ações do tomador de decisões.

f) **Manutenção do modelo:** após a implementação da solução encontrada, precisa-se atualizar o modelo com as mudanças ocorridas na situação real em virtude do tempo. Eventuais erros ocorridos na fase de construção e de teste do modelo também podem ser corrigidos. Esta fase não se encerra, mas sim passa a ser uma dinâmica contínua enquanto se utiliza o pacote computacional.

2.2.2 A Programação Linear

Segundo Puccini (1978), a programação linear trata-se de uma técnica de otimização largamente utilizada na resolução de problemas que tenham seus modelos representados por expressões lineares. A sua grande difusão deve-se à linearidade do modelo, tornando-a de fácil aplicação em uma considerável quantidade de problemas, sem perdas significativas na solução.

Este conceito assemelha-se ao conceito proposto por Caixeta Filho, que define a programação linear como sendo:

...um aprimoramento de uma técnica de resolução de sistemas de equações lineares via inversão sucessiva de matrizes, com a vantagem de incorporar uma equação linear adicional representativa de um dado comportamento que deva ser otimizado (CAIXETA FILHO, 2004, p. 10).
2.2.3 Algumas aplicações mais frequentes na agropecuária

Para exemplificar a aplicabilidade da programação linear na agropecuária, citam-se alguns trabalhos³. Neves et al. (1984), utilizaram a programação linear para definição de níveis ótimos de insumos para a produção agrícola. Os dados foram coletados em propriedades agrícolas da região de Palotina-PR. A produção de soja foi definida como sendo: produção de soja; em função das variáveis: terra, trabalho, fertilizantes, defensivos, sementes, e despesas com maquinaria. Foram definidos 15 processos de produção de soja, sendo cada processo uma variável de decisão.

Uma outra aplicação da programação linear para a finalidade agropecuária foi apresentada por Sugai (1984), sendo elaborada em uma propriedade localizada no cerrado brasileiro, próximo à Brasília. A propriedade dispunha de uma área de 370 hectares, dos quais 345 hectares caracterizados como terra do tipo I e 25 hectares de terra do tipo II. O modelo foi desenvolvido utilizando-se os dados do ano de 1981, no qual o proprietário tinha realizado a definição das atividades exploradas no ano, isto para avaliação do resultado e também para o planejamento do ano seguinte com a otimização das atividades, com o intuito de maximizar o lucro da propriedade. Com a redefinição das culturas e atividades por meio do uso da programação linear a propriedade atingiu um aumento da renda líquida de 23,2%.

A programação linear também é muito utilizada na logística de transporte. Martins (1998), utilizou a metodologia para a otimização do transporte de grãos (milho, soja e trigo) e farelo de soja no Estado do Paraná. O estudo pretendia expandir o modal ferroviário, com interesse na redução dos custos de transporte destes produtos no Estado. Primeiramente, estimou os fluxos das matrizes origem-destino. Na sequência, com base nos custos de fretes rodoviários e ferroviários e na capacidade de tráfego das ferrovias, desenvolveu o modelo de

minimização de custos de transporte. As ferrovias foram identificadas como significativas na redução dos custos de transporte, pois os modelos apontaram os fluxos prioritariamente para o transporte ferroviário. Como o modelo indicou um volume acima da capacidade de alguns trechos, o estudo também indicou investimentos necessários para a viabilidade do transporte otimizado pelo modal ferroviário.

Na aviação agrícola não encontrou-se nenhum trabalho específico com a utilização da programação linear.

Por fim, uma vez expostas as aplicações da programação linear, segue-se uma breve revisão da aviação agrícola, destacando seu surgimento e desenvolvimento, no intuito de destacar as tecnologias disponíveis que aumentaram consideravelmente a qualidade dos serviços e a diminuição de falhas como aplicações indesejadas que causam prejuízos econômicos e ambientais.

2.3 A AVIAÇÃO AGRÍCOLA

2.3.1 Breve histórico da aviação agrícola no mundo

O início da aviação agrícola deu-se na Alemanha no ano de 1911. O Senhor Alfred Zimmermann (Agente Florestal) controlou uma infestação de lagartas daquele país utilizando a aviação agrícola. No ano de 1921 os EUA utilizaram pela primeira vez a aviação agrícola com a mesma finalidade no Estado de Ohio (SINDAG, 2004).
Já no ano de 1922, nos EUA a aviação agrícola foi utilizada pela primeira vez também na cultura do algodão, no Estado da Luisiania. No ano seguinte cria-se a primeira empresa comercial de aviação agrícola, com o nome de Huff-Daland Dusters Incorp.

Entre as décadas de 20 a 40 do século XX, as aeronaves agrícolas não foram aperfeiçoadas, e predominaram os biplanos de treinamento militar que possuem grande manobrabilidade, grande capacidade de carga e fácil manutenção. Após a década de 1940, a utilização da aviação estendeu-se para o controle de gafanhotos, doenças como malária e incêndios florestais.

A partir da II Guerra Mundial, a aviação agrícola tem seu crescimento acelerado nos EUA, com a fabricação dos aviões Stearman e Piper J3, que inicialmente foram construídos para uso bélico, sendo adaptados para uso agrícola.

O primeiro avião projetado e construído devidamente para uso agrícola foi o AG-1, no ano de 1950. Seu primeiro vôo ocorreu em 01/12/1950, com Fred Weick e sua equipe de pesquisadores da Universidade Texas A&M. No final da década surgem as empresas Piper, Grumman e Snow.

A Figura 3 mostra o protótipo AG-1.

FIGURA 3 - Protótipo AG-1
A partir dos anos 80 dominaram nos EUA, os aviões Trash Commander e Air Tractor, pela sua grande capacidade de hopper (tanque onde se armazena o produto a ser aplicado) e devido aos motores turbo-hélice, que possuem um custo de manutenção bem inferior ao convencional.

2.3.2 Breve histórico da aviação agrícola no Brasil

No ano de 1950, o Ministério da Agricultura criou as Patrulhas de Tratamento Aéreo (PATAE), com o objetivo de aplicar Benzeno Hexa Clorado (BHC).

Em 1956, na região de Itanhaém-SP, a empresa Sociedade Agrícola Mambú Ltda, produtora de banana, importou um avião Sterman para tratamento da doença que atacava seus bananais. A empresa utilizou os conhecimentos do Equador, onde o controle de pragas na produção de banana via avião agrícola, encontrava-se mais desenvolvido. Contudo, para poder utilizar o avião para esta finalidade a empresa precisou fazer algumas modificações, como a instalação de tambor de 200 litros no assento traseiro, bomba centrífuga côlica e dois pulverizadores nas extremidades das asas (SINDAG, 2004).

A aviação nacional, não só agrícola, teve grande impulso a partir do final dos anos 60. Com efeito, em 1969 foi fundada a Empresa Brasileira de Aeronáutica S.A. (EMBRAER), em São José dos Campos/SP. No mesmo ano foi normalizada, pelo Decreto-Lei nº 917, a aviação agrícola e também o convênio com o Ministério da Aeronáutica para o projeto e
construção do primeiro avião agrícola brasileiro. Este projeto foi executado pela empresa Indústria Aeronáutica Neiva Ltda, que passou a ser a subsidiária da EMBRAER, instalada em Botucatu/SP (EMBRAER, 2005).

O projeto chamado de PP-ZIP, de julho de 1970, fez seu primeiro vôo ainda neste ano, passando o seu nome para EMB-200 Ipanema. Esta aeronave possuía motor Lycoming de 260 hp (horse power) e capacidade de carga de 550kg.

Em 1971 em São Paulo, cria-se a primeira organização do setor de aviação agrícola no país, a Associação Nacional de Aplicadores Aéreos (ANAPLA). O motor Lycoming de 300 hp é utilizado pela primeira vez no avião EMB-201 Ipanema no ano de 1974, sua capacidade de carga era de 750kg ou 680 litros.

Com a expansão da fronteira agrícola, principalmente para os serrados do Mato Grosso, Mato Grosso do Sul e Bahia, entre outros, iniciou-se um mercado promissor para a aviação agrícola. A aviação agrícola expandiu-se nessas regiões devido principalmente ao tipo de relevo predominante e ao tamanho das propriedades que cultivam principalmente a cultura da soja.

A utilização da aviação agrícola na cultura da soja no Brasil, mais recentemente no período de 1992 a 2001, foi de 10,87% em relação à área cultivada. No Estado do Rio Grande do Sul, onde situa-se uma das maiores áreas plantadas e a maior área tratada, esse percentual foi distribuído em termos de tipos de aplicações, da seguinte maneira: herbicidas 15%, fertilizantes 1%, inseticidas 81% e outros 3%. Já na cultura da cana-de-açúcar, no período de 1990 a 2001, o percentual de utilização da aviação agrícola foi de 3,92% em relação à área plantada. Tomando-se o Estado de São Paulo como base, onde situa-se a maior área plantada e a maior área tratada, a distribuição dessa utilização ocorreu da seguinte maneira: herbicida 54%, fertilizante 16%, inseticida 7% e maturador 23% (ARAÚJO e GONTOW, 1993).
Considerando-se o total da área plantada no Brasil, a utilização da aviação agrícola, representa um índice muito baixo, sendo de apenas de 5%. Há que se considerar, que neste percentual ocorrem aplicações repetidas numa mesma área, portanto esse percentual diminui ainda mais se considerarmos somente uma aplicação por área (ARAÚJO e GONTOW, 1993).

A Tabela 1 retrata a frota de aviações agrícolas nacionais, fabricados pela subsidiária da Embraer, a empresa Neiva, que fabrica os aviaões Ipanema. Já na Tabela 2 indentifica-se a frota importada de aviaões para uso agrícola. Pode-se observar que a maioria da frota brasileira é composta por aviações nacionais Ipanema, ou seja, do total de 1204 aviaões da frota, os aviaões Ipanema representam 71%.

TABELA 1 – Frota Brasileira de Aviação Agrícola - Nacionais Ipanema – 1994 - 2004

<table>
<thead>
<tr>
<th>Marca/Modelo</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMB 200</td>
<td>41</td>
<td>57</td>
<td>62</td>
<td>64</td>
<td>60</td>
<td>54</td>
<td>49</td>
<td>46</td>
<td>45</td>
<td>39</td>
<td>36</td>
</tr>
<tr>
<td>EMB 200A</td>
<td>17</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>37</td>
<td>33</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>EMB 201</td>
<td>140</td>
<td>138</td>
<td>137</td>
<td>137</td>
<td>133</td>
<td>131</td>
<td>129</td>
<td>126</td>
<td>125</td>
<td>121</td>
<td>120</td>
</tr>
<tr>
<td>EMB 201A</td>
<td>297</td>
<td>303</td>
<td>309</td>
<td>320</td>
<td>326</td>
<td>332</td>
<td>339</td>
<td>347</td>
<td>355</td>
<td>361</td>
<td>360</td>
</tr>
<tr>
<td>EMB 202</td>
<td>33</td>
<td>45</td>
<td>51</td>
<td>66</td>
<td>78</td>
<td>85</td>
<td>89</td>
<td>101</td>
<td>110</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>EMB 200A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>44</td>
<td>62</td>
<td>88</td>
<td>97</td>
<td>113</td>
<td>126</td>
<td>191</td>
</tr>
<tr>
<td>TOTAL</td>
<td>528</td>
<td>561</td>
<td>581</td>
<td>632</td>
<td>671</td>
<td>699</td>
<td>729</td>
<td>754</td>
<td>781</td>
<td>801</td>
<td>860</td>
</tr>
</tbody>
</table>

Quanto ao número de empresas atuando na aviação agrícola, conforme o Anuário do Transporte Aéreo 2003 do DAC, existem no mercado da aviação agrícola no Brasil cerca de 145 empresas. Este número refere-se às empresas que cumpriram a exigência de repasse das informações dentro do prazo estabelecido (Tabela 3). Na mesma tabela, identifica-se a distribuição das empresas por regiões do Brasil.
TABELA 2 – Frota Brasileira de Aviação Agrícola – Importados – 1994 - 2004

<table>
<thead>
<tr>
<th>Marca/Modelo</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piper PA-18-50</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td>16</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Piper PA-25-235</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>25</td>
<td>23</td>
<td>25</td>
<td>26</td>
<td>28</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>Piper PA-25-260</td>
<td>22</td>
<td>25</td>
<td>23</td>
<td>25</td>
<td>29</td>
<td>28</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td>Piper PA-36-300</td>
<td>04</td>
<td>09</td>
<td>09</td>
<td>13</td>
<td>18</td>
<td>19</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Cessna AG 188W</td>
<td>27</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td>43</td>
<td>68</td>
<td>68</td>
<td>69</td>
<td>71</td>
<td>73</td>
<td>76</td>
</tr>
<tr>
<td>Aero Comander S2R</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Air Tractor 401</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Air Tractor 402</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>05</td>
<td>06</td>
<td>06</td>
<td>10</td>
</tr>
<tr>
<td>Air Tractor 502</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01</td>
<td>04</td>
<td>07</td>
<td>10</td>
</tr>
<tr>
<td>Air Tractor 802</td>
<td>0</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>07</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Grumman AG CAT</td>
<td>09</td>
<td>08</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>PZL M18/Dromader</td>
<td>0</td>
</tr>
<tr>
<td>Outras Marcas/adapt.</td>
<td>11</td>
<td>23</td>
<td>26</td>
<td>24</td>
<td>23</td>
<td>58</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>64</td>
<td>51</td>
</tr>
<tr>
<td>TOTAL</td>
<td>108</td>
<td>140</td>
<td>147</td>
<td>161</td>
<td>180</td>
<td>227</td>
<td>231</td>
<td>255</td>
<td>266</td>
<td>312</td>
<td>344</td>
</tr>
</tbody>
</table>

TABELA 3 – Número de empresas de aviação agrícola por região - 2003

<table>
<thead>
<tr>
<th>Região</th>
<th>nº empresas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte</td>
<td>1</td>
</tr>
<tr>
<td>Nordeste</td>
<td>3</td>
</tr>
<tr>
<td>Centro-Oeste</td>
<td>47</td>
</tr>
<tr>
<td>Sudeste</td>
<td>28</td>
</tr>
<tr>
<td>Sul</td>
<td>66</td>
</tr>
<tr>
<td>Total</td>
<td>145</td>
</tr>
</tbody>
</table>

Fonte: Anuário do Transporte Aéreo, 2003 (DAC) – elaborada pelo autor.

Das 66 empresas de aviação agrícola existentes na Região Sul, no Estado do Paraná estão sediadas 16 empresas. Na Tabela 4, observa-se a quantidade de horas voadas pelas 16 empresas do Paraná e respectiva cidade sede.
TABELA 4 – Número de empresas de aviação agrícola Estado do Paraná – 2003*

<table>
<thead>
<tr>
<th>EMPRESAS</th>
<th>HORAS VOADAS</th>
<th>MUNICÍPIO SEDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Brasag Brasil Serviços Aeroagrícolas Ltda</td>
<td>1011</td>
<td>Campo Mourão</td>
</tr>
<tr>
<td>2 Pelicano Aviação Agrícola Ltda</td>
<td>682</td>
<td>Toledo</td>
</tr>
<tr>
<td>3 Agrovel - Agro Aérea Vila Velha Ltda</td>
<td>660</td>
<td>Ponta Grossa</td>
</tr>
<tr>
<td>4 Jaiba de Aviação Agrícola Ltda</td>
<td>588</td>
<td>Andirá</td>
</tr>
<tr>
<td>5 Terceiro Milênio Aviação Agrícola Ltda</td>
<td>421</td>
<td>Guarapuava</td>
</tr>
<tr>
<td>6 Agromak Aviação Agrícola Ltda</td>
<td>320</td>
<td>Arapongas</td>
</tr>
<tr>
<td>7 Oeste Aviação Agrícola Ltda</td>
<td>302</td>
<td>Palotina</td>
</tr>
<tr>
<td>8 Flora Aviação Agrícola Ltda</td>
<td>263</td>
<td>Bandeirantes</td>
</tr>
<tr>
<td>9 Aeronorpa - Aero Ag. Norte Paraná Ltda</td>
<td>261</td>
<td>Sertaneja</td>
</tr>
<tr>
<td>10 Peragri - Perri Aviação Agrícola Ltda</td>
<td>188</td>
<td>Sertaneja</td>
</tr>
<tr>
<td>11 LAAG Aviação Agrícola Ltda</td>
<td>174</td>
<td>Cascavel</td>
</tr>
<tr>
<td>12 Aviação Agrícola Boa Esperança Ltda</td>
<td>123</td>
<td>Goioerê</td>
</tr>
<tr>
<td>13 Aerovale Aviação Agrícola Vale do Piq.Ltda</td>
<td>88</td>
<td>Palotina</td>
</tr>
<tr>
<td>14 Tomé Aviação Agrícola Ltda</td>
<td>64</td>
<td>Porecatu</td>
</tr>
<tr>
<td>15 Aviação Agrícola Santa Paula Ltda</td>
<td>42</td>
<td>P. de Maio</td>
</tr>
<tr>
<td>16 JRR Aviação Agrícola Ltda</td>
<td>42</td>
<td>Porecatu</td>
</tr>
</tbody>
</table>

*Número de empresas que cumpriram o prazo estabelecido pelo DAC quanto ao repasse das informações.

Como pode-se observar a região de maior crescimento é Região Centro-Oeste, que sedia 47 empresas de aviação agrícola. Não somente essas empresas atuam na região, mas sim uma parcela das empresas situadas na Região Sul principalmente no Estado do Paraná também atuam naquela região.

2.3.3 As empresas de aviação agrícola da Mesorregião Oeste do Paraná

Conforme o Censo Demográfico 2000 do IBGE, a Mesorregião Oeste do Paraná compõe-se de 50 municípios, com uma área de 22.791,60 km², com uma população de 1.138.626 pessoas residentes, sendo a densidade demográfica de 49,9 habitantes por km² (IBGE, 2005).
Na Figura 4 identifica-se o Estado do Paraná, a localização da Mesorregião Oeste e também a localização dos municípios sede das empresas de aviação agrícola. No município de Cascavel está instalada a empresa LAAG – Aviação Agrícola Ltda, que possui 1 aeronave. No município de Toledo está instalada a empresa Pelicano Aviação Agrícola Ltda, que opera com 4 aeronaves. Por fim, no município de Palotina estão sediadas 2 empresas: a Oeste Aviação Agrícola Ltda, que possui 2 aviões; e a Aerovale Aviação Agrícola Vale do Piquiri Ltda, que possui 6 aviões.

Algumas empresas estão procurando ampliar seu mercado e procurando se especializar em novas atividades para aumentar sua competitividade nesse mercado, como a cultura da cana-de-açúcar. Nessa cultura a aviação agrícola é contratada principalmente para aplicação de maturador, que antecipa a colheita e concentra a maior quantidade de sacarose na
cana-de-açúcar. Esta atividade só pode ser desenvolvida pela aviação agrícola, devido às características da planta.

Embora as empresas atuem também em outras Regiões e Estados, estas empresas contribuem para o desenvolvimento regional principalmente pelo faturamento que elas auferem.

TABELA 5 – Faturamento das empresas de aviação agrícola da Mesorregião Oeste do Paraná - 2003

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Faturamento (R$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerovale Aviação Agrícola Vale do Rio Piquiri Ltda</td>
<td>428.849,08</td>
</tr>
<tr>
<td>LAAG Aviação Agrícola Ltda</td>
<td>78.518,00</td>
</tr>
<tr>
<td>Oeste Aviação Agrícola Ltda</td>
<td>183.046,26</td>
</tr>
<tr>
<td>Pelicano Aviação Agrícola Ltda</td>
<td>770.316,23</td>
</tr>
<tr>
<td>Total</td>
<td>1.460.729,57</td>
</tr>
</tbody>
</table>

Na Tabela 5, observa-se o faturamento dessas empresas em 2003 foi de R$ 1.460.729,57, que são creditados nos municípios onde estão sediadas as empresas. Em termos de empregos as empresas não são significativas, contudo a contratação de alguns profissionais são exigência legal do DAC, para o credenciamento de uma empresa de aviação agrícola. São compulsórias as contratações de engenheiro agrônomo, técnico agrícola e piloto, com a devida formação que a profissão exige.

Portanto, embora a região não seja o principal foco de atuação das empresas, principalmente pela sua característica de colonização que é principalmente de pequenas propriedades, ela se beneficia por ser sede dessas empresas de aviação agrícola.

A seguir descreve-se o processo de aviação agrícola, as finalidades nas quais esta é empregada e também faz-se uma breve descrição dos equipamentos de pulverização que são a diferença principal entre um avião convencional e um avião agrícola.
2.3.4 O processo de aviação agrícola

De acordo com o DAC (2005), a atividade da aviação agrícola tem a finalidade de proteger e fomentar o desenvolvimento da agricultura em quaisquer de seus aspectos, mediante o uso de:

a) fertilizantes;
b) semeaduras;
c) combate a pragas;
d) combate a vetores propagadores de doenças;
e) aplicação de herbicidas;
f) aplicação de desfolhadores;
g) povoamento de águas;
h) aplicações técnicas e científicas aprovadas.

Já para o SINDAG (2005), aviação agrícola pode ser utilizada em várias funções como:

a) semeaduras (reflorestamento, pastagens, adubo verde, arroz etc.);
b) combate a doenças (malária, dengue etc.);
c) combate a incêndios;
d) indução de chuva;
e) adubação líquida e sólida;
f) aplicação de agrotóxicos (herbicidas, inseticidas, fungicidas, dessecantes, desfolhantes, maturadores etc.)
O SINDAG, diferentemente do DAC, não prevê a função de povoamento de águas para atividade da aviação agrícola. Porém, acrescenta a função indução de chuva, não prevista pelo DAC.

Neste trabalho será analisada somente a utilização da aviação agrícola na aplicação de agrotóxicos, especificamente em herbicidas para o controle de ervas daninhas. Apesar desta atividade não ser a de maior utilização da aviação agrícola, optou-se por esta atividade devido a influência do fator umidade prevista no modelo.

As Figuras 5 e 6 retratam o equipamento utilizado para pulverização, identificando os componentes que formam o conjunto de equipamentos necessários na aviação agrícola.

![Figura 5 - Equipamento de Pulverização](image)

2.3.5 Manutenção do avião agrícola

A manutenção do avião agrícola é regulamentada pelo Departamento de Aviação Civil (DAC), sendo composto basicamente por três manutenções, conforme o número de horas voadas, quais sejam:

a) *Revisão 50 horas* – refere-se à manutenção de menor hora voada e com menor exigência, onde são realizadas a troca de filtro, óleo e revisados alguns equipamentos.

b) *Revisão 100 horas* – refere-se a revisão dos itens vistos nas revisão 50 horas, acrescido de mais itens.

c) *TBO – Time Between Overhaul* – refere-se à manutenção efetuada a cada 1.800 horas com o motor ligado independente de estar voando ou não, na qual são verificados vários componentes como injetora, magneto, hélice etc. Esta
revisão é de maior exigência e pode ser revisado somente nas oficinas homologadas pelo DAC.

2.3.6 Tecnologia de equipamentos da aviação agrícola

O Diferencial Sistema de Posicionamento Global (DGPS) é o equipamento mais utilizado na aviação agrícola, pela rapidez com que repassa as informações em tempo real ao piloto (MANSO, 1998). O piloto se orienta deste equipamento para a pilotagem do avião que permite precisão sub-métrica e possibilita a máxima eficiência nas aplicações aéreas de agroquímicos, evitando falhas nas faixas de aplicação ou sobre dose pelas sobreposições de faixas.

A Figura 7 evidencia o mapa de aplicação com o uso do DGPS, onde pode-se avaliar a qualidade do serviço prestado, analisando a área a ser pulverizada e também as áreas que não devem ser pulverizadas.

O Monitor de Movimentos trata-se de um equipamento que mostra em tempo real o resultado da aplicação no momento em que ela está sendo realizada. Este equipamento localiza-se dentro do avião e é com ele que o piloto se orienta para pilotar a aeronave. O mapa digital de aplicação é o instrumento para avaliação da qualidade das aplicações aéreas, pois ficam registrados neles todo o trabalho realizado e possibilitam aos pilotos verificar nesses mapas possíveis falhas nas aplicações.
Os aviões equipados somente com o equipamento DGPS, permitem a verificação do mapa de aplicação não em tempo real, mas somente após a aplicação e com a leitura do disquete por microcomputador. Com a impressão do mapa pode-se constatar a qualidade da aplicação, com possíveis falhas (áreas sem aplicação), as sobreposições (áreas onde foram ocorreram mais de uma aplicação) e também aplicações em áreas indevidas, como casas, lagos etc. Este mapa é apresentado ao cliente.

A Figura 8 mostra o monitor de movimentos e mapas de aplicação, que orienta e disponibiliza a visualização ao piloto em tempo real da aplicação realizada.
FIGURA 8 - Monitor de Movimentos e Mapas de Aplicação

O fluxômetro ou controlador de fluxo (Figura 9), trata-se do equipamento que controla o volume de aplicação. Independente da mudança da velocidade durante a aplicação, o sistema de controle de fluxo mantém o volume de aplicação preestabelecido, diminuindo a pressão ou aumentando a pressão conforme a variação da velocidade do avião.

FIGURA 9 - Fluxômetro

O fluxômetro está conectado ao DGPS, identificando o local da área de aplicação e no momento exato abre e fecha as barras de pulverização, tornando todo o funcionamento
do equipamento de pulverização automático. Este equipamento permite alterações na velocidade de avião sem que isso cause alterações na quantidade de produto aplicado, facilitando o trabalho do piloto nas operações.

As empresas que disponibilizam somente o DGPS em seus aviões, necessitam que o avião voe sempre na mesma velocidade e que o piloto acompanhe o sinal que o equipamento transmite para acionar o início e o fim da pulverização no intuito de manter a mesma precisão e qualidade nas aplicações.

Após esta breve revisão de literatura sobre a teoria microeconômica sobre custos, análise de investimentos, pesquisa operacional e sobre a aviação agrícola, segue o capítulo sobre a metodologia utilizada no modelo de otimização de seleção do avião agrícola proposto.
3 METODOLOGIA

3.1 CARACTERIZAÇÃO DA PESQUISA

De acordo com Kerlinger (1975) apud Gil (2000, p.44) a pesquisa científica é “uma investigação sistemática, controlada, empírica e crítica, de proposições hipotéticas sobre as supostas relações que existem entre os fenômenos naturais”.

Afirma-se que a pesquisa científica é sistemática e controlada, para tanto seus resultados são necessariamente confiáveis. Já quando se confirma que a pesquisa científica tem caráter empírico, fica implícito que os problemas propostos são submetidos a provas concretas (GIL, 2000).

De acordo com Marconi e Lakatos (1999), existem dois tipos de pesquisa. A primeira classificada como pura ou fundamental, que procura o progresso científico, a ampliação do conhecimento teórico, esta pesquisa não prevê sua utilização prática, tem como meta o conhecimento pelo conhecimento. A segunda pesquisa é a pesquisa aplicada, que caracteriza-se pela sua aplicabilidade imediata.

Nesta pesquisa como propõe-se um modelo matemático de escolha de um avião existente no mercado como sendo o mais interessante economicamente, trata-se de uma pesquisa aplicada.

Do ponto de vista da análise este trabalho caracteriza-se como sendo quantitativo, pois o modelo de otimização utiliza-se de variáveis numéricas de diversas categorias, que serão pormenorizadas em seguida.
Um trabalho científico com base em análise de variáveis quantitativas envolve um sistema lógico que sustenta a atribuição de números, cujos resultados sejam eficazes. A quantificação científica trata-se de uma forma de atribuir números a propriedades, objetos, acontecimentos, materiais, de modo a proporcionar informações úteis (FACHIN, 2003).

No modelo proposto utilizou-se dados primários, os quais foram coletados diretamente com os fabricantes dos aviões nacionais e com os representantes dos aviões importados. A coleta de dados foi realizada nos meses de julho e agosto de 2005, utilizando-se como ferramentas de coleta de dados o correio eletrônico e contatos telefônicos.

Dos aviões nacionais, ocorreram duas situações, em uma delas obteve-se os dados solicitados diretamente do diretor da empresa e na outra as informações foram repassadas pelo atendimento técnico. E nas empresas representantes dos aviões importados as informações foram repassadas diretamente pelos gerentes.

3.2 MATERIAL E MÉTODOS

3.2.1 O Modelo Matemático

De acordo com Lanzer (1988), o modelo matemático para resolver o problema de minimização de custos feito a partir do uso da programação linear forma um sistema de expressões lineares, que representam restrições, as quais serão a base para a equação a ser otimizada, denominada função objetivo Z, identificando os valores das variáveis de decisão ($x_1, x_2, ..., x_n$).
A forma geral desse modelo de programação linear pode ser colocada matematicamente como:

\[
\begin{align*}
\text{Otimizar } & \quad Z = c_1x_1 + c_2x_2 + \ldots + c_nx_n \\
\text{Sujeito às restrições:} & \\
\begin{align*}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n & \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n & \leq b_2 \\
\vdots & \\
a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n & \leq b_m \\
x_1, x_2, \ldots, x_n & \geq 0
\end{align*}
\end{align*}
\]

Uma solução ótima é um conjunto de números que, substituindo o conjunto de incógnitas \(\{x_1, x_2, \ldots, x_n\}\) do sistema, satisfaz todas as equações ou inequações do mesmo. Isto é, a solução somente, por substituição em cada equação do sistema, gera como resultado das operações indicadas no lado esquerdo das igualdades, um valor igual ao existente no lado direito do mesmo.

Matricialmente, o problema pode ser apresentado como:

\[
\begin{align*}
\text{Otimizar } & \quad Z = cx \\
\text{Sujeito a:} & \\
Ax & \leq b \\
x & \geq 0
\end{align*}
\]
onde:

$A = \text{matriz } m \times n \text{ dos coeficientes das restrições;}$

$A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} = (a_1, a_2, \ldots, a_m)$

$b = \text{vetor } m \times 1,$

$b = \begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}$

$c = \text{vetor } 1 \times n,$

$c = [c_1, c_2, \ldots, c_n]$

$x = \text{vetor } n \times 1 \text{ de variáveis}$

$x = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}$
Neste trabalho objetiva-se orientar a seleção do avião para o atendimento à cultura de soja, de maneira que minimize o custo dessa atividade. Para tal, é preciso observar as restrições de capacidade por avião e também a restrição de atendimento da área total da propriedade.

3.2.2 O Modelo Proposto

Nesta pesquisa utilizaram-se os dados coletados diretamente nas empresas fabricantes dos aviões agrícolas para o caso dos aviões nacionais, que são: a Indústria Aeronáutica Neiva Ltda, fabricantes dos aviões Ipanema; e a Fábrica Brasileira de Aeronaves (FABE), fabricante do avião AG-21. Já para os aviões importados obteve-se os dados junto às empresas autorizadas de cada marca, como já visto anteriormente.

Analisou-se o período da safra agrícola de 2004, focalizando-se na cultura da soja, sendo analisada o atendimento à aplicação de herbicida, para controle de ervas daninhas à cultura. Esta aplicação precisa se realizada num prazo mínimo de maneira que não interfira no desenvolvimento da planta.

Para a otimização do modelo utilizou-se uma área hipotética de 10.000 hectares, situada no Município de Palotina/PR, que pode ser de propriedade de um único produtor, no caso do interesse do próprio produtor adquirir um avião agrícola. Também pode ser composta por mais proprietários com áreas individuais menores, que podem adquirir um avião em conjunto ou mesmo contratar uma empresa de aviação agrícola para a realização das atividades de pulverização.

O modelo de programação linear inteiro desenvolvido avaliou 11 modelos de aviões, sendo 6 marcas diferentes. Do total de modelos utilizados somente 3 são de produção
nacional e o restante importados. Atribuiu-se um código a cada modelo utilizado na programação.

Os dados como preço, largura efetiva da faixa (distância, em metros, que o avião pulveriza da cada vez), capacidade de *hopper*, velocidade de trabalho e consumo de combustível foram obtidos junto aos representantes de cada marca (Anexo I).

A pulverização aérea é influenciada por vários fatores, como a estrutura fundiária, os tempos perdidos com manobras, a eficiência das equipes de apoio no solo, as condições e distância da pista de pouso, ventos, temperatura, dentre outros. Esses fatores afetam diretamente a capacidade de campo operacional, portanto, influenciam nos custos da pulverização, contudo, essas questões necessitam de maiores estudos para os diversos cenários agrícolas nacionais que não são objetos deste trabalho.

Para a definição dos dias com umidade adequada para a aplicação do defensivo, utilizou-se o levantamento feito pelo Instituto Agronômico do Paraná (IAPAR), com base nos últimos 10 anos.

Para o desenvolvimento do modelo, foram realizados alguns estudos preliminares à otimização, subdivididos em quatro etapas: cálculo do Ritmo Operacional; da Capacidade de Campo Operacional; dos Custos Fixos e Variáveis, e do número de aviões necessários para atender à necessidade do Ritmo Operacional.

a) Cálculo do Ritmo Operacional

O Ritmo Operacional (RO), trata-se da produtividade exigida pelos aviões, ou seja, a quantidade de hectares por hora necessários para atender à restrição da área total. O cálculo do RO dividiu-se em dois momentos. Primeiramente definiu-se o tempo disponível no
período em horas, a seguir calculou-se o RO (Anexo II) necessário para o atendimento
da demanda dos serviços de pulverização.

Para a definição do Ritmo Operacional, utilizou-se a equação proposta por Mialhe
(1974), :

\[T_d = \left[N - (n_{df} + n_u) \right] H_j \] \hspace{1cm} (6)

onde:

\(T_d \) = tempo disponível no período considerado, em horas (h);
\(N \) = número total de dias do período;
\(n_{df} \) = número de domingos e feriados do período;
\(n_u \) = número de dias úteis sem umidade para aplicação;
\(H_j \) = total de horas diárias com condições de aplicação;

Após realizado o cálculo do tempo disponível no período, efetuou-se o cálculo
Ritmo Operacional:

\[RO = \frac{area}{T_d} \] \hspace{1cm} (7)

onde:

\(RO \) = Ritmo Operacional, em hectares por hora (ha/h);
\(area \) = tamanho da propriedade a ser pulverizada, em hectares (ha);
b) Cálculo da Capacidade de Campo Operacional

Uma vez definido o Ritmo Operacional (Anexo II), procedeu-se o cálculo da Capacidade de Campo Operacional de cada modelo de avião, conforme Balestreire (1990):

\[
CCo_i = \left(ve_i \times le_i \times ha \times ef_i \right) \times \frac{1}{60}
\]

onde:
- \(CCo_i \): Capacidade de Campo Operacional, em (ha/h);
- \(ve_i \): velocidade de operação, em metros por hora (m/h);
- \(le_i \): largura efetiva de aplicação, em metros (m);
- \(ha \): área do hectare, em metros quadrados (m\(^2\));
- \(ef_i \): taxa de eficiência de campo;

Como não existem trabalhos sobre a taxa de eficiência da aviação agrícola, utilizou-se neste trabalho a taxa de eficiência de campo, encontrada numa empresa de aviação agrícola da região.

c) Cálculo dos Custos Fixos e Variáveis

Para o procedimento do cálculo dos Custos Fixos e Variáveis, utilizou-se a metodologia da Indústria Aeronáutica Neiva (2005). Considerou-se o Piloto com remuneração fixa de US$ 48,00/h, a amortização de 50% em 10 anos sobre o preço dos aviões. Considerou-se juros sobre 80% do valor do avião a uma taxa de 10,75% ao ano, e o seguro anual foi calculado como sendo de 4% sobre o valor do bem (Anexo IV).
sendo:

\[CF_i = am_i + ju_i + se_i \] \hspace{1cm} (9)

\[CV_i = comb_i + man_i + pi_i \] \hspace{1cm} (10)

\[cht_i = CF_i + CV_i \] \hspace{1cm} (11)

\[an_i = RO \times CCO_i \] \hspace{1cm} (12)

sendo:

CF\(_i\) = Custo Fixo por hora de cada avião, em US$;

CV\(_i\) = Custo Variável por hora de cada avião, em US$;

am\(_i\) = amortização por hora de cada avião, em US$;

ju\(_i\) = juros por hora sobre cada avião, em US$;

se\(_i\) = seguro por hora sobre cada avião, em US$;

\textit{comb}\(_i\) = custo com combustível por hora de cada avião, em US$;

\textit{man}\(_i\) = custo com manutenção por hora de cada avião, em US$;

\textit{pi}\(_i\) = custo com remuneração de Piloto por hora de cada avião, em US$;

cht\(_i\) = custo por hora total de cada avião, em US$;

da) Cálculo do Número de Aviões Necessários (Anexo II)

Sendo:

an\(_i\) = número de aviões \(i\) necessários;

RO = Ritmo Operacional, em (ha/h);

CCO\(_i\) = Capacidade de Campo Operacional do avião \(i\), em (ha/h):
Utilizou-se o custo horário como fator de minimização do modelo, contudo também calculou-se o custo por unidade de área (hectare), para identificação do avião que possui o menor custo por hectare.

Após a realização das fases anteriores à otimização, realizou-se a otimização propriamente dita. A otimização ocorreu pela seleção do modelo de avião de menor custo horário, que atendeu às restrições do Ritmo Operacional (inseridas no cálculo do número de aviões necessários) e também as restrições de atendimento da área, ou seja, a área precisa ser atendida por um dos aviões disponíveis no modelo e ainda a restrição binária (Anexo VI).

A função objetivo desenvolvida ficou assim determinada:

\[
\text{Min } Z = \sum_{i=1}^{11} x_i (an_i \times cht_i)
\]

(13)

Sendo:
- \(Z\) = função de custo horário, em US$;
- \(x_i\) = modelo de avião \(i\);
- \(an_i\) = número de aviões necessários;
- \(cht_i\) = custo horário total do avião \(i\), US$/h.

Definiu-se como restrições do modelo:

a) número mínimo de aviões selecionados:

\[
\sum_{i=1}^{11} x_i \geq 1
\]

(14)
b) restrição binária:

\[x_i = 0 \text{ ou } 1, \text{ para } i = 1, 2, \ldots, 11 \]

(15)

No próximo capítulo, procede-se a apresentação e discussão dos resultados e sua análise através da otimização do modelo. Efetuou-se também análises de sensibilidade para algumas restrições como o tamanho da propriedade, o número de semanas para realização da pulverização e o número de horas diárias de pulverização. Expõe-se ainda uma análise de sensibilidade para o aumento de 10% dos Custos Variáveis e fixos de todos os aviões.
4 RESULTADOS

4.1 COMPOSIÇÃO DOS CUSTOS

Neste capítulo apresentam-se os resultados da simulação para definição da escolha do modelo de avião agrícola mais viável para a área hipotética de 10.000 hectares. O período analisado foi de 30 dias, com a possibilidade de operações de pulverização de 6 horas diárias.

No propósito de explicitar melhor a composição dos custos dos aviões, decidiu-se demonstrar inicialmente como ocorre a composição destes.

O Gráfico 1 identifica a composição do custo horário médio dos aviões. Observa-se que os custos variáveis compõem a maior parcela dos custos, ou seja 67%, e os custos fixos representam 33% do total dos custos. Embora o custo de aquisição inicial dos aviões seja elevado, sua amortização não onera muito o custo devido ao longo período de vida útil do avião.

GRÁFICO 1 – Composição dos Custos Fixos e Variáveis para a média dos aviões agrícolas
Fonte: Resultados da pesquisa.
No Gráfico 2 observa-se a composição de cada fator no custo horário médio dos avões. Observa-se que o custo com combustível e óleo representa quase a metade do custo horário, sendo de 45%. Os juros foram o segundo fator de maior custo, representando 16% do total, seguido pelo fator remuneração do piloto que onera em 13% o custo horário. O seguro foi o componente de menor peso na composição do custo, sendo de apenas 7%.

GRÁFICO 2 – Composição do Custo Horário para a média dos avões agrícolas
Fonte: Resultados da pesquisa.

Procedeu-se também uma análise de sensibilidade para a variação de preço do avião e dos custos variáveis.

O Gráfico 3, nos apresenta a variação no custo horário de cada avião, no caso do aumento de 10% do preço do avião. O AV2 foi o avião que mais mostrou sensibilidade à variação do preço, sendo que o custo horário deste aumentou em 4,11%. Na sequência os avões AV4 e AV5, foram os que tiveram maior aumento no custo horário, sendo respectivamente de 3,73% e 3,76%. Já o avião menos sensível à variação de preço foi o
AV11, que teria um acréscimo de 1,85% no custo horário no caso do aumento de 10% no seu preço. Isto se deve ao fato deste avião ter o menor preço, ou seja US$ 95,000.00.

GRÁFICO 3 – Análise de sensibilidade para o custo horário devido ao aumento no preço do avião em 10%
Fonte: Resultados da pesquisa.

No Gráfico 4 identifica-se a variação no custo horário de cada avião causado pelo aumento de 10% no Custo Variável. Como já exposto no Gráfico 3, o AV11, foi o avião de menor sensibilidade quanto à questão preço, o que justifica sua maior sensibilidade quanto aos Custos Variáveis. Este avião aumentaria em 8,15% seu custo horário para o caso do aumento de 10% nos Custos Variáveis. O avião AV6 também apresenta grande sensibilidade para variação dos Custos Variáveis, sendo que este elevaria seu custo horário em 7,44%. Esta sensibilidade se deve ao fato deste avião ser o modelo de maior consumo de combustível por hora.
O custo com combustível também é o fator que levou o avião AV2, que utiliza o álcool como combustível, a apresentar o menor impacto no caso do aumento de 10% no Custo Variável, causando um aumento de 5,89% no custo horário.

Com esses resultados observa-se que cada avião apresenta especificações diferentes que afetam diretamente a definição da capacidade de campo operacional. O Custo Horário é influenciado pelo preço do avião e principalmente pelos Custos Variáveis, com grande influência do consumo do combustível. Apesar disso, os aviões com maior número de seleções otimizadas pelo modelo proposto foram o AV6, que possui a maior capacidade campo operacional e o menor custo por área, e o avião AV8, que possui a segundo menor custo por área, como exposto a seguir.
4.2 RESULTADOS DO MODELO PROPOSTO

Realizaram-se análises de sensibilidade variando-se o tamanho da área de 5.000 até 65.000 hectares. O período analisado variou-se de 15 a 60 dias, também foram feitas análises de sensibilidade para o número de horas diárias de operações de pulverização, sendo de 4 a 9 horas diárias.

Para a determinação dos resultados, utilizaram-se dois programas, sendo um na realização dos cálculos anteriores à otimização e outro exclusivamente para otimização do modelo, conforme descrito no Capítulo 3. Inicialmente, utilizou-se a linguagem de programação Fortran versão free (Anexo V), e o segundo foi software General Algebraic Modeling System (Gams), versão Free Demo (Anexos VI e VII).

Inicialmente expõe-se a Capacidade de Campo Operacional de cada modelo de avião utilizado na simulação, conforme cálculo descrito no Capítulo 3 (Anexo III). Na mesma tabela observa-se as especificações dos aviões disponíveis no mercado da aviação agrícola utilizados no modelo proposto. Os modelos AV1, AV2 e AV11 são de fabricação nacional, e os demais são importados e são revendidos pelos seus representantes no Brasil.

Na Tabela 6, apresenta-se as especificações dos modelos de aviões agrícolas, incluindo também a Capacidade de Campo Operacional de cada modelo, conforme proposto na Capítulo 3.
TABELA 6 – Código, Preço, Largura Efetiva, Capacidade de Campo Operacional, Capacidade do Hopper dos aviões agrícolas

<table>
<thead>
<tr>
<th>Código do avião</th>
<th>Preço (US$)(^1)</th>
<th>Largura Efetiva (m)</th>
<th>Capacidade de Campo Operacional (ha/h)</th>
<th>Capacidade do hopper (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV1</td>
<td>255,000.00</td>
<td>15,0</td>
<td>102,15</td>
<td>950</td>
</tr>
<tr>
<td>AV2</td>
<td>259,000.00</td>
<td>15,0</td>
<td>102,15</td>
<td>950</td>
</tr>
<tr>
<td>AV3</td>
<td>460,000.00</td>
<td>18,5</td>
<td>205,48</td>
<td>1.440</td>
</tr>
<tr>
<td>AV4</td>
<td>501,165.00</td>
<td>25,0</td>
<td>223,75</td>
<td>1.520</td>
</tr>
<tr>
<td>AV5</td>
<td>540,165,00</td>
<td>25,0</td>
<td>271,56</td>
<td>1.900</td>
</tr>
<tr>
<td>AV6</td>
<td>350,000.00</td>
<td>20,5</td>
<td>287,37</td>
<td>2.500</td>
</tr>
<tr>
<td>AV7</td>
<td>380,000.00</td>
<td>18,0</td>
<td>200,79</td>
<td>1.500</td>
</tr>
<tr>
<td>AV8</td>
<td>282,000.00</td>
<td>17,5</td>
<td>175,18</td>
<td>1.344</td>
</tr>
<tr>
<td>AV9</td>
<td>385,000.00</td>
<td>17,5</td>
<td>186,81</td>
<td>1.344</td>
</tr>
<tr>
<td>AV10</td>
<td>260,000.00</td>
<td>15,0</td>
<td>108,27</td>
<td>1.100</td>
</tr>
<tr>
<td>AV11</td>
<td>95,000.00</td>
<td>15,0</td>
<td>74,39</td>
<td>500</td>
</tr>
</tbody>
</table>

Fonte: Os dados dos aviões nacionais foram obtidos com os fabricantes e dos aviões importados com os representantes. \(^1\)Taxa de câmbio utilizada US$ - R$ 2,50.

Analisando o custo marginal, dado pela saída do software de otimização utilizado, observa-se que em relação ao avião AV11 que ficou em segunda posição de menor custo horário, se este fosse utilizado o custo aumentaria em US$ 37.74, e para o avião situado na posição seguinte, aumentaria o custo horário em US$ 81.62, sendo o avião AV7. O avião de maior custo horário foi definido pelo modelo como sendo o AV10, com um custo horário de US$ 551.44, definido pela necessidade de 2 aviões para atender ao ritmo operacional exigido. A escolha desse avião causaria um aumento de 70,6% em relação ao avião selecionado pelo modelo otimizado.
Observa-se também na Tabela 7, que o avião de menor custo por área foi AV6, com um custo de US$ 1.67 por hectare. Contudo, esse avião possui uma Capacidade de Campo Operacional superior ao exigido na área hipotética.

Quanto à análise de sensibilidade para a variação da área (Tabela 7), observa-se que o modelo otimizado escolheu diferentes aviões para os diferentes tamanhos de áreas. Na menor área sugerida de 5.000 hectares, o modelo selecionou o avião AV11 como sendo o de menor custo horário, o qual é de US$ 181.44. A escolha se deve ao fato desse avião possuir a menor Capacidade de Campo Operacional e conseguir atender ao ritmo operacional exigido. Porém esse modelo de avião não foi selecionado em nenhuma área maior, pois incidiria na necessidade de mais de um avião para atender ao Ritmo Operacional.

TABELA 7 – Análise de sensibilidade para o custo horário devido à variação da área

<table>
<thead>
<tr>
<th>Área (ha)</th>
<th>Capacidade de Campo Operacional (ha/h)</th>
<th>Código avião selecionado</th>
<th>Número de aviões</th>
<th>Custo horário (US$/h)</th>
<th>Custo por área (US$ ha/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.000</td>
<td>74,39</td>
<td>AV11</td>
<td>1</td>
<td>181.44</td>
<td>2.43</td>
</tr>
<tr>
<td>7.500</td>
<td>108,27</td>
<td>AV10</td>
<td>1</td>
<td>275.72</td>
<td>2.55</td>
</tr>
<tr>
<td>10.000</td>
<td>175,18</td>
<td>AV8</td>
<td>1</td>
<td>323.14</td>
<td>1.84</td>
</tr>
<tr>
<td>15.000</td>
<td>223,75</td>
<td>AV4</td>
<td>1</td>
<td>472.21</td>
<td>2.11</td>
</tr>
<tr>
<td>20.000</td>
<td>287,37</td>
<td>AV6</td>
<td>1</td>
<td>481.00</td>
<td>1.67</td>
</tr>
<tr>
<td>25.000</td>
<td>175,18</td>
<td>AV8</td>
<td>2</td>
<td>646.28</td>
<td>3.68</td>
</tr>
<tr>
<td>30.000</td>
<td>223,75</td>
<td>AV4</td>
<td>2</td>
<td>944.42</td>
<td>4.34</td>
</tr>
<tr>
<td>35.000</td>
<td>287,37</td>
<td>AV6</td>
<td>2</td>
<td>962.00</td>
<td>3.34</td>
</tr>
<tr>
<td>40.000</td>
<td>287,37</td>
<td>AV6</td>
<td>2</td>
<td>962.00</td>
<td>3.34</td>
</tr>
<tr>
<td>45.000</td>
<td>175,18</td>
<td>AV8</td>
<td>4</td>
<td>1,292.56</td>
<td>7.36</td>
</tr>
<tr>
<td>50.000</td>
<td>175,18</td>
<td>AV8</td>
<td>4</td>
<td>1,292.56</td>
<td>7.36</td>
</tr>
<tr>
<td>55.000</td>
<td>287,37</td>
<td>AV6</td>
<td>3</td>
<td>1,443.00</td>
<td>5.01</td>
</tr>
<tr>
<td>60.000</td>
<td>287,37</td>
<td>AV6</td>
<td>3</td>
<td>1,443.00</td>
<td>5.01</td>
</tr>
<tr>
<td>65.000</td>
<td>287,37</td>
<td>AV6</td>
<td>4</td>
<td>1,924.00</td>
<td>6.68</td>
</tr>
</tbody>
</table>

Fonte: Resultados da pesquisa.

Analisando-se todas as áreas da análise de sensibilidade para o tamanho de área, observa-se que o modelo otimizado selecionou repetidamente 3 modelos de aviões, sendo: o AV4; o AV6; e o AV8. Contudo, o avião AV6 foi o avião selecionado em maior número de
vezes. A escolha desse avião se deve ao fato deste possuir a maior Capacidade Campo Operacional (287,37 ha/h), e possuir o menor custo por área que é de US$ 1.67 por hectare.

Procedeu-se também a análise de sensibilidade para a variação do número de horas de pulverização diárias, esta análise consta da Tabela 8. Observa-se que ao diminuir-se o número de horas trabalhadas por dia, o que pode ser causado por vários fatores como a diminuição da umidade em determinados horários, o aumento da temperatura ou dos ventos, o modelo selecionou aviações com maior capacidade operacional.

TABELA 8 – Análise de sensibilidade para o custo horário devido à variação no número de horas da pulverização

<table>
<thead>
<tr>
<th>Horas diárias de pulverização</th>
<th>Capacidade de Campo Operacional (ha/h)</th>
<th>Código avião selecionado</th>
<th>Número de aviões</th>
<th>Custo horário (US$/h)</th>
<th>Custo por área (US$ há)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>223,75</td>
<td>AV4</td>
<td>1</td>
<td>472.21</td>
<td>2.11</td>
</tr>
<tr>
<td>05</td>
<td>175,18</td>
<td>AV8</td>
<td>1</td>
<td>323.14</td>
<td>1.84</td>
</tr>
<tr>
<td>06</td>
<td>175,18</td>
<td>AV8</td>
<td>1</td>
<td>323.14</td>
<td>1.84</td>
</tr>
<tr>
<td>07</td>
<td>175,18</td>
<td>AV8</td>
<td>1</td>
<td>323.14</td>
<td>1.84</td>
</tr>
<tr>
<td>08</td>
<td>108,27</td>
<td>AV10</td>
<td>1</td>
<td>275.72</td>
<td>2.55</td>
</tr>
<tr>
<td>09</td>
<td>102,15</td>
<td>AV2</td>
<td>1</td>
<td>221.16</td>
<td>2.17</td>
</tr>
</tbody>
</table>

Fonte: Resultados da pesquisa.

No caso da diminuição de 6 horas para 5 horas diárias, o modelo selecionou o mesmo avião (AV8), não ocorrendo assim aumento no custo horário. Já baixando para 4 horas, teríamos um aumento considerável no custo horário, causado pela seleção do avião AV4.

Por outro lado, na possibilidade de aumento da carga horária diária, como no caso anterior, também ocorreu o esperado, ou seja, houve uma diminuição na função objetivo de custo horário. A diminuição ocorre a partir de 8 horas diárias, pois com 7 horas permanece o avião AV8 selecionado na carga horário anterior. O avião mais selecionado nesta análise foi o avião AV8.
Na variação dos dias do período, exposto na Tabela 9 ocorre resultado semelhante, ou seja, quanto menor o tempo disponível maior o custo horário otimizado pelo modelo, oriundo da seleção de aviões com maior Capacidade Campo Operacional que possuem maior custo horário. Já quanto mais flexível o tempo disponível, menor o Ritmo Operacional exigido, menor também o custo horário dado pela seleção de aviões de custos menores.

Os modelos selecionados foram o AV8 para o período de 15 e 30 dias, e o AV2 nos períodos de 45 e 60 dias.

<table>
<thead>
<tr>
<th>Dias do período</th>
<th>Capacidade de Campo Operacional (ha/h)</th>
<th>Código avião selecionado</th>
<th>Número de aviões</th>
<th>Custo horário (US$/h)</th>
<th>Custo por área (US$ ha/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>175,18</td>
<td>AV8</td>
<td>2</td>
<td>646.28</td>
<td>3.68</td>
</tr>
<tr>
<td>30</td>
<td>175,18</td>
<td>AV8</td>
<td>1</td>
<td>323.14</td>
<td>1.84</td>
</tr>
<tr>
<td>45</td>
<td>102,15</td>
<td>AV2</td>
<td>1</td>
<td>221.16</td>
<td>2.17</td>
</tr>
<tr>
<td>60</td>
<td>102,15</td>
<td>AV2</td>
<td>1</td>
<td>221.16</td>
<td>2.17</td>
</tr>
</tbody>
</table>

Fonte: Resultados da pesquisa.

Numa análise geral sobre todas as áreas, observou-se que o modelo otimizado selecionou repetidamente 3 modelos de aviões, sendo: o AV4; o AV6; e o AV8. O avião AV6 foi o avião selecionado em maior número de vezes na análise das diferentes áreas. A escolha desse avião se deve ao fato deste possuir a maior capacidade campo operacional (287,37 ha/h), e possuir o menor custo por área que é de US$ 1.67 por hectare. E o avião de maior seleção em todas as análises tanto de área, período e de horas foi o AV8 devido ao fato deste avião possuir o menor custo horário e também um custo por área baixo.

O modelo também serve como orientação a produtores que estão planejando a aquisição de aviões agrícolas, seja individual ou em associação, identificando o modelo de menor custo e a Capacidade de Campo Operacional de cada modelo. A escolha da aviação
agricola também propicia a diminuição dos riscos na atividade, pois a Capacidade de Campo Operacional dos aviões é seguramente maior que a de pulverizadores terrestres, o que diminui o risco no caso de uma infestação de ervas daninhas ou doenças como a ferrugem asiática.

No próximo capítulo seguem as considerações finais deste trabalho, que procuram sumarizá-lo, apontar as dificuldades encontradas para o seu desenvolvimento e também sugerir novas pesquisas sobre o tema.
5 CONSIDERAÇÕES FINAIS

Neste trabalho observou-se que a agricultura passou por um processo de industrialização que transformou a produção agrícola num ramo de produção semelhante a uma indústria, que demanda determinados insumos e produz matérias-primas para outros ramos da produção. Essa nova agricultura está conectada com outros ramos da produção, para produzir ela depende dos insumos que recebe de determinadas indústrias.

A agricultura torna-se cada vez mais complexa, incluindo questões técnicas, mercadológicas, de recursos humanos e ambientais. Essa complexidade vem modificando o perfil do produtor, tornando-o um agente que precisa tomar decisões e obter informações, de modo similar aos empresários de atividades urbanas.

A expansão da pesquisa operacional, deu-se pelo desenvolvimento de novas técnicas, aos avanços na informática tanto do hardware quanto do software, e o interesse empresarial com as novas ferramentas de apoio à tomada de decisão.

A aplicabilidade da programação linear, foi identificada com citação de trabalhos como o planejamento agrícola, na definição ótima de insumos e atividades a serem exploradas e também em problema envolvendo modais de transporte, nos quais apontaram-se ganhos de produtividade e redução de custos significativos.

A aviação agrícola nacional, teve grande impulso a partir do final dos anos 60, com a fundação da Empresa Brasileira de Aeronáutica S.A. (EMBRAER), em São José dos Campos/SP.

Para o desenvolvimento do modelo proposto utilizaram-se dados primários que foram coletados diretamente com os fabricantes no caso dos aviões nacionais e com os representantes no caso dos aviões importados.
O modelo programação linear desenvolvido avaliou 11 modelos de avioes, sendo 6 marcas diferentes, do total de modelos utilizados somente 3 são de produção nacional e o restante importados.

Com os resultados observou-se que cada avião apresenta especificações diferentes que afetam diretamente a definição da Capacidade de Campo Operacional. O custo horário é influenciado pelo preço do avião e principalmente pelos Custos Variáveis, com grande influência do consumo do combustível. Apesar disso, os avioes com maior número de seleções otimizadas pelo modelo proposto foi o AV6, que possui a maior Capacidade Campo Operacional e o menor custo por área, e o avião AV8, que possui o segundo menor custo por área.

Quanto à análise de sensibilidade para a variação do número de horas de pulverização diárias, observou-se que ao diminuir-se o número de horas trabalhadas por dia, o que pode ser causado por vários fatores como a diminuição da umidade em determinados horários, o aumento da temperatura ou dos ventos, o modelo selecionou avioes com maior capacidade operacional.

Por outro lado, na possibilidade de aumento da carga horária diária, como no caso anterior, também ocorreu o esperado, ou seja, ocorreu uma diminuição na função objetivo de custo horário.

Na variação dos dias do período, ocorreu resultado semelhante, ou seja, quanto menor o tempo disponível maior o custo horário otimizado pelo modelo, oriundo da seleção de avioes com maior Capacidade de Campo Operacional que possuem maior custo horário. Já quanto mais flexível o tempo disponível, menor o Ritmo Operacional exigido, menor também o custo horário dado pela seleção de avioes de custos menores.
Utilizou-se os conceitos microeconômicos de custo e da análise de investimento como embasamento teórico para compreensão e formulação do modelo matemático desenvolvido. Estes conceitos foram satisfatórios para o estabelecimento do modelo proposto.

O modelo proposto foi adequado na orientação para a tomada de decisão sobre a escolha do avião de menor custo para o caso da área sugerida. Acredita-se que o modelo seja aplicável para empresas que estão buscando ampliar seus mercados com a aquisição de novos aviões.

O modelo não se encerra nesse trabalho, mas sim precisa de constante atualização devido às mudanças ocorridas na situação real, como a alteração dos preços dos aviões, o surgimento de novos modelos no mercado, a alteração dos preços dos combustíveis e outros.

No decorrer deste trabalho encontraram-se algumas dificuldades, as quais acredita-se não serem exclusividade deste, mas de muitos estudos realizados. Destaca-se, principalmente, a dificuldade de conseguir os dados primários com as empresas representantes dos aviões importados. Por outro lado, as empresas nacionais repassaram as informações com brevidade.

Como pesquisa futura pretende-se realizar um estudo comparativo entre a aviação agrícola e a pulverização terrestre, criando um modelo de escolha entre todos os modelos existentes onde produtores ou cooperativas sejam auxiliadas na tomada de decisões para a aquisição desses equipamentos.
REFERÊNCIAS

MARTINS, R.S. Racionalização da infra-estrutura de transporte no Estado do Paraná: o desenvolvimento e a contribuição das ferrovias para a movimentação de grãos e farelo de soja. Piracicaba, 1998. 216p. Tese de Doutorado - Escola Superior de Agricultura Luiz de Queiroz - ESALQ.

ANEXO I
<table>
<thead>
<tr>
<th>MODELO</th>
<th>PREÇO (US$)</th>
<th>Largura Efetiva (m)</th>
<th>Capac. Hopper (l)</th>
<th>Potência (hp)</th>
<th>Veloc. Trabalho (km/h)</th>
<th>Combust. p/ hora (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV1</td>
<td>255.000</td>
<td>15</td>
<td>950</td>
<td>300</td>
<td>127</td>
<td>70</td>
</tr>
<tr>
<td>AV2</td>
<td>259.000</td>
<td>15</td>
<td>950</td>
<td>300</td>
<td>127</td>
<td>90</td>
</tr>
<tr>
<td>AV3</td>
<td>460.000</td>
<td>18,5</td>
<td>1.440</td>
<td>680</td>
<td>260</td>
<td>180</td>
</tr>
<tr>
<td>AV4</td>
<td>501.165</td>
<td>25</td>
<td>1.520</td>
<td>550</td>
<td>225</td>
<td>170</td>
</tr>
<tr>
<td>AV5</td>
<td>540.165</td>
<td>25</td>
<td>1.900</td>
<td>685</td>
<td>255</td>
<td>185</td>
</tr>
<tr>
<td>AV6</td>
<td>350.000</td>
<td>20,5</td>
<td>2.500</td>
<td>1.000</td>
<td>270</td>
<td>220</td>
</tr>
<tr>
<td>AV7</td>
<td>380.000</td>
<td>18</td>
<td>1.500</td>
<td>730</td>
<td>240</td>
<td>150</td>
</tr>
<tr>
<td>AV8</td>
<td>282.000</td>
<td>17,2</td>
<td>1.344</td>
<td>450</td>
<td>210</td>
<td>112</td>
</tr>
<tr>
<td>AV9</td>
<td>385.000</td>
<td>17,2</td>
<td>1.344</td>
<td>690</td>
<td>240</td>
<td>172</td>
</tr>
<tr>
<td>AV10</td>
<td>260.000</td>
<td>15</td>
<td>1.100</td>
<td>300</td>
<td>130</td>
<td>80</td>
</tr>
<tr>
<td>AV11</td>
<td>95.000</td>
<td>15</td>
<td>500</td>
<td>260</td>
<td>130</td>
<td>50</td>
</tr>
</tbody>
</table>

ANEXO II
RITMO OPERACIONAL E NÚMERO DE AVIÕES NECESSÁRIOS

Var_Area_5000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>69.44444</td>
<td>.67981</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>69.44444</td>
<td>.67981</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>69.44444</td>
<td>.33795</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>69.44444</td>
<td>.31036</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>69.44444</td>
<td>.25572</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>69.44444</td>
<td>.2165</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>69.44444</td>
<td>.3485</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>69.44444</td>
<td>.39641</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>69.44444</td>
<td>.37173</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>69.44444</td>
<td>.64140</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>69.44444</td>
<td>.93349</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Var_Area_7500

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>104.16670</td>
<td>1.01971</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>104.16670</td>
<td>1.01971</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>104.16670</td>
<td>.50692</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>104.16670</td>
<td>.46555</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>104.16670</td>
<td>.38358</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>104.16670</td>
<td>.51877</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>104.16670</td>
<td>.36248</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>104.16670</td>
<td>.59461</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>104.16670</td>
<td>.55760</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>104.16670</td>
<td>.96211</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>104.16670</td>
<td>1.40023</td>
<td>2.00000</td>
</tr>
</tbody>
</table>

Var_Area_10000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>138.8890</td>
<td>1.35961</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>138.8890</td>
<td>1.35961</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>138.8890</td>
<td>.67590</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>138.8890</td>
<td>.62073</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>138.8890</td>
<td>.51144</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>138.8890</td>
<td>.48331</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>138.8890</td>
<td>.69170</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>138.8890</td>
<td>.79281</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>138.8890</td>
<td>.74347</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>138.8890</td>
<td>1.28281</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>138.8890</td>
<td>1.86697</td>
<td>2.00000</td>
</tr>
</tbody>
</table>
Var_Area_15000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>208.33330</td>
<td>2.03942</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>208.33330</td>
<td>1.01385</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>223.75100</td>
<td>208.33330</td>
<td>.76715</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>205.48830</td>
<td>208.33330</td>
<td>.72496</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>287.37160</td>
<td>208.33330</td>
<td>1.03755</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>200.79360</td>
<td>208.33330</td>
<td>1.18922</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>175.18460</td>
<td>208.33330</td>
<td>1.11520</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>108.26930</td>
<td>208.33330</td>
<td>2.80046</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>208.33330</td>
<td>1.92421</td>
<td>2.00000</td>
</tr>
</tbody>
</table>

Var_Area_20000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>277.77780</td>
<td>2.71923</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>277.77780</td>
<td>2.71923</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>277.77780</td>
<td>1.35179</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>277.77780</td>
<td>1.24146</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>277.77780</td>
<td>1.02287</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>277.77780</td>
<td>.96662</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>277.77780</td>
<td>1.38340</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>277.77780</td>
<td>1.58563</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>277.77780</td>
<td>1.48693</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>277.77780</td>
<td>2.56562</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>277.77780</td>
<td>3.73395</td>
<td>4.00000</td>
</tr>
</tbody>
</table>

Var_Area_25000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>347.22220</td>
<td>3.39904</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>347.22220</td>
<td>3.39904</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>347.22220</td>
<td>1.68974</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>347.22220</td>
<td>1.55182</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>347.22220</td>
<td>1.27859</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>347.22220</td>
<td>1.20827</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>347.22220</td>
<td>1.72925</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>347.22220</td>
<td>1.98204</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>347.22220</td>
<td>1.85867</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>347.22220</td>
<td>3.20702</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>347.22220</td>
<td>4.66744</td>
<td>5.00000</td>
</tr>
</tbody>
</table>
Var_Area_30000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.153100</td>
<td>416.666700</td>
<td>4.078840</td>
<td>5.000000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.153100</td>
<td>416.666700</td>
<td>4.078840</td>
<td>5.000000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.488300</td>
<td>416.666700</td>
<td>2.027690</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.751000</td>
<td>416.666700</td>
<td>1.862190</td>
<td>2.000000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.566600</td>
<td>416.666700</td>
<td>1.534310</td>
<td>2.000000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.371600</td>
<td>416.666700</td>
<td>1.449920</td>
<td>2.000000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.793600</td>
<td>416.666700</td>
<td>2.075100</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.184600</td>
<td>416.666700</td>
<td>2.378440</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.812500</td>
<td>416.666700</td>
<td>2.230400</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.269300</td>
<td>416.666700</td>
<td>3.848430</td>
<td>4.000000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.392500</td>
<td>416.666700</td>
<td>5.600920</td>
<td>6.000000</td>
</tr>
</tbody>
</table>

Var_Area_35000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.153100</td>
<td>486.111100</td>
<td>4.758650</td>
<td>5.000000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.153100</td>
<td>486.111100</td>
<td>4.758650</td>
<td>5.000000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.488300</td>
<td>486.111100</td>
<td>2.365640</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.751000</td>
<td>486.111100</td>
<td>2.172550</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.566600</td>
<td>486.111100</td>
<td>1.790030</td>
<td>2.000000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.371600</td>
<td>486.111100</td>
<td>1.691580</td>
<td>2.000000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.793600</td>
<td>486.111100</td>
<td>2.420950</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.184600</td>
<td>486.111100</td>
<td>2.774850</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.812500</td>
<td>486.111100</td>
<td>2.602130</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.269300</td>
<td>486.111100</td>
<td>4.489830</td>
<td>5.000000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.392500</td>
<td>486.111100</td>
<td>6.534410</td>
<td>7.000000</td>
</tr>
</tbody>
</table>

Var_Area_40000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.153100</td>
<td>555.555500</td>
<td>5.438460</td>
<td>6.000000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.153100</td>
<td>555.555500</td>
<td>5.438460</td>
<td>6.000000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.488300</td>
<td>555.555500</td>
<td>2.703590</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.751000</td>
<td>555.555500</td>
<td>2.482920</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.566600</td>
<td>555.555500</td>
<td>2.045740</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.371600</td>
<td>555.555500</td>
<td>1.933230</td>
<td>2.000000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.793600</td>
<td>555.555500</td>
<td>2.766800</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.184600</td>
<td>555.555500</td>
<td>3.171260</td>
<td>4.000000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.812500</td>
<td>555.555500</td>
<td>2.973870</td>
<td>3.000000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.269300</td>
<td>555.555500</td>
<td>5.131240</td>
<td>6.000000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.392500</td>
<td>555.555500</td>
<td>7.467900</td>
<td>8.000000</td>
</tr>
</tbody>
</table>
Var_Area_45000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>625.00000</td>
<td>6.11827</td>
<td>7.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>625.00000</td>
<td>6.11827</td>
<td>7.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>625.00000</td>
<td>3.04154</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>625.00000</td>
<td>2.79328</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>625.00000</td>
<td>2.30146</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>625.00000</td>
<td>2.17488</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>625.00000</td>
<td>3.11265</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>625.00000</td>
<td>3.56767</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>625.00000</td>
<td>3.34560</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 10</td>
<td>108.26930</td>
<td>625.00000</td>
<td>5.77264</td>
<td>6.00000</td>
</tr>
<tr>
<td>AV 11</td>
<td>74.39250</td>
<td>625.00000</td>
<td>8.40138</td>
<td>9.00000</td>
</tr>
</tbody>
</table>

Var_Area_50000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>694.44450</td>
<td>6.79807</td>
<td>7.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>694.44450</td>
<td>6.79807</td>
<td>7.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>694.44450</td>
<td>3.37948</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>694.44450</td>
<td>3.10365</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>694.44450</td>
<td>2.55718</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>694.44450</td>
<td>2.41654</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>694.44450</td>
<td>3.45850</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>694.44450</td>
<td>3.96407</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>694.44450</td>
<td>3.71733</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 10</td>
<td>108.26930</td>
<td>694.44450</td>
<td>6.41405</td>
<td>7.00000</td>
</tr>
<tr>
<td>AV 11</td>
<td>74.39250</td>
<td>694.44450</td>
<td>9.33487</td>
<td>10.00000</td>
</tr>
</tbody>
</table>

Var_Area_55000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>763.88890</td>
<td>7.47788</td>
<td>8.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>763.88890</td>
<td>7.47788</td>
<td>8.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>763.88890</td>
<td>3.71743</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>763.88890</td>
<td>3.41401</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>763.88890</td>
<td>2.81290</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>763.88890</td>
<td>2.65819</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>763.88890</td>
<td>3.80435</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>763.88890</td>
<td>4.36048</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>763.88890</td>
<td>4.08907</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV 10</td>
<td>108.26930</td>
<td>763.88890</td>
<td>7.05545</td>
<td>8.00000</td>
</tr>
<tr>
<td>AV 11</td>
<td>74.39250</td>
<td>763.88890</td>
<td>10.26836</td>
<td>11.00000</td>
</tr>
</tbody>
</table>
Var_Area_60000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>833.33330</td>
<td>8.15769</td>
<td>9.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>833.33330</td>
<td>8.15769</td>
<td>9.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>833.33330</td>
<td>4.05538</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>833.33330</td>
<td>3.72438</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>833.33330</td>
<td>3.06861</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>833.33330</td>
<td>2.89985</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>833.33330</td>
<td>4.15020</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>833.33330</td>
<td>4.75689</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>833.33330</td>
<td>4.46080</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>833.33330</td>
<td>7.69686</td>
<td>8.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>833.33330</td>
<td>11.20185</td>
<td>12.00000</td>
</tr>
</tbody>
</table>

Var_Area_65000

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>902.77780</td>
<td>8.83750</td>
<td>9.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>902.77780</td>
<td>8.83750</td>
<td>9.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>902.77780</td>
<td>4.39333</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>902.77780</td>
<td>4.03474</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>902.77780</td>
<td>3.32433</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>902.77780</td>
<td>3.14150</td>
<td>4.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>902.77780</td>
<td>4.49605</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>902.77780</td>
<td>5.15330</td>
<td>6.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>902.77780</td>
<td>4.83253</td>
<td>5.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>902.77780</td>
<td>8.33826</td>
<td>9.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>902.77780</td>
<td>12.13533</td>
<td>13.00000</td>
</tr>
</tbody>
</table>

Var_Jorn_Trab_4

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>208.33330</td>
<td>2.03942</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>208.33330</td>
<td>2.03942</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>208.33330</td>
<td>1.01385</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>208.33330</td>
<td>.93109</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>208.33330</td>
<td>.76715</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>208.33330</td>
<td>.72496</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>208.33330</td>
<td>.76715</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>208.33330</td>
<td>1.0385</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>208.33330</td>
<td>1.18922</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>208.33330</td>
<td>1.11520</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>208.33330</td>
<td>2.80046</td>
<td>3.00000</td>
</tr>
</tbody>
</table>
Var_Jorn_Trab_5

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>166.66670</td>
<td>1.63154</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>166.66670</td>
<td>1.63154</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>166.66670</td>
<td>0.81108</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>166.66670</td>
<td>0.74488</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>166.66670</td>
<td>0.61372</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>166.66670</td>
<td>0.57997</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>166.66670</td>
<td>0.83004</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>166.66670</td>
<td>0.95138</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>166.66670</td>
<td>0.89216</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 10</td>
<td>108.26930</td>
<td>166.66670</td>
<td>1.53937</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 11</td>
<td>74.39250</td>
<td>166.66670</td>
<td>2.24037</td>
<td>3.00000</td>
</tr>
</tbody>
</table>

Var_Jorn_Trab_6

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>138.88890</td>
<td>1.35961</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>138.88890</td>
<td>1.35961</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>138.88890</td>
<td>0.67590</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>138.88890</td>
<td>0.62073</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>138.88890</td>
<td>0.51144</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>138.88890</td>
<td>0.48331</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>138.88890</td>
<td>0.69170</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>138.88890</td>
<td>0.79281</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>138.88890</td>
<td>0.74347</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 10</td>
<td>108.26930</td>
<td>138.88890</td>
<td>1.28281</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 11</td>
<td>74.39250</td>
<td>138.88890</td>
<td>1.86697</td>
<td>2.00000</td>
</tr>
</tbody>
</table>

Var_Jorn_Trab_7

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>119.04760</td>
<td>1.16538</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>119.04760</td>
<td>1.16538</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>119.04760</td>
<td>0.57934</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>119.04760</td>
<td>0.53205</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>119.04760</td>
<td>0.43837</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>119.04760</td>
<td>0.41426</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>119.04760</td>
<td>0.59289</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>119.04760</td>
<td>0.67956</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>119.04760</td>
<td>0.63726</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 10</td>
<td>108.26930</td>
<td>119.04760</td>
<td>1.09955</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 11</td>
<td>74.39250</td>
<td>119.04760</td>
<td>1.60026</td>
<td>2.00000</td>
</tr>
</tbody>
</table>
Var_Jorn_Trab_8

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>104.16670</td>
<td>1.01971</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>104.16670</td>
<td>1.01971</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>104.16670</td>
<td>.50692</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>104.16670</td>
<td>.46555</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>104.16670</td>
<td>.38358</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>104.16670</td>
<td>.36248</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>104.16670</td>
<td>.51877</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>104.16670</td>
<td>.59461</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>104.16670</td>
<td>.55760</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>104.16670</td>
<td>.96211</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>104.16670</td>
<td>1.40023</td>
<td>2.00000</td>
</tr>
</tbody>
</table>

Var_Jorn_Trab_9

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>92.59259</td>
<td>.90641</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>92.59259</td>
<td>.90641</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>92.59259</td>
<td>.45060</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>92.59259</td>
<td>.41382</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>92.59259</td>
<td>.34096</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>92.59259</td>
<td>.32221</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>92.59259</td>
<td>.46113</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>92.59259</td>
<td>.49564</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>92.59259</td>
<td>.85521</td>
<td>1.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>92.59259</td>
<td>1.24465</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>92.59259</td>
<td>1.40023</td>
<td>2.00000</td>
</tr>
</tbody>
</table>

Var_Periodo_15

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>Cap (ha/h)</th>
<th>Ritmo (ha/h)</th>
<th>N Avioes</th>
<th>N Avioes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>297.61900</td>
<td>2.91346</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>297.61900</td>
<td>2.91346</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>297.61900</td>
<td>1.44835</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>297.61900</td>
<td>1.33013</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>297.61900</td>
<td>1.09593</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>297.61900</td>
<td>1.03566</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>297.61900</td>
<td>1.48221</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>297.61900</td>
<td>1.69889</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>297.61900</td>
<td>1.59314</td>
<td>2.00000</td>
</tr>
<tr>
<td>AV10</td>
<td>108.26930</td>
<td>297.61900</td>
<td>2.74888</td>
<td>3.00000</td>
</tr>
<tr>
<td>AV11</td>
<td>74.39250</td>
<td>297.61900</td>
<td>4.00066</td>
<td>5.00000</td>
</tr>
<tr>
<td>CODIGO</td>
<td>Var_Período_30</td>
<td>Var_Período_45</td>
<td>Var_Período_60</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cap (ha/h)</td>
<td>Ritmo (ha/h)</td>
<td>Cap (ha/h)</td>
<td></td>
</tr>
<tr>
<td>AV 1</td>
<td>102.15310</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 2</td>
<td>102.15310</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 3</td>
<td>205.48830</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 4</td>
<td>223.75100</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 5</td>
<td>271.56660</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 6</td>
<td>287.37160</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 7</td>
<td>200.79360</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 8</td>
<td>175.18460</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 9</td>
<td>186.81250</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 10</td>
<td>108.26930</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td>AV 11</td>
<td>74.39250</td>
<td>138.88990</td>
<td>74.39250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N Avioes</td>
<td>N Avioes</td>
<td>N Avioes</td>
<td></td>
</tr>
<tr>
<td>AV 1</td>
<td>1.35961</td>
<td>1.35961</td>
<td>.72837</td>
<td></td>
</tr>
<tr>
<td>AV 2</td>
<td>2.00000</td>
<td>2.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 3</td>
<td>.67590</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 4</td>
<td>.62073</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 5</td>
<td>.51144</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 6</td>
<td>.48331</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 7</td>
<td>.69170</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 8</td>
<td>.79281</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 9</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 10</td>
<td>1.28281</td>
<td>1.28281</td>
<td>1.28281</td>
<td></td>
</tr>
<tr>
<td>AV 11</td>
<td>1.86697</td>
<td>2.00000</td>
<td>2.00000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N Avioes</td>
<td>N Avioes</td>
<td>N Avioes</td>
<td></td>
</tr>
<tr>
<td>AV 1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 2</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 3</td>
<td>.95350</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 4</td>
<td>.95350</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 5</td>
<td>.47401</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 6</td>
<td>.43532</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 7</td>
<td>.48509</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 8</td>
<td>.55600</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 9</td>
<td>.52139</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 10</td>
<td>.89963</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 11</td>
<td>1.30931</td>
<td>2.00000</td>
<td>2.00000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N Avioes</td>
<td>N Avioes</td>
<td>N Avioes</td>
<td></td>
</tr>
<tr>
<td>AV 1</td>
<td>.95350</td>
<td>1.00000</td>
<td>.95350</td>
<td></td>
</tr>
<tr>
<td>AV 2</td>
<td>.95350</td>
<td>1.00000</td>
<td>.95350</td>
<td></td>
</tr>
<tr>
<td>AV 3</td>
<td>.47401</td>
<td>1.00000</td>
<td>.47401</td>
<td></td>
</tr>
<tr>
<td>AV 4</td>
<td>.43532</td>
<td>1.00000</td>
<td>.43532</td>
<td></td>
</tr>
<tr>
<td>AV 5</td>
<td>.35867</td>
<td>1.00000</td>
<td>.35867</td>
<td></td>
</tr>
<tr>
<td>AV 6</td>
<td>.33894</td>
<td>1.00000</td>
<td>.33894</td>
<td></td>
</tr>
<tr>
<td>AV 7</td>
<td>.48509</td>
<td>1.00000</td>
<td>.48509</td>
<td></td>
</tr>
<tr>
<td>AV 8</td>
<td>.55600</td>
<td>1.00000</td>
<td>.55600</td>
<td></td>
</tr>
<tr>
<td>AV 9</td>
<td>.52139</td>
<td>1.00000</td>
<td>.52139</td>
<td></td>
</tr>
<tr>
<td>AV 10</td>
<td>.89963</td>
<td>1.00000</td>
<td>.89963</td>
<td></td>
</tr>
<tr>
<td>AV 11</td>
<td>1.30931</td>
<td>2.00000</td>
<td>1.30931</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N Avioes</td>
<td>N Avioes</td>
<td>N Avioes</td>
<td></td>
</tr>
<tr>
<td>AV 1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 2</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 3</td>
<td>.72837</td>
<td>1.00000</td>
<td>.72837</td>
<td></td>
</tr>
<tr>
<td>AV 4</td>
<td>.72837</td>
<td>1.00000</td>
<td>.72837</td>
<td></td>
</tr>
<tr>
<td>AV 5</td>
<td>.36209</td>
<td>1.00000</td>
<td>.36209</td>
<td></td>
</tr>
<tr>
<td>AV 6</td>
<td>.33253</td>
<td>1.00000</td>
<td>.33253</td>
<td></td>
</tr>
<tr>
<td>AV 7</td>
<td>.27398</td>
<td>1.00000</td>
<td>.27398</td>
<td></td>
</tr>
<tr>
<td>AV 8</td>
<td>.25891</td>
<td>1.00000</td>
<td>.25891</td>
<td></td>
</tr>
<tr>
<td>AV 9</td>
<td>.37055</td>
<td>1.00000</td>
<td>.37055</td>
<td></td>
</tr>
<tr>
<td>AV 10</td>
<td>.42472</td>
<td>1.00000</td>
<td>.42472</td>
<td></td>
</tr>
<tr>
<td>AV 11</td>
<td>.39829</td>
<td>1.00000</td>
<td>.39829</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N Avioes</td>
<td>N Avioes</td>
<td>N Avioes</td>
<td></td>
</tr>
<tr>
<td>AV 1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 2</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 3</td>
<td>.72837</td>
<td>1.00000</td>
<td>.72837</td>
<td></td>
</tr>
<tr>
<td>AV 4</td>
<td>.72837</td>
<td>1.00000</td>
<td>.72837</td>
<td></td>
</tr>
<tr>
<td>AV 5</td>
<td>.36209</td>
<td>1.00000</td>
<td>.36209</td>
<td></td>
</tr>
<tr>
<td>AV 6</td>
<td>.33253</td>
<td>1.00000</td>
<td>.33253</td>
<td></td>
</tr>
<tr>
<td>AV 7</td>
<td>.27398</td>
<td>1.00000</td>
<td>.27398</td>
<td></td>
</tr>
<tr>
<td>AV 8</td>
<td>.25891</td>
<td>1.00000</td>
<td>.25891</td>
<td></td>
</tr>
<tr>
<td>AV 9</td>
<td>.37055</td>
<td>1.00000</td>
<td>.37055</td>
<td></td>
</tr>
<tr>
<td>AV 10</td>
<td>.42472</td>
<td>1.00000</td>
<td>.42472</td>
<td></td>
</tr>
<tr>
<td>AV 11</td>
<td>.39829</td>
<td>1.00000</td>
<td>.39829</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N Avioes</td>
<td>N Avioes</td>
<td>N Avioes</td>
<td></td>
</tr>
<tr>
<td>AV 1</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 2</td>
<td>1.00000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>AV 3</td>
<td>.72837</td>
<td>1.00000</td>
<td>.72837</td>
<td></td>
</tr>
<tr>
<td>AV 4</td>
<td>.72837</td>
<td>1.00000</td>
<td>.72837</td>
<td></td>
</tr>
<tr>
<td>AV 5</td>
<td>.36209</td>
<td>1.00000</td>
<td>.36209</td>
<td></td>
</tr>
<tr>
<td>AV 6</td>
<td>.33253</td>
<td>1.00000</td>
<td>.33253</td>
<td></td>
</tr>
<tr>
<td>AV 7</td>
<td>.27398</td>
<td>1.00000</td>
<td>.27398</td>
<td></td>
</tr>
<tr>
<td>AV 8</td>
<td>.25891</td>
<td>1.00000</td>
<td>.25891</td>
<td></td>
</tr>
<tr>
<td>AV 9</td>
<td>.37055</td>
<td>1.00000</td>
<td>.37055</td>
<td></td>
</tr>
<tr>
<td>AV 10</td>
<td>.42472</td>
<td>1.00000</td>
<td>.42472</td>
<td></td>
</tr>
<tr>
<td>AV 11</td>
<td>.39829</td>
<td>1.00000</td>
<td>.39829</td>
<td></td>
</tr>
</tbody>
</table>

FONTE: Resultados da pesquisa.
ANEXO III
CAPACIDADE DE CAMPO OPERACIONAL

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>Cap (L/Tq)</th>
<th>Larg (m)</th>
<th>Veloc (km/h)</th>
<th>Cap Vôo (ha/h)</th>
<th>Cap (ha/Tq)</th>
<th>Abast (Tq/h)</th>
<th>Hor (xtempo)</th>
<th>Pha (ha/h)</th>
<th>Ef Glob (%)</th>
<th>CCo (ha/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>950.00000</td>
<td>15.0000</td>
<td>127.00000</td>
<td>133.35000</td>
<td>95.00000</td>
<td>1.40368</td>
<td>23.39474</td>
<td>31.19688</td>
<td>53.62368</td>
<td>102.15310</td>
</tr>
<tr>
<td>AV 2</td>
<td>950.00000</td>
<td>15.0000</td>
<td>127.00000</td>
<td>133.35000</td>
<td>95.00000</td>
<td>1.40368</td>
<td>23.39474</td>
<td>31.19688</td>
<td>53.62368</td>
<td>102.15310</td>
</tr>
<tr>
<td>AV 3</td>
<td>1440.00000</td>
<td>18.5000</td>
<td>260.00000</td>
<td>336.70000</td>
<td>144.00000</td>
<td>2.33819</td>
<td>38.96991</td>
<td>131.21170</td>
<td>42.72106</td>
<td>205.48830</td>
</tr>
<tr>
<td>AV 4</td>
<td>1520.00000</td>
<td>25.0000</td>
<td>225.00000</td>
<td>293.75000</td>
<td>152.00000</td>
<td>2.59046</td>
<td>43.17434</td>
<td>169.99000</td>
<td>39.77796</td>
<td>223.75100</td>
</tr>
<tr>
<td>AV 5</td>
<td>1900.00000</td>
<td>25.0000</td>
<td>255.00000</td>
<td>446.25000</td>
<td>190.00000</td>
<td>2.34868</td>
<td>39.14474</td>
<td>174.68340</td>
<td>42.59868</td>
<td>271.56660</td>
</tr>
<tr>
<td>AV 6</td>
<td>2500.00000</td>
<td>20.0000</td>
<td>270.00000</td>
<td>387.45000</td>
<td>250.00000</td>
<td>1.54960</td>
<td>25.73000</td>
<td>100.07830</td>
<td>51.91899</td>
<td>287.37160</td>
</tr>
<tr>
<td>AV 7</td>
<td>1500.00000</td>
<td>18.0000</td>
<td>240.00000</td>
<td>302.40000</td>
<td>150.00000</td>
<td>2.01600</td>
<td>33.60000</td>
<td>101.60640</td>
<td>46.48000</td>
<td>200.79360</td>
</tr>
<tr>
<td>AV 8</td>
<td>1344.00000</td>
<td>17.5000</td>
<td>210.00000</td>
<td>257.25000</td>
<td>134.00000</td>
<td>1.91406</td>
<td>31.90000</td>
<td>107.18750</td>
<td>44.7917</td>
<td>186.81250</td>
</tr>
<tr>
<td>AV 9</td>
<td>1344.00000</td>
<td>17.5000</td>
<td>240.00000</td>
<td>294.00000</td>
<td>134.40000</td>
<td>2.18750</td>
<td>36.45833</td>
<td>107.18750</td>
<td>44.7917</td>
<td>186.81250</td>
</tr>
<tr>
<td>AV10</td>
<td>1100.00000</td>
<td>15.0000</td>
<td>130.00000</td>
<td>136.50000</td>
<td>110.00000</td>
<td>1.24091</td>
<td>20.68182</td>
<td>28.23068</td>
<td>55.2273</td>
<td>108.26930</td>
</tr>
<tr>
<td>AV11</td>
<td>500.000000</td>
<td>15.0000</td>
<td>130.00000</td>
<td>136.50000</td>
<td>50.00000</td>
<td>2.73000</td>
<td>45.50000</td>
<td>62.10750</td>
<td>38.15000</td>
<td>74.39250</td>
</tr>
</tbody>
</table>

FONTE: Resultados da pesquisa.
CUSTOS FIXOS E VARIÁVEIS

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>Valor (US$)</th>
<th>Amort (US$/h)</th>
<th>Jur (US$/h)</th>
<th>Seg (US$/h)</th>
<th>CF (US$/h)</th>
<th>Cons (L/h)</th>
<th>Comb (US$/h)</th>
<th>CV (US$/h)</th>
<th>CTotal (US$/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 1</td>
<td>255000.00</td>
<td>25.50000</td>
<td>43.86000</td>
<td>20.40000</td>
<td>89.76000</td>
<td>70.00000</td>
<td>88.80000</td>
<td>171.80000</td>
<td>261.56000</td>
</tr>
<tr>
<td>AV 2</td>
<td>259000.00</td>
<td>25.90000</td>
<td>44.54800</td>
<td>20.72000</td>
<td>91.16800</td>
<td>90.00000</td>
<td>47.00000</td>
<td>130.00000</td>
<td>221.16800</td>
</tr>
<tr>
<td>AV 3</td>
<td>460000.00</td>
<td>46.00000</td>
<td>79.12000</td>
<td>36.80000</td>
<td>161.92000</td>
<td>180.00000</td>
<td>225.20000</td>
<td>308.20000</td>
<td>470.12000</td>
</tr>
<tr>
<td>AV 4</td>
<td>501165.00</td>
<td>50.11650</td>
<td>86.20039</td>
<td>40.09320</td>
<td>176.41010</td>
<td>170.00000</td>
<td>212.80000</td>
<td>295.80000</td>
<td>472.21010</td>
</tr>
<tr>
<td>AV 5</td>
<td>540165.00</td>
<td>54.01650</td>
<td>92.90839</td>
<td>43.21320</td>
<td>190.13810</td>
<td>185.00000</td>
<td>231.40000</td>
<td>314.40000</td>
<td>504.53810</td>
</tr>
<tr>
<td>AV 6</td>
<td>350000.00</td>
<td>35.00000</td>
<td>60.20000</td>
<td>28.00000</td>
<td>123.20000</td>
<td>220.00000</td>
<td>274.80000</td>
<td>357.80000</td>
<td>481.00000</td>
</tr>
<tr>
<td>AV 7</td>
<td>380000.00</td>
<td>38.00000</td>
<td>65.36000</td>
<td>30.40000</td>
<td>133.76000</td>
<td>150.00000</td>
<td>188.00000</td>
<td>271.00000</td>
<td>404.76000</td>
</tr>
<tr>
<td>AV 8</td>
<td>282000.00</td>
<td>28.20000</td>
<td>48.50400</td>
<td>22.56000</td>
<td>99.26400</td>
<td>112.00000</td>
<td>140.88000</td>
<td>223.88000</td>
<td>323.14400</td>
</tr>
<tr>
<td>AV 9</td>
<td>385000.00</td>
<td>38.50000</td>
<td>66.22000</td>
<td>30.80000</td>
<td>135.52000</td>
<td>172.00000</td>
<td>215.28000</td>
<td>298.28000</td>
<td>433.80000</td>
</tr>
<tr>
<td>AV10</td>
<td>260000.00</td>
<td>26.00000</td>
<td>44.72000</td>
<td>20.80000</td>
<td>91.52000</td>
<td>80.00000</td>
<td>101.20000</td>
<td>184.20000</td>
<td>275.72000</td>
</tr>
<tr>
<td>AV11</td>
<td>95000.00</td>
<td>9.50000</td>
<td>16.34000</td>
<td>7.60000</td>
<td>33.44000</td>
<td>50.00000</td>
<td>64.00000</td>
<td>147.00000</td>
<td>180.44000</td>
</tr>
</tbody>
</table>

FONTE: Resultados da pesquisa.
ANEXO V
PROGRAMAÇÃO MODELO DE OTIMIZAÇÃO DE AVIAÇÃO AGRÍCOLA

real jua
integer NM, ND, NA, i, l, k, j
parameter (NM=20)
real Hop (0:NM), va (0:NM), am (0:NM), ju (0:NM), se (0:NM), comb (0:NM),
* le (0:NM), ve (0:NM), CCoVoo (0:NM), Area (0:NM), RO (0:NM, 0:NM, 0:NM),
* por (0:NM), cons (0:NM), EFG (0:NM), an (0:NM, 0:NM, 0:NM, 0:NM),
* ana (0:NM, 0:NM, 0:NM, 0:NM), CT (0:NM, 0:NM, 0:NM, 0:NM),
* Aut (0:NM), Nab (0:NM), Pha (0:NM), CCo (0:NM), CF (0:NM), COP (0:NM),
* Ch (0:NM), ch (0:NM, 0:NM, 0:NM, 0:NM), N (0:NM),
* n= (0:NM), ndcu (0:NM), Hj (0:NM), nu (0:NM), Td (0:NM, 0:NM)

!###
! CÁLCULO E DADOS PARA O TEMPO DISPONÍVEL PARA APlicação NO PERíODO CONsiderado
! NP Número de Periodos analisados
NP = 4
! N Número total de dias do período (dias)
N (1) = 15
N (2) = 30
N (3) = 45
N (4) = 60
! ndf Número de domingos e feriados (dias)
ndf (1) = 3
ndf (2) = 6
ndf (3) = 10
ndf (4) = 12
! ndcu Número de dias com umidade (dias)
ndcu (1) = 7
ndcu (2) = 15
ndcu (3) = 22
ndcu (4) = 28
! NJ Número de Jornadas de Trabalho analisadas
NJ = 6
! Hj Total de horas diárias com condições de aplicação (horas/dia)
Hj (1) = 4
Hj (2) = 5
Hj (3) = 6
Hj (4) = 7
Hj (5) = 8
Hj (6) = 9
! nu Número de dias úteis sem umidade para aplicação (dias)
do l=1,NP
 nu (l) = (1-ndcu(l)/N(l))* (N(l)-ndf(l))
do k=1,NJ
! Td Tempo disponivel no periodo considerado (horas)
Td (l,k) = (N(l)-(ndf(l)+nu(l)))*Hj(k)
end do
end do

!###
! DADOS das ÁREA
! ND Número de áreas
ND = 14
! Area(i) Tamanho da área a ser pulverizada (ha)
Area (1) = 5000
Area (2) = 7500
Area (3) = 10000
Area (4) = 15000
Area (5) = 20000
Area (6) = 25000
Area (7) = 30000
Area (8) = 35000
Area (9) = 40000
Area(10)= 45000
Area(11)= 50000
Area(12)= 55000
Area(13)= 60000
Area(14)= 65000

! DADOS DOS AVIÕES

! ND Número de aviões analisados
NA=11
! le(i) Largura efetiva de aplicação (m)
le(1)=15
le(2)=15
le(3)=18.5
le(4)=25
le(5)=25
le(6)=20.5
le(7)=18
le(8)=17.5
le(9)=17.5
le(10)=15
le(11)=15

! ve(i) Velocidade de operação (Km/h)
ve(1)=127
ve(2)=127
ve(3)=260
ve(4)=225
ve(5)=255
ve(6)=270
ve(7)=240
ve(8)=210
ve(9)=240
ve(10)=130
ve(11)=130

! Hop Hopper - Capacidade do tanque (Litros/Tanque)
Hop(1) = 950
Hop(2) = 950
Hop(3) = 1440
Hop(4) = 1520
Hop(5) = 1900
Hop(6) = 2500
Hop(7) = 1500
Hop(8) = 1344
Hop(9) = 1344
Hop(10)= 1100
Hop(11)= 500

! va(i) Valor do avião (US$)
va(1)=255000
va(2)=259000
va(3)=460000
va(4)=501165
va(5)=540165
va(6)=350000
va(7)=380000
va(8)=282000
va(9)=385000
va(10)=260000
va(11)=95000

! cons(i) Consumo de combustível por hora de cada avião (Litros/h)
cons(1) = 70
cons(2) = 90
cons(3) = 180
cons(4) = 170
cons(5) = 185
cons(6) = 220
cons(7) = 150
cons(8) = 112
cons(9) = 172
cons(10)= 80
cons(11)= 50

!!
! OUTROS DADOS NECESSÁRIOS

! ef Taxa de eficiência de voo (depende do formato da área considerada) (adimensional)
 ef = 0.7
! ha Fator de conversão de área (m²/ha)
 ha = 10000
! qa Quantidade de herbicida aplicada por ha (L/ha)
 qa = 10
! Tpad Tempo necessário para pouso, abastecimento do tanque e decolagem (min/Tanque)
 Tpad = 10
! hat Número de horas médio de operação de um avião em um ano (h/ano)
 hat = 500
! Aa Amortização ao ano (50% em 10 anos) (adimensional)
 Aa = 0.5/10
! jua Juros ao ano (Adimensional)
 jua = 0.1075
! sa Seguro ao ano (Adimensional)
 sa = 0.04
! alc Custo do litro de álcool (US$/L)
 alc = 0.5
! gas Custo do litro de gasolina (US$/L)
 gas = 1.24
! oleo Custo do óleo por hora (US$/h)
 oleo = 2
! pi Custo com remuneração do Piloto por hora (US$/h)
 pi = 48
! man Custo com manutenção por hora (US$/h)
 man = 35.5

!!
! LOOPING PARA O NÚMERO DE AVIÕES

DO i=1,NA

! CCoVoo(i) Capacidade de campo operacional (ha/h)
 CCoVoo(i) = (ve(i)*1000*le(i)/ha)*ef

! Aut(i) Número de ha com 1 tanque (ha/Tanque)
 Aut(i) = Hop(i)/qa

! Nab(i) Número de abastecimentos em 1h (Tanques/h)
 Nab(i) = CCoVoo(i)/Aut(i)

! Por(i) Porcentagem de tempo perdido para pouso, abast. e decol. (%)
 Por(i) = (Tpad*Nab(i)/60)*100

! Pha(i) Perda em ha/h para pouso, abastecimento e decolagem (ha/h)
 Pha(i) = CCoVoo(i)*(Por(i)/100)

! CCo(i) Capacidad efetiva de aplicação (ha/h)
 CCo(i) = CCoVoo(i)-Pha(i)

! EfG(i) Eficiência Global (%)
 EfG(i) = (CCo(i)/(ve(i)*1000*le(i)/ha))*100

! am(i) Amortização por hora de cada avião (US$/h)
am(i) = va(i)*Aa/hat

! ju(i) Juros por hora de cada avião (US$/h)
ju(i) = va(i)*0.8*jua/hat

! se(i) Seguro por hora sobre cada avião (US$/h)
se(i) = va(i)*sa/hat

! CF(i) Custo fixo por hora de cada avião (US$/h)
CF(i) = am(i)+ju(i)+se(i)

! comb(i) Custos do combustível por hora de cada avião (US$/h)
if (i.eq.2) then
 comb(i) = alc*cons(i)+oleo
else
 comb(i) = gas*cons(i)+oleo
end if

! CV(i) Custo Variável por hora de cada avião (US$/h)
COp(i) = comb(i)+man+pi

! cht(i) Custo por hora para cada avião (US$/h)
cht(i) = CF(i)+CV(i)

END DO

! ##
! ARMAZENAGEM DOS DADOS DOS 11 DIFERENTES MODELOS DE AVIÕES
open(unit=25,file='DAD_AVIAO-Ef_Global.txt',status='unknown')
write(25,04) 'Cap (L/Tq)','Larg (m)','Veloc (Km/h)',
* 'Cap Vôo(ha/h)','(ha/Tq)','N Abast (Tq/h)','Por (%tempo)',
* 'Pha (ha/h)',',Ef Glob (%)',',',CCo (ha/h)'
04 format(1x,'CODIGO',10A14)

open(unit=26,file='DAD_AVIAO-Custo_Oper.txt',status='unknown')
write(26,03) 'Valor (US$)','Amort (US$/h)','Jur (US$/h)',
* 'Seg (US$/h)',',CF (US$/h)',',Cons (L/h)',
* 'Comb (US$/h)',',COper (US$/h)',',CTot (US$/h)'
03 format(1x,'CODIGO',9A14)
do i=1,NA
write(25,01) i,Hop(i),le(i),ve(i),CCoVoo(i),Aut(i),Nab(i),Por(i)
* ,Pha(i),EfG(i),CCo(i)
write(26,02) i,va(i),am(i),ju(i),se(i),CF(i),Cons(i),Comb(i),
* COp(i),cht(i)
end do
01 format(2x,'AV',i2,'',10f14.5)
02 format(2x,'AV',i2,'''',1x,9f14.5)

! ##
! LOOPING PARA O NÚMERO DE ÁREAS
DO j=1,ND
l=2
k=3
! RO(i) Ritmo operacional para a área j (ha/hora)
RO(l,k,j) = Area(j)/Td(l,k)
do i=1,NA
! an(i,j) Número de aviões do tipo i necessários para a área j no tempo
considerado
an(l,k,j,i) = RO(l,k,j)/CCo(i)
a = int(an(l,k,j,i))
if ((an(l,k,j,i)-a).ge.0) then
ana(l,k,j,i) = a+1
end if
if ((an(l,k,j,i)-a).le.0) then
 ana(l,k,j,i) = a
end if

! ch(i,j) Custo por ha para os i aviões analisados (US$/ha)
 ch(l,k,j,i) = (cht(i)/CCo(i))*ana(l,k,j,i)

! CT(i,j) Custo total do avião i para a área j (US$)
 CT(l,k,j,i) = ch(l,k,j,i)*Area(j)
end do
END DO

!###
! LOOPING OS PERÍODOS
DO l=1,NP
 k=3
 j=3
 ! RO(i) Ritmo operacional para a área j (ha/hora)
 RO(l,k,j) = Area(j)/Td(l,k)
 do i=1,NA
 ! an(i,j) Número de aviões do tipo i necessários para a área j no tempo
 ! considerado
 an(l,k,j,i) = RO(l,k,j)/CCo(i)
 a = int(an(l,k,j,i))
 if ((an(l,k,j,i)-a).ge.0) then
 ana(l,k,j,i) = a+1
 end if
 if ((an(l,k,j,i)-a).le.0) then
 ana(l,k,j,i) = a
 end if
 ! ch(i,j) Custo por ha para os i aviões analisados (US$/ha)
 ch(l,k,j,i) = (cht(i)/CCo(i))*ana(l,k,j,i)
 ! CT(i,j) Custo total do avião i para a área j (US$)
 CT(l,k,j,i) = ch(l,k,j,i)*Area(j)
 end do
END DO

!###
! LOOPING PARA A JORNADA DE TRABALHO
DO k=1,NJ
 l=2
 j=3
 ! RO(i) Ritmo operacional para a área j (ha/hora)
 RO(l,k,j) = Area(j)/Td(l,k)
 do i=1,NA
 ! an(i,j) Número de aviões do tipo i necessários para a área j no tempo
 ! considerado
 an(l,k,j,i) = RO(l,k,j)/CCo(i)
 end do
a = int(an(l,k,j,i))
if ((an(l,k,j,i)-a).ge.0) then
 ana(l,k,j,i) = a+1
end if
if ((an(l,k,j,i)-a).le.0) then
 ana(l,k,j,i) = a
end if
!
ch(i,j) Custo por ha para os i aviões analisados (US$/ha)
ch(l,k,j,i) = (cht(i)/CCo(i))*ana(l,k,j,i)
!
CT(i,j) Custo total do avião i para a área j (US$)
CT(l,k,j,i) = ch(l,k,j,i)*Area(j)
end do
END DO

!##
open(unit=31,file='Var_Area_5000.txt',status='unknown')
write(31,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)
do i=1,NA
 write(31,12) i,CCo(i),RO(2,3,1),an(2,3,1,i),ana(2,3,1,i) !,
c ch(2,3,1,i),CT(2,3,1,i)
end do

open(unit=32,file='Var_Area_7500.txt',status='unknown')
write(32,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)
do i=1,NA
 write(32,12) i,CCo(i),RO(2,3,2),an(2,3,2,i),ana(2,3,2,i) !,
c ch(2,3,2,i),CT(2,3,2,i)
end do

open(unit=33,file='Var_Area_10000.txt',status='unknown')
write(33,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)
do i=1,NA
 write(33,12) i,CCo(i),RO(2,3,3),an(2,3,3,i),ana(2,3,3,i) !,
c ch(2,3,3,i),CT(2,3,3,i)
end do

open(unit=34,file='Var_Area_15000.txt',status='unknown')
write(34,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)
do i=1,NA
 write(34,12) i,CCo(i),RO(2,3,4),an(2,3,4,i),ana(2,3,4,i) !,
c ch(2,3,4,i),CT(2,3,4,i)
end do

open(unit=35,file='Var_Area_20000.txt',status='unknown')
write(35,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)
do i=1,NA
 write(35,12) i,CCo(i),RO(2,3,5),an(2,3,5,i),ana(2,3,5,i) !,
c ch(2,3,5,i),CT(2,3,5,i)
end do

open(unit=36,file='Var_Area_25000.txt',status='unknown')
write(36,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
 * 'N Avioes'!, '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(36,12) i,CCo(i),RO(2,3,6),an(2,3,6,i),ana(2,3,6,i) !,
 ch(2,3,6,i),CT(2,3,6,i)
end do

open(unit=37, file='Var_Area_30000.txt', status='unknown')
write(37,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
 * 'N Avioes'!, '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(37,12) i,CCo(i),RO(2,3,7),an(2,3,7,i),ana(2,3,7,i) !,
 ch(2,3,7,i),CT(2,3,7,i)
end do

open(unit=38, file='Var_Area_35000.txt', status='unknown')
write(38,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
 * 'N Avioes'!, '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(38,12) i,CCo(i),RO(2,3,8),an(2,3,8,i),ana(2,3,8,i) !,
 ch(2,3,8,i),CT(2,3,8,i)
end do

open(unit=39, file='Var_Area_40000.txt', status='unknown')
write(39,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
 * 'N Avioes'!, '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(39,12) i,CCo(i),RO(2,3,9),an(2,3,9,i),ana(2,3,9,i) !,
 ch(2,3,9,i),CT(2,3,9,i)
end do

open(unit=40, file='Var_Area_45000.txt', status='unknown')
write(40,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
 * 'N Avioes'!, '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(40,12) i,CCo(i),RO(2,3,10),an(2,3,10,i),ana(2,3,10,i) !,
 ch(2,3,10,i),CT(2,3,10,i)
end do

open(unit=41, file='Var_Area_50000.txt', status='unknown')
write(41,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
 * 'N Avioes'!, '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(41,12) i,CCo(i),RO(2,3,11),an(2,3,11,i),ana(2,3,11,i) !,
 ch(2,3,11,i),CT(2,3,11,i)
end do

open(unit=42, file='Var_Area_55000.txt', status='unknown')
write(42,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
 * 'N Avioes'!, '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(42,12) i,CCo(i),RO(2,3,12),an(2,3,12,i),ana(2,3,12,i) !,
 ch(2,3,12,i),CT(2,3,12,i)
end do

open(unit=43, file='Var_Area_60000.txt', status='unknown')
write(43,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
 * 'N Avioes'!, '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(43,12) i,CCo(i),RO(2,3,13),an(2,3,13,i),ana(2,3,13,i) !,
 ch(2,3,13,i),CT(2,3,13,i)
end do

open(unit=44,file='Var_Area_65000.txt',status='unknown')
write(44,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)'
do i=1,NA
 write(44,12) i,CCo(i),RO(2,3,14),an(2,3,14,i),ana(2,3,14,i)!,*
 ch(2,3,14,i),CT(2,3,14,i)
end do

!###
open(unit=51,file='Var_Periodo_15.txt',status='unknown')
write(51,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)'
do i=1,NA
 write(51,12) i,CCo(i),RO(1,3,3),an(1,3,3,i),ana(1,3,3,i)!,*
 ch(1,3,3,i),CT(1,3,3,i)
end do

open(unit=52,file='Var_Periodo_30.txt',status='unknown')
write(52,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)'
do i=1,NA
 write(52,12) i,CCo(i),RO(2,3,3),an(2,3,3,i),ana(2,3,3,i)!,*
 ch(2,3,3,i),CT(2,3,3,i)
end do

open(unit=53,file='Var_Periodo_45.txt',status='unknown')
write(53,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)'
do i=1,NA
 write(53,12) i,CCo(i),RO(3,3,3),an(3,3,3,i),ana(3,3,3,i)!,*
 ch(3,3,3,i),CT(3,3,3,i)
end do

open(unit=54,file='Var_Periodo_60.txt',status='unknown')
write(54,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)'
do i=1,NA
 write(54,12) i,CCo(i),RO(4,3,3),an(4,3,3,i),ana(4,3,3,i)!,*
 ch(4,3,3,i),CT(4,3,3,i)
end do

!###
open(unit=61,file='Var_Jorn_Trab_4.txt',status='unknown')
write(61,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)'
do i=1,NA
 write(61,12) i,CCo(i),RO(2,1,3),an(2,1,3,i),ana(2,1,3,i)!,*
 ch(2,1,3,i),CT(2,1,3,i)
end do

open(unit=62,file='Var_Jorn_Trab_5.txt',status='unknown')
write(62,11) 'Cap (ha/h)','Ritmo (ha/h)','N Avioes','(US$/ha)','Cus Tot (US$)'
do i=1,NA
 write(62,12) i,CCo(i),RO(2,2,3),an(2,2,3,i),ana(2,2,3,i)!,*
 ch(2,2,3,i),CT(2,2,3,i)
end do

open(unit=63,file='Var_Jorn_Trab_6.txt',status='unknown')
write(63,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
* 'N Avioes!', '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(63,12) i, CCo(i), RO(2,3,3), an(2,3,3,i), ana(2,3,3,i),
c ch(2,3,3,i), CT(2,3,3,i)
end do

open(unit=64,file='Var_Jorn_Trab_7.txt',status='unknown')
write(64,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
* 'N Avioes!', '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(64,12) i, CCo(i), RO(2,4,3), an(2,4,3,i), ana(2,4,3,i),
c ch(2,4,3,i), CT(2,4,3,i)
end do

open(unit=65,file='Var_Jorn_Trab_8.txt',status='unknown')
write(65,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
* 'N Avioes!', '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(65,12) i, CCo(i), RO(2,5,3), an(2,5,3,i), ana(2,5,3,i),
c ch(2,5,3,i), CT(2,5,3,i)
end do

open(unit=66,file='Var_Jorn_Trab_9.txt',status='unknown')
write(66,11) 'Cap (ha/h)', 'Ritmo (ha/h)', 'N Avioes',
* 'N Avioes!', '(US$/ha)', 'Cus Tot (US$)'
do i=1,NA
write(66,12) i, CCo(i), RO(2,6,3), an(2,6,3,i), ana(2,6,3,i),
c ch(2,6,3,i), CT(2,6,3,i)
end do

!##
11 format(1x,'CODIGO',4A14)
12 format(2x,'AV',i2,'',1x,4f14.5)
end
ANEXO VI
*formulação do problema de aviação agrícola 10000ha

Sets
i Avioes Disponíveis no mercado
/AV1 * AV11/

Parameters
AN(i) Numero de avioes necessarios
/ $include C:\Documents and
Settings\Fabiano\Desktop\Fabiano\dissertação\Fortran\Var_Area_10000.txt /

CHT(i) Custo horario para cada aviao i
/AV1 261.56
AV2 221.16
AV3 470.12
AV4 472.21
AV5 504.53
AV6 481.00
AV7 404.76
AV8 323.14
AV9 433.80
AV10 275.72
AV11 180.44/

Variables
x(i) uso do avião i
z custo total a ser minimizado;

Binary Variable x;

Equations
CTT Custo total da pulverização
RPARS Restrição numero mínimo de avioes;

CTT .. z =e= sum(i,x(i)*(AN(i)*CHT(i)));
RPARS .. sum(i,x(i)) =g= 1;

Model avioes /all/;
Solve avioes using MIP minimizing z;
Options decimals=2;
Display z.l, x.l, x.m;
ANEXO VII
*formulação do problema de aviação agrícola 10000ha

Sets

i Aviões Disponíveis no mercado
/AV1 * AV11/;

Parameters

AN(i) Numero de avioes necessarios

INCLUDE C:\Documents and Settings\Fabiano\Desktop\Fabiano\dissertação\Fortran \Var_Area_10000.txt

AV1 2
AV2 2
AV3 1
AV4 1
AV5 1
AV6 1
AV7 1
AV8 1
AV9 1
AV10 2
AV11 2

CHT(i) Custo horario para cada aviao i

AV1 261.56
AV2 221.16
AV3 470.12
AV4 472.21
AV5 504.53
AV6 481.00
AV7 404.76
AV8 323.14
AV9 433.80
AV10 275.72
AV11 180.44/;

Variables

x(i) uso do avião i
z custo total a ser minimizado;

Binary Variable x;

Equations

CTT Custo total da pulverização
RPARS Restrição numero mínimo de avioes;

CTT .. z =e= sum(i,x(i))*(AN(i)*CHT(i));
RPARS .. sum(i,x(i)) =g= 1;

Model avioes /all/;
Solve avioes using MIP minimizing z;
Options decimals=2;
Display z.l, x.l, x.m;
General Algebraic Modeling System
Include File Summary

SEQ GLOBAL TYPE PARENT LOCAL FILENAME
1 1 INPUT 0 0 C:\Documents and Settings\Fabiano\Desktop\Fabiano\dissertação\Resultados GAMS\Var_Area_10000.gms
2 10 INCLUDE 1 10 .C:\Documents and Settings\Fabiano\Desktop\Fabiano\dissertação\Fortran\Var_Area_10000.txt

COMPILATION TIME = 0.000 SECONDS 3.2 Mb WIN217-142 Apr 27, 2005

Equation Listing SOLVE avioes Using MIP From line 52

---- CTT =E= Custa total da pulverização
CTT.. - 523.12*x(AV1) - 442.32*x(AV2) - 470.12*x(AV3) - 472.21*x(AV4)
 - 504.53*x(AV5) - 481*x(AV6) - 404.76*x(AV7) - 323.14*x(AV8)
 - 433.8*x(AV9) - 551.44*x(AV10) - 360.88*x(AV11) + z =E= 0 ; (LHS = 0)

---- RPARS =G= Restrição numero minimo de avioes
RPARS.. x(AV1) + x(AV2) + x(AV3) + x(AV4) + x(AV5) + x(AV6) + x(AV7) + x(AV8)
 + x(AV9) + x(AV10) + x(AV11) =G= 1 ; (LHS = 0, INFES = 1 ***)
---- x uso do avião i

\[x(AV1) \text{ (.LO, .L, .UP = 0, 0, 1)} \]
-523.12 CTT
1 RPARS

\[x(AV2) \text{ (.LO, .L, .UP = 0, 0, 1)} \]
-442.32 CTT
1 RPARS

\[x(AV3) \text{ (.LO, .L, .UP = 0, 0, 1)} \]
-470.12 CTT
1 RPARS

REMAINING 8 ENTRIES SKIPPED

---- z custo total a ser minimizado

\[z \text{ (.LO, .L, .UP = -INF, 0, +INF)} \]
1 CTT

MODEL STATISTICS

BLOCKS OF EQUATIONS 2
BLOCKS OF VARIABLES 2
NON ZERO ELEMENTS 23

GENERATION TIME = 0.016 SECONDS 3.9 Mb WIN217-142 Apr 27, 2005
EXECUTION TIME = 0.016 SECONDS 3.9 Mb WIN217-142 Apr 27, 2005
SOLVE SUMMARY
MODEL avioes
OBJECTIVE z
TYPE MIP
DIRECTION MINIMIZE
SOLVER CPLEX
FROM LINE 52

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 323.1400

RESOURCE USAGE, LIMIT 0.015 1000.000
ITERATION COUNT, LIMIT 0 10000

GAMS/Cplex Apr 2, 2005 WIN.CP.NA 21.7 028.031.041.VIS For Cplex 9.0
Cplex 9.0.2, GAMS Link 28

Proven optimal solution.

MIP Solution: 323.140000 (0 iterations, 0 nodes)
Final Solve: 323.140000 (0 iterations)

Best possible: 323.140000
Absolute gap: 0.000000
Relative gap: 0.000000

LOWER LEVEL UPPER MARGINAL
---- EQU CTT . . . 1.000
---- EQU RPARS 1.000 1.000 +INF .

CTT Custo total da pulverização
RPARS Restrição número mínimo de avioes

---- VAR x uso do avião i

LOWER LEVEL UPPER MARGINAL
AV1 . . 1.000 523.120
AV2 . . 1.000 442.320
AV3 . . 1.000 470.120
AV4 . . 1.000 472.210
AV5 . . 1.000 504.530
AV6 . . 1.000 481.000
AV7 . . 1.000 404.760
AV8 . 1.000 1.000 323.140
AV9 . . 1.000 433.800
AV10 . . 1.000 551.440
AV11 . . 1.000 360.880
LOWER LEVEL UPPER MARGINAL

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>-INF</td>
<td>323.140</td>
<td>+INF</td>
<td>.</td>
</tr>
</tbody>
</table>

z custo total a ser minimizado

**** REPORT SUMMARY :
0 NONOPT
0 INFEASIBLE
0 UNBOUNDED

GAMS Rev 142 Intel /MS Window 09/26/05 11:26:57 Page 7
General Algebraic Modeling System Execution

---- 54 VARIABLE z.L = 323.14 custo total a ser minimizado

---- 54 VARIABLE x.L uso do avião i
AV8 1.00

---- 54 VARIABLE x.M uso do avião i
AV1 523.12, AV2 442.32, AV3 470.12, AV4 472.21, AV5 504.53
AV6 481.00, AV7 404.76, AV8 323.14, AV9 433.80, AV10 551.44
AV11 360.88

EXECUTION TIME = 0.000 SECONDS 2.9 Mb WIN217-142 Apr 27, 2005

USER: GAMS Development Corporation, Washington, DC G871201/0000CA-ANY
Free Demo, 202-342-0180, sales@gams.com, www.gams.com DC0000

**** FILE SUMMARY

Input C:\Documents and Settings\Fabiano\Desktop\Fabiano\dissertação\Resultados GAMS\Var_Area_10000.gms
Output C:\WINDOWS\gamsdir\Var_Area_10000.lst